Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Small ; : e2401703, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210661

RESUMO

This work exploits the possibility of using CdSe/ZnS quantum dot (QD)-electrodes to monitor the metabolism of living cells based on photoelectrochemical (PEC) measurements. To realize that, the PEC setup is improved with respect to an enhanced photocurrent signal, better stability, and an increased signal-to-noise ratio, but also for a better biocompatibility of the sensor surface on which cells have been grown. To achieve this, a QD-TiO2 heterojunction is introduced with the help of atomic layer deposition (ALD). The heterojunction reduces the charge carrier recombination inside the semiconductor nanoparticles and improves the drift behavior. The PEC performance is carefully analyzed by adjusting the TiO2 thickness and combining this strategy with multilayer immobilizations of QDs. The optimal thickness of this coating is ≈5 nm; here, photocurrent generation can be enhanced significantly (e.g., for a single QD layer electrode by more than one order of magnitude at 0 V vs Ag/AgCl). The resulting optimized electrode is used for hydrogen peroxide (H2O2) sensing with a good sensitivity down to µmolar concentrations, reusability, stability, response rate, and repeatability. Finally, the sensing system is applied to monitor the activity of cells directly grown on top of the electrode surface.

2.
Small ; 20(31): e2311745, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38587168

RESUMO

Choline is an essential micronutrient for infants' brain development and health. To ensure that infants receive the needed daily dose of choline, the U.S. Food and Drug Administration (FDA) has set requirements for choline levels in commercialized infant formulas. Unfortunately, not all families can access well-regulated formulas, leading to potential inadequacies in choline intake. Economic constraints or difficulties in obtaining formulas, exacerbated by situations like COVID-19, prompt families to stretch formulas. Accurate measurement of choline in infant formulas becomes imperative to guarantee that infants receive the necessary nutritional support. Yet, accessible tools for this purpose are lacking. An innovative integrated sensor for the periodic observation of choline (SPOOC) designed for at-home quantification of choline in infants' formulas and milk powders is reported. This system is composed of a choline potentiometric sensor and ionic-liquid reference electrode developed on laser-induced graphene (LIG) and integrated into a spoon-like device. SPOOC includes a micro-potentiometer that conducts the measurements and transmits results wirelessly to parents' mobile devices. SPOOC demonstrated rapid and accurate assessment of choline levels directly in pre-consuming infant formulas without any sample treatment. This work empowers parents with a user-friendly tool for choline monitoring promoting informed nutritional decision-making in the care of infants.


Assuntos
Colina , Fórmulas Infantis , Colina/análise , Colina/química , Fórmulas Infantis/química , Humanos , Lactente , COVID-19 , Grafite/química , Potenciometria/métodos
3.
Environ Res ; 247: 118285, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266896

RESUMO

Traditional microbial electrochemical sensors encounter challenges due to their inherent complexity. In response to these challenges, the microbial potentiometric sensor (MPS) technology was introduced, featuring a straightforward high-impedance measurement circuit tailored for environmental monitoring. Nonetheless, the practical implementation of conventional MPS is constrained by issues such as the exposure of the reference electrode to the monitored water and the absence of methodologies to stimulate microbial metabolism. In this study, our objective was to enhance MPS performance by imbuing it with unique cathodic catalytic properties, specifically tailored for distinct application scenarios. Notably, the anodic region served as the sensing element, with both the cathodic region and reference electrode physically isolated from the analyzed water sample. In the realm of organic monitoring, the sensor without Pt/C coated in the cathodic region exhibited a faster response time (1 h) and lower detection limits (1 mg L-1 BOD, 1 mM acetic acid). Conversely, when monitoring toxic substances, the sensor with Pt/C showcased a lower detection limit (0.004% formaldehyde), while the Pt/C-free sensor demonstrated superior reusability. The sensor with Pt/C displayed a heightened anode biofilm thickness and coverage, predominantly composed of Rhodococcus. In conclusion, this study introduces simple, cost-effective, and tailorable biosensors holding substantial promise for water quality monitoring.


Assuntos
Técnicas Biossensoriais , Monitoramento Ambiental , Eletrodos , Monitoramento Ambiental/métodos , Técnicas Biossensoriais/métodos , Qualidade da Água
4.
Mikrochim Acta ; 191(10): 580, 2024 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-39243287

RESUMO

A wearable potentiometric device is reported based on an innovative butterfly-like paper-based microfluidic system, allowing for continuous monitoring of pH and Na+ levels in sweat during physical activity. Specifically, the use of the butterfly-like configuration avoids evaporation phenomena and memory effects, enabling precise and timely biomarker determination in sweat. Two ad hoc modified screen-printed electrodes were embedded in the butterfly-like paper-based microfluidics, and the sensing device was further integrated with a portable and miniaturized potentiostat, leveraging Bluetooth technology for efficient data transmission. First, the paper-based microfluidic configuration was tested for optimal fluidic management to obtain optimized performance of the device. Subsequently, the two electrodes were individually tested to detect the two biomarkers, namely pH and Na+. The results demonstrated highly promising near-Nernstian (0.056 ± 0.002 V/dec) and super-Nernstian (- 0.080 ± 0.003 V/pH) responses, for Na+ and pH detection, respectively. Additionally, several important parameters such as storage stability, interferents, and memory effect by hysteresis study were also investigated. Finally, the butterfly-like paper-based microfluidic wearable device was tested for Na+ and pH monitoring during the physical activity of three volunteers engaged in different exercises, obtaining a good correlation between Na+ increase and dehydration phenomena. Furthermore, one volunteer was tested through a cardiopulmonary test, demonstrating a correlation between sodium Na+ increase and the energetic effort by the volunteer. Our wearable device highlights the high potential to enable early evaluation of dehydration and open up new opportunities in sports activity monitoring.


Assuntos
Papel , Sódio , Suor , Dispositivos Eletrônicos Vestíveis , Suor/química , Humanos , Concentração de Íons de Hidrogênio , Sódio/análise , Eletrodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Dispositivos Lab-On-A-Chip
5.
Mikrochim Acta ; 191(6): 313, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717608

RESUMO

Copper levels in biological fluids are associated with Wilson's, Alzheimer's, Menke's, and Parkinson's diseases, making them good biochemical markers for these diseases. This study introduces a miniaturized screen-printed electrode (SPE) for the potentiometric determination of copper(II) in some biological fluids. Manganese(III) oxide nanoparticles (Mn2O3-NPs), dispersed in Nafion, are drop-casted onto a graphite/PET substrate, serving as the ion-to-electron transducer material. The solid-contact material is then covered by a selective polyvinyl chloride (PVC) membrane incorporated with 18-crown-6 as a neutral ion carrier for the selective determination of copper(II) ions. The proposed electrode exhibits a Nernstian response with a slope of 30.2 ± 0.3 mV/decade (R2 = 0.999) over the linear concentration range 5.2 × 10-9 - 6.2 × 10-3 mol/l and a detection limit of 1.1 × 10-9 mol/l (69.9 ng/l). Short-term potential stability is evaluated using constant current chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS). A significant improvement in the electrode capacitance (91.5 µF) is displayed due to the use of Mn2O3-NPs as a solid contact. The presence of Nafion, with its high hydrophobicity properties, eliminates the formation of the thin water layer, facilitating the ion-to-electron transduction between the sensing membrane and the conducting substrate. Additionally, it enhances the adhesion of the polymeric sensing membrane to the solid-contact material, preventing membrane delamination and increasing the electrode's lifespan. The high selectivity, sensitivity, and potential stability of the proposed miniaturized electrode suggests its use for the determination of copper(II) ions in human blood serum and milk samples. The results obtained agree fairly well with data obtained by flameless atomic absorption spectrometry.


Assuntos
Cobre , Éteres de Coroa , Eletrodos , Polímeros de Fluorcarboneto , Limite de Detecção , Compostos de Manganês , Óxidos , Potenciometria , Cobre/química , Polímeros de Fluorcarboneto/química , Óxidos/química , Compostos de Manganês/química , Humanos , Potenciometria/instrumentação , Potenciometria/métodos , Éteres de Coroa/química , Grafite/química
6.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38676109

RESUMO

A new construction of a potentiometric sensor was introduced for the first time. It relies on the use of two membranes instead of one, as in the well-known coated-disc electrode. For this purpose, a new electrode body was constructed, including not one, but two glassy carbon discs covered with an ion-selective membrane. This solution allows for the sensor properties to be enhanced without using additional materials (layers or additives) on the membrane. The new construction is particularly useful for in situ measurements in environmental samples. Two ion-selective polymeric membranes were used, namely H+ and K+-selective membranes, to confirm the universality of the idea. The tests conducted included chronopotentiometric tests, electrochemical impedance spectroscopy, and potentiometric measurements. The electrical and analytical parameters of the sensors were evaluated and compared for all tested electrodes to evaluate the properties of the planar electrode versus previously known constructions. Research has shown that the application of two membranes instead of one allows for the resistance of an electrode to be lowered and for the electrical capacitance to be elevated. Improving the electrical properties of an electrode resulted in the enhancement of its analytical properties. The pH measurement range of the planar electrode is 2-11, which is much wider in contrast to that of the single-membrane electrode. The linear range of the K+-selective planar electrode is wider than that of the coated-disc electrode and equals 10-6 to 10-1 M. The response time turned out to be a few seconds shorter, and the potential drift was smaller due to the application of an additional membrane in the electrode construction. This research creates a new opportunity to design robust potentiometric sensors, as the presented construction is universal and can be used to obtain electrodes selective to various ions.

7.
Sensors (Basel) ; 24(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39338739

RESUMO

The development of ISE-based sensors for the analysis of nitrates in liquid phase is described in this work. Focusing on the tetradodecylammonium nitrate (TDDAN) ion exchanger as well as on fluoropolysiloxane (FPSX) polymer-based layers, electrodeposited matrixes containing double-walled carbon nanotubes (DWCNTs), embedded in either polyethylenedioxythiophene (PEDOT) or polypyrrole (PPy) polymers, ensured improved ion-to-electron transducing layers for NO3- detection. Thus, FPSX-based pNO3-ElecCell microsensors exhibited good detection properties (sensitivity up to 55 mV/pX for NO3 values ranging from 1 to 5) and acceptable selectivity in the presence of the main interferent anions (Cl-, HCO3-, and SO42-). Focusing on the temporal drift bottleneck, mixed results were obtained. On the one hand, relatively stable measurements and low temporal drifts (~1.5 mV/day) were evidenced on several days. On the other hand, the pNO3 sensor properties were degraded in the long term, being finally characterized by high response times, low detection sensitivities, and important measurement instabilities. These phenomena were related to the formation of some thin water-based layers at the polymer-metal interface, as well as the physicochemical properties of the TDDAN ion exchanger in the FPSX matrix. However, the improvements obtained thanks to DWCNT-based ion-to-electron transducing layers pave the way for the long-term analysis of NO3- ions in real water-based solutions.

8.
Sensors (Basel) ; 24(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39275577

RESUMO

A light-addressable potentiometric sensor (LAPS) is a semiconductor-based sensor platform for sensing and imaging of various chemical species. Being a potentiometric sensor, no faradaic current flows through its sensing surface, and no electrochemical reaction takes place in the course of LAPS measurement. In this study, a four-electrode system is proposed, in which a LAPS is combined with the conventional three-electrode electrochemical system. A LAPS is included as the fourth electrode for potentiometric sensing and imaging of the target analyte in the course of an electrochemical reaction taking place on the surface of the working electrode. The integrated system will be useful for analyzing dynamic processes, where both the electrochemical process on the electrode surface and the ion distribution in the solution need to be simultaneously investigated. Different grounding modes of control circuits that can simultaneously conduct potentiostatic/galvanostatic polarization and LAPS measurement are designed, and their functionalities are tested. The interference between polarization and LAPS measurement will also be discussed.

9.
Anal Bioanal Chem ; 415(10): 1979-1989, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36864309

RESUMO

Using PEDOT as the conductive polymer, an innovative small-scale sensor for directly measuring salicylate ions in plants was developed, which avoided the complicated sample pretreatment of traditional analytical methods and realized the rapid detection of salicylic acid. The results demonstrate that this all-solid-state potentiometric salicylic acid sensor is easy to miniaturize, has a longer lifetime (≥1 month), is more robust, and can be directly used for the detection of salicylate ions in real samples without any additional pretreatment. The developed sensor has a good Nernst slope (63.6 ± 0.7 mV/decade), the linear range is 10-2 ~ 10-6 M, and the detection limit can reach (2.8 × 10-7 M). The selectivity, reproducibility, and stability of the sensor were evaluated. The sensor can perform stable, sensitive, and accurate in situ measurement of salicylic acid in plants, and it is an excellent tool for determining salicylic acid ions in plants in vivo.

10.
Mikrochim Acta ; 190(10): 408, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37733266

RESUMO

Detection of erythromycin (ERY) residues in commercial milk samples is crucial for the safety assessment. Herein, a printed circuit board was patterned as a feasible miniaturized potentiometric sensor for ERY determination in dairy samples. The proposed chip design fits to a 3.5-mm female audio plug to facilitate the potential measurements of working electrode versus reference one in this all-solid-state system. The sensor utilizes molecular imprinted polymer (MIP) for the selective recognition of the studied drug in such challenging matrix. The electrode stability is achieved through the addition of poly (3,4-ethylenedioxythiophene) nano-dispersion on its surface. The proposed device detects down to 6.6 × 10-8 M ERY with a slope of 51 mV/decade in the 1 × 10-7-1 × 10-3 M range. The results display high accuracy (99.9% ± 2.6) with satisfactory relative standard deviation for repeatability (1.6%) and reproducibility (5.0%). The effect of common antibiotic classes, namely, amphenicols, beta-lactams, fluoroquinolones, sulfonamides, and tetracyclines, can be neglected as evidenced by their calculated binding capacities towards the proposed MIP. The calculated selectivity coefficients also show a good electrode performance in the presence of naturally present inorganic ions allowing its application to different milk samples.


Assuntos
Eritromicina , Leite , Feminino , Animais , Reprodutibilidade dos Testes , Antibacterianos , Polímeros
11.
Mikrochim Acta ; 190(11): 457, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917196

RESUMO

Microliter volume pH determination is of great importance in the biomedical and industrial applications. The current available pH meter and measurement techniques are hard to reach the high demand of microliter volume pH determination in a repeatable, stable, and sensitivity manner. This work aims to fill the gap of microliter volume pH measurements while maintaining good sensing performance. The electrodeposited iridium oxide and cobalt hydroxide along with gold electrode served as working, counter, and reference electrode, respectively, for 10-12 µL volume pH measurements with Nernst constant of 55.9 ± 4.4 mV/pH. The electrodeposited thin film was further characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Raman spectrometry, etc. to confirm its morphology and composition. The constructed pH sensor was used for human serum sample measurements to confirm the suitability of future applications. The results show that it has only 0.80% variation compared to a commercial pH meter with a limit of detection (LOD, or resolution) of ± 0.01 pH. It holds a great potential to be used in the future for microliter volume in situ pH measurements.

12.
Sensors (Basel) ; 23(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36850724

RESUMO

The behavior of a new 1,3-dioctadecyl-1H-imidazol-3-ium tetraphenylborate (DODI-TPB) surfactant sensor was studied in single and complex mixtures of technical grade QACs-benzalkonium chloride (BAC), N,N-didecyl-N,N-dimethylammonium chloride (DDAC), and N,N-dioctyl-N,N-dimethylammonium chloride (DOAC) usually used in COVID-19 disinfecting agents formulations. The results obtained with the new DODI-TPB sensor were in good agreement with data measured by a 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-tetraphenylborate (DMI-TPB) surfactant sensor, as well as two-phase titration used as a reference method. The quantitative titrations of a two-component mixture of the cationic homologs (a) DDAC and DOAC; and (b) BAC and DOAC showed that the new DODI-TPB surfactant sensor can clearly distinguish two separate mixture components in a single potentiometric titration curve with two characteristic inflexion points. The consumption of SDS (used as a titrant) in the end-point 1 (EP 1) corresponded to the content of DDAC (or BAC), whereas the consumption in the end-point 2 (EP 2) corresponded to the total content of both cationic surfactants in the mixture. DOAC content in both mixtures can be calculated from the difference of the titrant used to achieve EP1 and EP2. The addition of nonionic surfactants resulted in the signal change decrease from 333.2 mV (1:0; no nonionic surfactant added) to 243.0 mV (1:10, w/w). The sensor was successfully tested in ten two-component COVID-19 disinfecting formulations.


Assuntos
COVID-19 , Tensoativos , Humanos , Tetrafenilborato , Compostos de Benzalcônio
13.
Sensors (Basel) ; 22(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35161857

RESUMO

We developed a high spatially-resolved ion-imaging system using focused electron beam excitation. In this system, we designed a nanometric thin sensor substrate to improve spatial resolution. The principle of pH measurement is similar to that of a light-addressable potentiometric sensor (LAPS), however, here the focused electron beam is used as an excitation carrier instead of light. A Nernstian-like pH response with a pH sensitivity of 53.83 mV/pH and linearity of 96.15% was obtained. The spatial resolution of the imaging system was evaluated by applying a photoresist to the sensing surface of the ion-sensor substrate. A spatial resolution of 216 nm was obtained. We achieved a substantially higher spatial resolution than that reported in the LAPS systems.


Assuntos
Técnicas Biossensoriais , Elétrons , Potenciometria
14.
Sensors (Basel) ; 22(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35336414

RESUMO

Stainless steel plays an important role in industry due to its anti-corrosion characteristic. It is known, however, that local corrosion can damage stainless steel under certain conditions. In this study, we developed a novel measurement system to observe crevice corrosion, which is a local corrosion that occurs inside a narrow gap. In addition to pH imaging inside the crevice, another imaging technique using an infrared light was combined to simultaneously visualize surface roughening of the test piece. According to experimental results, the lowering of local pH propagated inside the crevice, and after that, the surface roughening started and expanded due to propagation of corrosion. The real-time measurement of the pH distribution and the surface roughness can be a powerful tool to investigate the crevice corrosion.


Assuntos
Diagnóstico por Imagem , Aço Inoxidável , Corrosão , Concentração de Íons de Hidrogênio
15.
Sensors (Basel) ; 22(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746324

RESUMO

A light-addressable potentiometric sensor (LAPS) is a chemical sensor that is based on the field effect in an electrolyte-insulator-semiconductor structure. It requires modulated illumination for generating an AC photocurrent signal that responds to the activity of target ions on the sensor surface. Although high-power illumination generates a large signal, which is advantageous in terms of the signal-to-noise ratio, excess light power can also be harmful to the sample and the measurement. In this study, we tested different waveforms of modulated illuminations to find an efficient illumination for a LAPS that can enlarge the signal as much as possible for the same input light power. The results showed that a square wave with a low duty ratio was more efficient than a sine wave by a factor of about two.


Assuntos
Técnicas Biossensoriais , Iluminação , Técnicas Biossensoriais/métodos , Luz , Potenciometria , Semicondutores
16.
Sensors (Basel) ; 22(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36560077

RESUMO

Hydrogen is expected to play an important role in the near future in the transition to a net-zero economy. Therefore, the development of new in situ and real-time analytical tools able to quantify hydrogen at high temperatures is required for future applications. Potentiometric sensors based on perovskite-structured solid-state electrolytes can be a good option for H2 monitoring. Nevertheless, the geometry of the sensor should be designed according to the specific necessities of each technological field. Conventional shaping processes need several iterations of green shaping and machining to achieve a good result. In contrast, 3D printing methods stand out from conventional ones since they simplify the creation of prototypes, reducing the cost and the number of iterations needed for the obtainment of the final design. In the present work, BaCe0.6Zr0.3Y0.1O3-α (BCZY) was used as a proton-conducting electrolyte for potentiometric sensors construction. Two different shapes were tested for the sensors' electrolyte: pellets (BCZY-Pellet) and crucibles (BCZY-Crucible). Ceramics were shaped using extrusion-based 3D printing. Finally, parameters, such as sensitivity, response time, recovery time and the limit of detection and accuracy, were evaluated for both types of sensors (BCZY-Pellet and BCZY-Crucible) at 500 °C.

17.
Anal Bioanal Chem ; 413(14): 3611-3623, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33866391

RESUMO

In the current study, a molecularly imprinted polymer (MIP)-based potentiometric sensor was fabricated for a label-free determination of recombinant human erythropoietin (rhEPO). The MIP sensor was operated under zero current conditions using tetra-butyl ammonium bromide as a marker ion. A highly ordered rhEPO surface imprinted layer was prepared using 3-aminopropyl triethoxysilane and tetraethoxysilane as a monomer and cross-linker, respectively, under mild reaction conditions. A two-fold increase in the signal output was obtained by polymeric surface minimization (0.5 mm) that allowed more pronounced molecular recognition (imprinting factor = 20.1). The proportion of cross-reactivity was examined using different interfering biomolecules. Results confirmed sensor specificity for both structurally related and unrelated proteins. An ~40% decrease in the response was obtained for rhEPO-ß compared to rhEPO-α. The imprinted polymeric surface was evaluated using scanning electron microscopy and Fourier transform infrared spectroscopy. Under the optimal measurement conditions, a linear range of 10.00-1000.00 ng mL-1 (10-10 - 10-8 M) was obtained. The sensor was employed for the determination of rhEPO in different biopharmaceutical formulations. Results were validated against standard immunoassay. Spiked human serum samples were analyzed and the assay was validated. The presence of non-specific proteins did not significantly affect (~8%) the results of our assay. A concentration-dependent linear response was produced in an identical range with detection limit as low as 6.50 ng mL-1 (2.14 × 10-10 M). The facile fabricated MIP sensor offers a cost-effective, portable, and easy to use alternative for biosimilarity assessment and clinical application.


Assuntos
Eritropoetina/análise , Impressão Molecular/métodos , Polímeros Molecularmente Impressos/química , Potenciometria/métodos , Humanos , Limite de Detecção , Proteínas Recombinantes/análise
18.
Biotechnol Appl Biochem ; 68(6): 1153-1158, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32970336

RESUMO

An immunosensor is based on the signal measurement obtained upon the reaction of an antibody antigen complex. It plays a significant role in various fields such as environmental analysis, production monitoring, drug detection or screening, veterinary medicine, and animal food. In this study, an antibody crosslinked graphen oxide (GO)-based potentiometric sensor has been developed for fast, simple, and economical detection of clenbuterol. In this context, the photosensitive amino acid bound GO platform is synthesized and used for the preparation of electrode material. Then, polymeric structure is characterized by infrared spectroscopy, and the performance of immunonano platform prepared by potentiometric sensor is evaluated. The effect of pH, response time, selectivity, and sensitivity is investigated. Under the optimized conditions, a simple and rapid method for the determination of clenbuterol from milk sample is established by immuno-potentiometric sensor. The detection limit has found to be 0.87 × 10-9 mmol L-1 for this immuno-potentiometric sensor. This immuno-potentiometric sensor has optimum pH at 7.0, a wide linear response (1.0 × 10-2 to 1.0 × 10-9 mmol L-1 ), rapid response time (2 Min) and 36 weeks operational lifetime.


Assuntos
Anticorpos/química , Clembuterol/análise , Reagentes de Ligações Cruzadas/química , Grafite/química , Imunoensaio , Potenciometria
19.
Sensors (Basel) ; 22(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35009624

RESUMO

Adenosine 5'-triphosphate (ATP) plays a crucial role as an extracellular signaling molecule in the central nervous system and is closely related to various nerve diseases. Therefore, label-free imaging of extracellular ATP dynamics and spatiotemporal analysis is crucial for understanding brain function. To decrease the limit of detection (LOD) of imaging extracellular ATP, we fabricated a redox-type label-free ATP image sensor by immobilizing glycerol-kinase (GK), L-α-glycerophosphate oxidase (LGOx), and horseradish peroxidase (HRP) enzymes in a polymer film on a gold electrode-modified potentiometric sensor array with a 37.3 µm-pitch. Hydrogen peroxide (H2O2) is generated through the enzymatic reactions from GK to LGOx in the presence of ATP and glycerol, and ATP can be detected as changes in its concentration using an electron mediator. Using this approach, the LOD for ATP was 2.8 µM with a sensitivity of 77 ± 3.8 mV/dec., under 10 mM working buffers at physiological pH, such as in in vitro experiments, and the LOD was great superior 100 times than that of the hydrogen ion detection-based image sensor. This redox-type ATP image sensor may be successfully applied for in vitro sensitive imaging of extracellular ATP dynamics in brain nerve tissue or cells.


Assuntos
Técnicas Biossensoriais , Peróxido de Hidrogênio , Trifosfato de Adenosina , Enzimas Imobilizadas , Peroxidase do Rábano Silvestre/metabolismo , Oxirredução
20.
Sensors (Basel) ; 21(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430170

RESUMO

A new potentiometric sensor based on modified carbon paste electrode (CPE) was prepared for the sensitive and selective detection of total residual chlorine (TRC) in simulated electrolytically-treated ballast water (BW). The modified CPE was prepared using ferrocene (Fc) as the sensing species and paraffin oil as the binder. It is revealed that the addition of Fc can significantly shorten the response time and improve the reproducibility, selectivity, and stability of the sensor. The open circuit potential of the Fc-CPE is in linear proportion to the logarithm of TRC within the TRC concentration range from 1 mg∙dm-3 to 15 mg∙dm-3. In addition, the Fc-CPE sensor exhibits good selectivity to TRC over a wide concentration range of the possible co-exiting interference ions in seawater. The Fc-CPE electrode can be used as a convenient and reliable sensor for the continuous monitoring of TRC during the electrolytic treatment of BW.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa