Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.052
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(6): 5551-5560, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38921003

RESUMO

Extensive research on medicinal herbs for bioactive compounds proposes that they could replace synthetic drugs, reducing side effects and economic burdens. Especially, interest in the synergistic benefits of natural products is increasing, implying that their combined use may enhance therapeutic effectiveness. This study aimed to explore the synergetic effects of turmeric (Curcuma longa L.) and black pepper (Piper nigrum L.) extract on lung normal (MRC-5) and cancer (A549 and NCI-H292) cell lines. The turmeric extract (TM) only affected the lung cancer cell lines, but it had no impact on the MRC-5 cell line. On the other hand, the black pepper extract (BP) did not cause any damage to either the lung normal or cancer cell lines, even at concentrations of up to 400 µg/mL. Response surface methodology was used to predict the ideal synergistic concentrations (EC50) of TM and BP, which were found to be 48.5 and 241.7 µg/mL, respectively. Notably, the selected condition resulted in higher cytotoxicity compared to the exposure to TM alone, indicating a potent synergetic effect. The rate of curcumin degradation under this combined treatment was significantly decreased to 49.72 ± 5.00 nmol/h/µg for A549 cells and 47.53 ± 4.78 nmol/h/µg for NCI-H292 cells, respectively, as compared to curcumin alone. Taken together, this study confirmed the potent synergistic effect of TM and BP on lung cancer cell lines. Further research is required to identify their specific synergetic mechanisms. Our findings provide crucial foundational data on the synergistic effects of TM and BP.

2.
BMC Biotechnol ; 24(1): 49, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010004

RESUMO

This study used conservative one variable-at-a-time study and statistical surface response methods to increase the yields of an extracellular thermostable protease secreted by a newly identified thermophilic Bacillus subtilis BSP strain. Using conventional optimization techniques, physical parameters in submerged fermentation were adjusted at the shake flask level to reach 184 U/mL. These physicochemical parameters were further optimized by statistical surface response methodology using Box Behnken design, and the protease yield increased to 295 U/mL. The protease was purified and characterized biochemically. Both Ca2+ and Fe2+ increased the activity of the 36 kDa protease enzyme. Based on its strong inhibition by ethylenediaminetetracetate (EDTA), the enzyme was confirmed to be a metalloprotease. The protease was also resistant to various organic solvents (benzene, ethanol, methanol), surfactants (Triton X-100), sodium dodecyl sulfate (SDS), Tween 20, Tween-80 and oxidants hydrogen per oxide (H2O2). Characteristics, such as tolerance to high SDS and H2O2 concentrations, indicate that this protease has potential applications in the pharmaceutical and detergent industries.


Assuntos
Bacillus subtilis , Estabilidade Enzimática , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Peróxido de Hidrogênio/metabolismo , Fermentação , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/química , Concentração de Íons de Hidrogênio , Solventes/química , Temperatura
3.
BMC Plant Biol ; 24(1): 527, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38858674

RESUMO

BACKGROUND: Angelica Gigas (Purple parsnip) is an important medicinal plant that is cultivated and utilized in Korea, Japan, and China. It contains bioactive substances especially coumarins with anti-inflammatory, anti-platelet aggregation, anti-cancer, anti-diabetic, antimicrobial, anti-obesity, anti-oxidant, immunomodulatory, and neuroprotective properties. This medicinal crop can be genetically improved, and the metabolites can be obtained by embryonic stem cells. In this context, we established the protoplast-to-plant regeneration methodology in Angelica gigas. RESULTS: In the present investigation, we isolated the protoplast from the embryogenic callus by applying methods that we have developed earlier and established protoplast cultures using Murashige and Skoog (MS) liquid medium and by embedding the protoplast in thin alginate layer (TAL) methods. We supplemented the culture medium with growth regulators namely 2,4-dichlorophenoxyaceticacid (2,4-D, 0, 0.75, 1.5 mg L- 1), kinetin (KN, 0, 0.5, and 1.0 mg L- 1) and phytosulfokine (PSK, 0, 50, 100 nM) to induce protoplast division, microcolony formation, and embryogenic callus regeneration. We applied central composite design (CCD) and response surface methodology (RSM) for the optimization of 2,4-D, KN, and PSK levels during protoplast division, micro-callus formation, and induction of embryogenic callus stages. The results revealed that 0.04 mg L- 1 2,4-D + 0.5 mg L- 1 KN + 2 nM PSK, 0.5 mg L- 1 2,4-D + 0.9 mg L- 1 KN and 90 nM PSK, and 1.5 mg L- 1 2,4-D and 1 mg L- 1 KN were optimum for protoplast division, micro-callus formation and induction embryogenic callus. MS basal semi-solid medium without growth regulators was good for the development of embryos and plant regeneration. CONCLUSIONS: This study demonstrated successful protoplast culture, protoplast division, micro-callus formation, induction embryogenic callus, somatic embryogenesis, and plant regeneration in A. gigas. The methodologies developed here are quite useful for the genetic improvement of this important medicinal plant.


Assuntos
Angelica , Reguladores de Crescimento de Plantas , Técnicas de Embriogênese Somática de Plantas , Protoplastos , Angelica/embriologia , Reguladores de Crescimento de Plantas/farmacologia , Técnicas de Embriogênese Somática de Plantas/métodos , Protoplastos/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos
4.
Small ; 20(25): e2306054, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38299478

RESUMO

Nanosized drug crystals have been reported with enhanced apparent solubility, bioavailability, and therapeutic efficacy compared to microcrystal materials, which are not suitable for parenteral administration. However, nanocrystal design and development by bottom-up approaches are challenging, especially considering the non-standardized process parameters in the injection step. This work aims to present a systematic step-by-step approach through Quality-by-Design (QbD) and Design of Experiments (DoE) for synthesizing drug nanocrystals by a semi-automated nanoprecipitation method. Curcumin is used as a drug model due to its well-known poor water solubility (0.6 µg mL-1, 25 °C). Formal and informal risk assessment tools allow identifying the critical factors. A fractional factorial 24-1 screening design evaluates their impact on the average size and polydispersity of nanocrystals. The optimization of significant factors is done by a Central Composite Design. This response surface methodology supports the rational design of the nanocrystals, identifying and exploring the design space. The proposed joint approach leads to a reproducible, robust, and stable nanocrystalline preparation of 316 nm with a PdI of 0.217 in compliance with the quality profile. An orthogonal approach for particle size and polydispersity characterization allows discarding the formation of aggregates. Overall, the synergy between advanced data analysis and semi-automated standardized nanocrystallization of drugs is highlighted.


Assuntos
Nanopartículas , Nanopartículas/química , Preparações Farmacêuticas/química , Tamanho da Partícula , Automação , Cristalização , Curcumina/química
5.
BMC Microbiol ; 24(1): 120, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582825

RESUMO

BACKGROUND: Chrysomycin A (CA) is a promising antibiotic for treatment of Gram-positive bacterial infections and cancers. In order to enhance CA yield, optimization of fermentation conditions and medium components was carried out on strain Streptomyces sp. 891-B6, an UV-induced mutant with improved CA titer compared with its wide-type marine strain 891. RESULTS: Using one-way experiment, the optimal fermentation conditions for CA production in 1-L shake flask were obtained as follows: 12 days of fermentation time, 5 days of seed age, 5% of inoculum volume ratio, 200 mL of loading volume and 6.5 of initial pH. By response surface methodology, the optimal medium components determined as glucose (39.283 g/L), corn starch (20.662 g/L), soybean meal (15.480 g/L) and CaCO3 (2.000 g/L). CONCLUSION: Validation tests showed that the maximum yield of CA reached 1601.9 ± 56.7 mg/L, which was a 60% increase compared to the initial yield (952.3 ± 53.2 mg/L). These results provided an important basis for scale-up production of CA by strain 891-B6.


Assuntos
Streptomyces , Fermentação , Streptomyces/genética , Aminoglicosídeos , Antibacterianos , Meios de Cultura
6.
Cancer Invest ; 42(4): 319-332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38695671

RESUMO

Glioblastoma multiforme (GBM), is a frequent class of malignant brain tumors. Epigenetic therapy, especially with synergistic combinations is highly paid attention for aggressive solid tumors like GBM. Here, RSM optimization has been used to increase the efficient arrest of U87 and U251 cell lines due to synergistic effects. Cell lines were treated with SAHA, 5-Azacytidine, GSK-126, and PTC-209 individually and then RSM was used to find most effective combinations. Results showed that optimized combinations significantly reduce cell survival and induce cell cycle arrest and apoptosis in both cell lines. Expression of cyclin B1 and cyclin D1 were decreased while caspase3 increased expression.


Assuntos
Apoptose , Sinergismo Farmacológico , Epigênese Genética , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Azacitidina/farmacologia , Azacitidina/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Vorinostat/farmacologia , Vorinostat/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Ciclina D1/genética , Ciclina D1/metabolismo
7.
Biopolymers ; : e23585, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847141

RESUMO

The pollution caused by petroleum-derived plastic materials has become a major environmental problem that has encouraged the development of new compostable and environmentally friendly materials for food packaging based on biomodified polymers with household residues. This study aims to design, synthesize, and characterize a biobased polymeric microstructure film from polyvinyl alcohol and chitosan reinforced with holocellulose from spent coffee grounds for food-sustainable packaging. Chemical isolation with a chlorite-based solution was performed to obtain the reinforced holocellulose from the spent coffee ground, and the solvent casting method was used to obtain the films to study. Physicochemical and microscopic characterizations were conducted to identify and select the best formulations using a simplex-centroid design analysis. The response surface methodology results indicate that the new packaging material obtained with equal amounts of polymers and reinforced material (1:1:1) possesses the appropriate barrier properties and microstructural character to prevent water attack and hydrophobic behavior and thus could be used as an alternative for food packaging materials.

8.
Microb Cell Fact ; 23(1): 23, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38229042

RESUMO

BACKGROUND: Melanin is a natural pigment that is considered a promising biomaterial for numerous biotechnological applications across several industries. Melanin has biomedical applications as antimicrobial, anticancer, and antioxidant properties. Additionally, in the pharmaceutical and cosmetic industries, it is used in drug delivery and as a radioprotective agent. Also, melanin has environmental uses in the fields of bioremediation and the food industry. The biosynthesis of melanin pigment is an area of interest for researchers due to its multifunctionality, high compatibility, and biodegradability. Therefore, our present work is the first attempt to characterize and optimize the productivity of melanin pigment from Streptomyces djakartensis NSS-3 concerning its radioprotection and biological properties. RESULTS: Forty isolates of soil actinobacteria were isolated from the Wadi Allaqui Biosphere Reserve, Egypt. Only one isolate, ACT3, produced a dark brown melanin pigment extracellularly. This isolate was identified according to phenotypic properties and molecular phylogenetic analysis as Streptomyces djakartensis NSS-3 with accession number OP912881. Plackett-Burman experimental design (PBD) and response surface methodology (RSM) using a Box-Behnken design (BBD) were performed for optimum medium and culturing conditions for maximum pigment production, resulting in a 4.19-fold improvement in melanin production (118.73 mg/10 mL). The extracted melanin pigment was purified and characterized as belonging to nitrogen-free pyomelanin based on ultraviolet-visible spectrophotometry (UV-VIS), Fourier transform infrared (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and NMR studies. Purified melanin demonstrated potent scavenging activity with IC50 values of 18.03 µg/mL and revealed high potency as sunscreens (in vitro SPF = 18.5). Moreover, it showed a nontoxic effect on a normal cell line (WI38), while it had a concentration-dependent anticancer effect on HCT116, HEPG, and MCF7 cell lines with IC50 = 108.9, 43.83, and 81.99 µg/mL, respectively. Also, purified melanin had a detrimental effect on the tested MDR bacterial strains, of which PA-09 and SA-04 were clearly more susceptible to melanin compared with other strains with MICs of 6.25 and 25 µg/mL, respectively. CONCLUSION: Our results demonstrated that the newly characterized pyomelanin from Streptomyces djakartensis NSS-3 has valuable biological properties due to its potential photoprotective, antioxidant, anticancer, antimicrobial, and lack of cytotoxic activities, which open up new prospects for using this natural melanin pigment in various biotechnological applications and avoiding chemical-based drugs.


Assuntos
Anti-Infecciosos , Streptomyces , Melaninas , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Filogenia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Streptomyces/metabolismo
9.
Microb Cell Fact ; 23(1): 236, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192338

RESUMO

INTRODUCTION: With rapid elevation in population, urbanization and industrialization, the environment is exposed to uncontrolled discharge of effluents filled with broad-spectrum toxicity, persistence and long-distance transmission anthropogenic compounds, among them heavy metals. That put our ecosystem on the verge or at a stake of drastic ecological deterioration, which eventually adversely influence on public health. Therefore, this study employed marine fungal strain Rhodotorula sp. MZ312369 for Zn2+ and Cr6+ remediation using the promising calcium carbonate (CaCO3) bioprecipitation technique, for the first time. RESULTS: Initially, Plackett-Burman design followed by central composite design were applied to optimize carbonic anhydrase enzyme (CA), which succeeded in enhancing its activity to 154 U/mL with 1.8-fold increase comparing to the basal conditions. The potentiality of our biofactory in remediating Zn2+ (50 ppm) and Cr6+ (400 ppm) was monitored through dynamic study of several parameters including microbial count, CA activity, CaCO3 weight, pH fluctuation, changing the soluble concentrations of Ca2+ along with Zn2+ and Cr6+. The results revealed that 9.23 × 107 ± 2.1 × 106 CFU/mL and 10.88 × 107 ± 2.5 × 106 CFU/mL of cells exhibited their maximum CA activity by 124.84 ± 1.24 and 140 ± 2.5 U/mL at 132 h for Zn2+ and Cr6+, respectively. Simultaneously, with pH increase to 9.5 ± 0.2, a complete removal for both metals was observed at 168 h; Ca2+ removal percentages recorded 78.99% and 85.06% for Zn2+ and Cr6+ remediating experiments, respectively. Further, the identity, elemental composition, functional structure and morphology of bioremediated precipitates were also examined via mineralogical analysis. EDX pattern showed the typical signals of C, O and Ca accompanying with Zn2+ and Cr6+ peaks. SEM micrographs depicted spindle, spherical and cubic shape bioliths with size range of 1.3 ± 0.5-23.7 ± 3.1 µm. Meanwhile, XRD difractigrams unveiled the prevalence of vaterite phase in remediated samples. Besides, FTIR profiles emphasized the presence of vaterite spectral peaks along with metals wavenumbers. CONCLUSION: CA enzyme mediated Zn2+ and Cr6+ immobilization and encapsulation inside potent vaterite trap through microbial biomineralization process, which deemed as surrogate ecofriendly solution to mitigate heavy metals toxicity and restrict their mobility in soil and wastewater.


Assuntos
Biodegradação Ambiental , Carbonato de Cálcio , Anidrases Carbônicas , Cromo , Rhodotorula , Zinco , Zinco/metabolismo , Anidrases Carbônicas/metabolismo , Cromo/metabolismo , Carbonato de Cálcio/metabolismo , Carbonato de Cálcio/química , Rhodotorula/enzimologia , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/metabolismo
10.
Environ Sci Technol ; 58(22): 9570-9581, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38781138

RESUMO

The increasing level of O3 pollution in China significantly exacerbates the long-term O3 health damage, and an optimized health-oriented strategy for NOx and VOCs emission abatement is needed. Here, we developed an integrated evaluation and optimization system for the O3 control strategy by merging a response surface model for the O3-related mortality and an optimization module. Applying this system to the Yangtze River Delta (YRD), we evaluated driving factors for mortality changes from 2013 to 2017, quantified spatial and temporal O3-related mortality responses to precursor emission abatement, and optimized a health-oriented control strategy. Results indicate that insufficient NOx emission abatement combined with deficient VOCs control from 2013 to 2017 aggravated O3-related mortality, particularly during spring and autumn. Northern YRD should promote VOCs control due to higher VOC-limited characteristics, whereas fastening NOx emission abatement is more favorable in southern YRD. Moreover, promotion of NOx mitigation in late spring and summer and facilitating VOCs control in spring and autumn could further reduce O3-related mortality by nearly 10% compared to the control strategy without seasonal differences. These findings highlight that a spatially and temporally differentiated NOx and VOCs emission control strategy could gain more O3-related health benefits, offering valuable insights to regions with severe ozone pollution all over the world.


Assuntos
Ozônio , Compostos Orgânicos Voláteis , China , Poluentes Atmosféricos , Humanos , Óxidos de Nitrogênio
11.
Anal Bioanal Chem ; 416(22): 4999-5012, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39093417

RESUMO

Oat products have gained widespread recognition as a health food due to their rich and balanced nutritional profile and convenience. However, the unique matrix composition of oats, which differs significantly from other cereals, presents specific challenges for mycotoxin analysis. This study presents an ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method enhanced with an innovative egg white gel pretreatment for the simultaneous analysis of 13 regulated and unregulated trichothecenes in oats. The method demonstrated excellent performance with high accuracy (> 87.5%), repeatability (< 5.7%), and reproducibility (< 8.1%). Analysis of 100 commercial oat products revealed a concerning detection rate (78%) for at least one of the 11 trichothecenes investigated. Notably, deoxynivalenol, exceeding the standard limit in 2% of samples, exhibited the highest detection rate (62%). Additionally, concerning co-occurrence patterns and positive correlations were observed, highlighting potential synergistic effects. The first-time detection of unregulated mycotoxins (T-2 triol, 4,15-diacetoxyscirpenol, 15-acetoxyscirpenol, and neosolaniol) underscores the need for comprehensive monitoring. This method, while developed for oats, shows potential for broader application to other cereals, though further investigation and confirmation are necessary. These findings suggest a potentially underestimated risk of trichothecenes in oats, necessitating continuous monitoring to ensure consumer safety.


Assuntos
Avena , Contaminação de Alimentos , Limite de Detecção , Espectrometria de Massas em Tandem , Tricotecenos , Avena/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Tricotecenos/análise , Contaminação de Alimentos/análise , Géis/química , Reprodutibilidade dos Testes
12.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38308506

RESUMO

An efficient microbial conversion for simultaneous synthesis of multiple high-value compounds, such as biosurfactants and enzymes, is one of the most promising aspects for an economical bioprocess leading to a marked reduction in production cost. Although biosurfactant and enzyme production separately have been much explored, there are limited reports on the predictions and optimization studies on simultaneous production of biosurfactants and other industrially important enzymes, including lipase, protease, and amylase. Enzymes are suited for an integrated production process with biosurfactants as multiple common industrial processes and applications are catalysed by these molecules. However, the complexity in microbial metabolism complicates the production process. This study details the work done on biosurfactant and enzyme co-production and explores the application and scope of various statistical tools and methodologies in this area of research. The use of advanced computational tools is yet to be explored for the optimization of downstream strategies in the co-production process. Given the complexity of the co-production process and with various new methodologies based on artificial intelligence (AI) being invented, the scope of AI in shaping the biosurfactant-enzyme co-production process is immense and would lead to not only efficient and rapid optimization, but economical extraction of multiple biomolecules as well.


Assuntos
Inteligência Artificial , Tensoativos , Tensoativos/metabolismo , Fermentação , Lipase/metabolismo , Endopeptidases
13.
Environ Res ; 242: 117762, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029812

RESUMO

The objective of this research is to conduct a comprehensive characterization of chitosan while also improving its attributes by crosslinking with malonic acid, with a focus on its efficacy in removing hexavalent chromium, arsenite and fluoride ions. Crosslinking chitosan in 1:0.5 mass ratio forming a film led to substantial enhancement in confiscation of these target pollutants. The characterization of the adsorbent involved several techniques, including FT-IR, TGA-DSC, SEM-EDX, XRD, and BET surface area analysis. In batch adsorption experiments, Chitosan-malonic acid (CMA) was employed to remove CrVI, AsIII and F- from aqueous solutions. These experiments were conducted while varying conditions such as pH, dosage, concentration, temperature, and time. Through the implementation of response surface methodology (RSM), parameters were optimized, resulting in over 95% removal of CrVI, AsIII and F- ions. The isotherm and kinetics data demonstrated a good fit with the Langmuir isotherm model and pseudo second-order kinetics, respectively. According to the Langmuir isotherm, the maximum adsorption capacities on CMA for CrVI, AsIII and F- were determined to be 687.05 mg g-1, 26.72 mg g-1 and 51.38 mg g-1 respectively under optimum pH of 4.0, 7.0 and 5.0 respectively under ambient temperature of 303 K. Thermodynamic analysis indicated that the adsorption process was spontaneous and driven by enthalpy. The regenerability of the adsorbent was validated through five adsorption-desorption cycles, signifying its reusability. An assessment of the adsorbent's sustainability indicated an eco-friendly synthesis, as reflected by the low E-factor value of 0.0028.


Assuntos
Quitosana , Malonatos , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Poluentes Químicos da Água/química , Purificação da Água/métodos , Termodinâmica , Cromo/química , Cinética , Íons , Concentração de Íons de Hidrogênio
14.
Environ Res ; 261: 119698, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39074773

RESUMO

One of the few elements that can have negative health impacts in both conditions, when consumed in excess or insufficiency is fluoride. In current study, aluminium magnetite alginate composite (AMA) was fabricated and applied using batch adsorption of fluoride as well as by using statistical modelling. Heterogeneous surface as revealed from scanning electron micrograph, thermal stability shown by thermal studies, high surface area of 29.77 m2 g-1, pore volume 0.1987 cm3 g-1 with mesoporous structure having average pore radius of 133 Å shown by BET analysis, fare degree of magnetization from VSM analysis were the important features of this material. Screening experiments and batch trials were carried out to obtain optimum working conditions. pH of 3.0, dosage of 50 mg, interaction period of 60 min and concentration of 50 mg L-1 depicted maximum defluoridation efficacy of about 94%. The adsorption capacity was found to be 60.08 mg g-1 in accordance with Langmuir adsorption isotherm, while pseudo second order kinetics was followed. Overall effects of various factors on sorption process were optimized using response surface methodology (RSM). Regeneration potential of AMA has been demonstrated for 10 adsorption-desorption cycles, showing more than 60% efficiency in tenth cycle. The AMA composite shows E-factor value 0.004 depicting it is sustainable in environment. In short, this novel composite showed excellent morphological, magnetic, functional properties that led to enhanced adsorption efficiency in short span of time that can be regenerated and reused in multiple cycles.

15.
Environ Res ; 241: 117657, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37980988

RESUMO

In this study, the manganese oxide/biochar composites (Mn@BC) were synthesized from Phytolacca acinosa Roxb. The Mn@BC was analyzed via techniques of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction analysis (XRD). The results show that MnOx is successfully loaded on the surface of BC, and the load of MnOx can increase the number of surface functional groups of BC. X-ray photoelectron spectroscopy (XPS) shows that MnOx loaded on BC mainly exists in three valence forms: Mn(Ⅱ), Mn(Ⅲ), and Mn(Ⅳ). The ability of Mn@BC to activate periodate (PI) was studied by simulating the degradation of methylene blue (MB) dye. The degradation experiment results showed that the MB removal rate by the Mn@BC/PI system reached 97.4% within 30 min. The quenching experiment and electron paramagnetic resonance (EPR) analysis confirmed that Mn@BC can activate PI to produce iodate (IO3•), singlet oxygen (1O2), and hydroxyl radical (•OH), which can degrade MB during the reaction. Response surface methodology (RSM) based on Box-Behnken Design (BBD) was used to determine the interaction between pH, Mn@BC and PI concentration in the Mn@BC/PI system, and the optimum technological parameters were determined. When pH = 5.4, Mn@BC concentration 0.56 mg/L, PI concentration 1.1 mmol/L, MB removal rate can reach 98.05%. The cyclic experiments show that Mn@BC can be reused. After four consecutive runs, the removal rate of MB by the Mn@BC/PI system is still 82%, and the Mn@BC/PI system also shows high performance in treating MB in actual water bodies and degrading other pollutants. This study provides a practical method for degrading dyes in natural sewage.


Assuntos
Manganês , Poluentes Químicos da Água , Manganês/análise , Azul de Metileno/análise , Poluentes Químicos da Água/análise , Adsorção
16.
Environ Res ; 242: 117741, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007075

RESUMO

Several energy-related strategies and scenarios have been suggested to address concerns about rising global temperatures. In addition to using renewable energy, the improvement in energy efficiency of conventional systems is also in focus. Policies are already in place in many countries, including India, to address the energy needs of rural and small-scale enterprises by gasifying locally available, diverse agricultural leftovers. Although rice husk and groundnut shell are two commonly used agricultural leftovers in the southern part of India, their appropriate blending must be studied to improve their conversion efficiency in co-gasification. Therefore, the primary objective of this research is to construct a statistical model utilizing response surface methodology (RSM) to analyze the thermochemical co-gasification of the aforementioned biomass materials. Since RSM can predict optimum performance with limited experimental data, this could contribute to the identification of the performance and operating parameters of an open-core gasifier. The model predicts that the mixture containing 20% rice husk and working at an ER of 0.25 and a reduction zone inlet temperature of 879.9 °C will be CO-23.53%, H2-13.97%, and CH4-3.56%. In addition, the lower heating value and gas yield can be as high as 6.17 MJ/Nm3 and 2.369 m3/kg, respectively. This outcome can contribute to the effective utilization of biomass for energy supply in rural areas. However, the economic parameters must be analyzed to implement the same in any region.


Assuntos
Oryza , Gases , Temperatura , Biomassa , Índia
17.
Environ Res ; 259: 119574, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38986800

RESUMO

Environmental pollution is increasing worldwide due to population and industrialization. Among the various forms of pollution, water pollution poses a significant challenge in contemporary times. In this study, we synthesized CuO-decorated montmorillonite K30 (MK30) nanosheets via a simple ultrasonication technique. The structural, morphological, compositional, and optical properties of the synthesized nanocomposites were evaluated using advanced instrumentation techniques. The morphology of CuO was cubic and cubic CuO evenly designed on the MK30, which was proved by Field Emission Scanning Electron Microscopy (FESEM). The adsorption photocatalytic activity of the synthesized cubic CuO/MK30 composites was examined through the degradation of MB under visible light irradiation. The apparent reaction rate constant of 20% CuO/MK30 was 12.5 folds higher than that of CuO. These conditions included a catalyst dosage ranging from 5 to 15 mg, a pH level ranging from to 3-11, and a pollutant concentration ranging from 5 to 20 mg/L. The optimal conditions for MB dye removal were determined using response surface methodology (RSM). A scavenger study of the composite was conducted and verified that •O2- and •OH radicals play an important role in the degradation process. This investigation addressed the process of adsorption and potential removal pathways, with a particular emphasis on the role of functional groups. The environmentally friendly CuO/MK30 nanocomposites exhibited potential as photocatalysts for efficiently absorbing and degrading MB dye and TC drug pollutants. They represent promising candidates for the treatment of industrial wastewater, aiming to mitigate the environmental threats posed by organic pollutants.


Assuntos
Bentonita , Cobre , Nanocompostos , Poluentes Químicos da Água , Bentonita/química , Cobre/química , Nanocompostos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Catálise
18.
Environ Res ; 252(Pt 2): 118597, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38462091

RESUMO

Particle feeding plays a crucial role in the gasifier due to its effects on the efficiency and performance metrics of the thermochemical process. Investigating particle size distribution's impact on downdraft gasification reactor performance, this study delves into the significance of feedstock characteristics (moisture, volatile matter, fixed carbon, and ash contents) during the particle feeding stage. Various biomass wastes (date palm waste, olive pomace and sewage sludge) at diverse compositions and sizes are subjected to empirical determination of mass flow rates (MFR), power ratings, and storage times for each feedstock. The preheating process in the gasifier is considered, employing both an approximation and analytical solution. In addition, the influence of the equivalence ratio (ER) on the syngas yield is analyzed. The collected data reveals that for average particle size of 200 µm, the highest MFR (in g/min) are 0.518 ± 0.033, 7.691 ± 0.415, and 16.111 ± 1.050, for palm wood biomass, olive pomace and sewage sludge, respectively. Smaller particles (80 µm) led to extended storage times. Moreover, the lumped capacitance approximation method consistently underestimates preheating time, with a percentage error of 6.26%-17.08%. Response surface methodology (RSM) optimization analysis provides optimal gasification conditions for palm wood biomass, olive pomace, and sewage sludge with maximum cold gas efficiencies (CGEs) of 58.01%, 63.29%, and 52.27%. The peak conversion was attained at gasification temperatures of 1089.83 °C, 1151.93 °C, and 1102.91 °C for palm wood biomass, olive pomace, and sewage sludge, respectively. In addition, gasification equilibrium model determined optimal gasification temperatures as 1150 °C for palm biomass, 1200 °C for olive pomace, and 1150 °C for sewage sludge with respective syngas efficiencies of 59.62%, 64.13%, and 53.66%. Consequently, the examination of the dosing procedure, preheating dynamics, particle dimensions, ER, storage time, and their combined impacts offer practical insights to effectively control downdraft gasifiers in handling a variety of feedstocks.


Assuntos
Biomassa , Tamanho da Partícula , Olea/química , Esgotos/química , Esgotos/análise , Gases/análise
19.
Environ Res ; 252(Pt 1): 118764, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527722

RESUMO

The primary aim of this research is to comprehensively assess the applicability of chitosan biopolymer towards water treatment application and to enhance its adsorption capacity towards Remazol brilliant blue R-19 dye. This has been achieved through physical modification to obtain the material in hydrogel form and chemical modification by crosslinking it with barbituric acid. The characterization of the resulting Chitosan-barbituric acid hydrogel (CBH) was carried out using various analytical techniques such as SEM-EDX, FT-IR, TGA-DTA, XRD, and BET. CBH was employed as the adsorbent to eliminate R-19 dye from aqueous media. Utilizing response surface methodology (RSM), the parameters were fine-tuned, leading to the achievement of more than a 95% removal for R-19 dye. The adsorption behavior closely adhered to the Langmuir isotherm and pseudo-second-order kinetics. An interesting observation indicated that the rise in temperature leads to rise in adsorption capacity of CBH. The maximum adsorption capacities evaluated at 301.15 K, 313.15 K, 318.15 K, and 323.15 K were 566.6 mg g-1, 624.7 mg g-1, 671.3 mg g-1, and 713.5 mg g-1 respectively, in accordance with the Langmuir isotherm model. Examining the thermodynamics of the adsorption process revealed its spontaneous nature (ΔG = -21.14 to -27.09 kJ mol-1) across the entire temperature range. Furthermore, the assessment of the isosteric heat of adsorption (ΔHads) was conducted using the Clausius-Clapeyron equation, with results indicating an increase in ΔHads from 1.85 to 2.16 kJ mol-1 with temperature rise from 301.15 K to 323.15 K due to augmented surface loading. This suggested the existence of lateral interactions between the adsorbed dye molecules. The potential of adsorbent for regeneration was investigated, demonstrating the ability to reuse the material. Sustainability parameter calculated for synthesis process reflected a notably low E-factor value of 0.32 demonstrated the synthesis is environment friendly.


Assuntos
Quitosana , Poluentes Químicos da Água , Quitosana/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Hidrogéis/química , Antraquinonas/química , Cinética , Barbitúricos/química , Purificação da Água/métodos , Corantes/química
20.
Environ Res ; 251(Pt 2): 118714, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518916

RESUMO

Disposal and recycling of heavy metal-enriched biomass is the key to measure the success of phytoremediation. This study employed innovative approach to use Aspergillus niger (A. niger) for the treatment of Cd-contaminated Helianthus annuus L. (sunflower) stalk after phytoremediation. Single-factor results showed that the removal of Cd at an initial pH of 3 was superior to sucrose and inoculation amount. 67.67% of Cd was removed by A. niger leaching system after 11 days based on response surface methodology optimum conditions (sucrose: 76.266 g L-1; inoculation amount: 10%; initial pH: 3), while the concentrations of nitrogen, phosphorus and potassium (N, P and K) of sunflower stalk were unaffected. While physicochemical pretreatment effectively enhanced the bioleaching efficiency, it also resulted in significant loss of P and K elements, thereby reducing the value of biomass for recycling and utilization. Therefore, the direct A. niger leaching method without pretreatment is more advantageous for the safe treatment and recycling of Cd-contaminated sunflower stalks.


Assuntos
Aspergillus niger , Biodegradação Ambiental , Cádmio , Helianthus , Helianthus/metabolismo , Aspergillus niger/metabolismo , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Biomassa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa