Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.963
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 40: 271-294, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35080919

RESUMO

Vertebrate immune systems suppress viral infection using both innate restriction factors and adaptive immunity. Viruses mutate to escape these defenses, driving hosts to counterevolve to regain fitness. This cycle recurs repeatedly, resulting in an evolutionary arms race whose outcome depends on the pace and likelihood of adaptation by host and viral genes. Although viruses evolve faster than their vertebrate hosts, their proteins are subject to numerous functional constraints that impact the probability of adaptation. These constraints are globally defined by evolutionary landscapes, which describe the fitness and adaptive potential of all possible mutations. We review deep mutational scanning experiments mapping the evolutionary landscapes of both host and viral proteins engaged in arms races. For restriction factors and some broadly neutralizing antibodies, landscapes favor the host, which may help to level the evolutionary playing field against rapidly evolving viruses. We discuss the biophysical underpinnings of these landscapes and their therapeutic implications.


Assuntos
Viroses , Vírus , Animais , Evolução Biológica , Humanos , Mutação , Proteínas Virais , Viroses/genética , Vírus/genética
2.
Cell ; 183(7): 2020-2035.e16, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33326746

RESUMO

Thousands of proteins localize to the nucleus; however, it remains unclear which contain transcriptional effectors. Here, we develop HT-recruit, a pooled assay where protein libraries are recruited to a reporter, and their transcriptional effects are measured by sequencing. Using this approach, we measure gene silencing and activation for thousands of domains. We find a relationship between repressor function and evolutionary age for the KRAB domains, discover that Homeodomain repressor strength is collinear with Hox genetic organization, and identify activities for several domains of unknown function. Deep mutational scanning of the CRISPRi KRAB maps the co-repressor binding surface and identifies substitutions that improve stability/silencing. By tiling 238 proteins, we find repressors as short as ten amino acids. Finally, we report new activator domains, including a divergent KRAB. These results provide a resource of 600 human proteins containing effectors and demonstrate a scalable strategy for assigning functions to protein domains.


Assuntos
Ensaios de Triagem em Larga Escala , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sistemas CRISPR-Cas/genética , Feminino , Inativação Gênica , Genes Reporter , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células K562 , Lentivirus/fisiologia , Anotação de Sequência Molecular , Mutação/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Reprodutibilidade dos Testes , Transcrição Gênica , Dedos de Zinco
3.
Cell ; 176(3): 549-563.e23, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30661752

RESUMO

Despite a wealth of molecular knowledge, quantitative laws for accurate prediction of biological phenomena remain rare. Alternative pre-mRNA splicing is an important regulated step in gene expression frequently perturbed in human disease. To understand the combined effects of mutations during evolution, we quantified the effects of all possible combinations of exonic mutations accumulated during the emergence of an alternatively spliced human exon. This revealed that mutation effects scale non-monotonically with the inclusion level of an exon, with each mutation having maximum effect at a predictable intermediate inclusion level. This scaling is observed genome-wide for cis and trans perturbations of splicing, including for natural and disease-associated variants. Mathematical modeling suggests that competition between alternative splice sites is sufficient to cause this non-linearity in the genotype-phenotype map. Combining the global scaling law with specific pairwise interactions between neighboring mutations allows accurate prediction of the effects of complex genotype changes involving >10 mutations.


Assuntos
Processamento Alternativo/genética , Splicing de RNA/genética , Receptor fas/genética , Animais , Éxons/genética , Técnicas Genéticas , Genética , Genótipo , Humanos , Íntrons/genética , Camundongos , Modelos Teóricos , Mutação/genética , Fenótipo , Precursores de RNA/metabolismo , Sítios de Splice de RNA/genética , RNA Mensageiro/metabolismo
4.
Immunity ; 53(5): 1095-1107.e3, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33128877

RESUMO

Developing effective strategies to prevent or treat coronavirus disease 2019 (COVID-19) requires understanding the natural immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We used an unbiased, genome-wide screening technology to determine the precise peptide sequences in SARS-CoV-2 that are recognized by the memory CD8+ T cells of COVID-19 patients. In total, we identified 3-8 epitopes for each of the 6 most prevalent human leukocyte antigen (HLA) types. These epitopes were broadly shared across patients and located in regions of the virus that are not subject to mutational variation. Notably, only 3 of the 29 shared epitopes were located in the spike protein, whereas most epitopes were located in ORF1ab or the nucleocapsid protein. We also found that CD8+ T cells generally do not cross-react with epitopes in the four seasonal coronaviruses that cause the common cold. Overall, these findings can inform development of next-generation vaccines that better recapitulate natural CD8+ T cell immunity to SARS-CoV-2.


Assuntos
Betacoronavirus/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Betacoronavirus/isolamento & purificação , COVID-19 , Convalescença , Coronavirus/imunologia , Infecções por Coronavirus/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus , Mapeamento de Epitopos , Epitopos de Linfócito T , Feminino , Humanos , Epitopos Imunodominantes , Memória Imunológica , Masculino , Pessoa de Meia-Idade , Proteínas do Nucleocapsídeo/imunologia , Pandemias , Fosfoproteínas , Pneumonia Viral/diagnóstico , Poliproteínas , SARS-CoV-2 , Proteínas Virais/imunologia , Adulto Jovem
5.
Development ; 151(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38940461

RESUMO

The vertebral column is a characteristic structure of vertebrates. Genetic studies in mice have shown that Hox-mediated patterning plays a key role in specifying discrete anatomical regions of the vertebral column. Expression pattern analyses in several vertebrate embryos have provided correlative evidence that the anterior boundaries of Hox expression coincide with distinct anatomical vertebrae. However, because functional analyses have been limited to mice, it remains unclear which Hox genes actually function in vertebral patterning in other vertebrates. In this study, various zebrafish Hox mutants were generated for loss-of-function phenotypic analysis to functionally decipher the Hox code responsible for the zebrafish anterior vertebrae between the occipital and thoracic vertebrae. We found that Hox genes in HoxB- and HoxC-related clusters participate in regulating the morphology of the zebrafish anterior vertebrae. In addition, medaka hoxc6a was found to be responsible for anterior vertebral identity, as in zebrafish. Based on phenotypic similarities with Hoxc6 knockout mice, our results suggest that the Hox patterning system, including at least Hoxc6, may have been functionally established in the vertebral patterning of the common ancestor of ray-finned and lobe-finned fishes.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Coluna Vertebral , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Coluna Vertebral/embriologia , Padronização Corporal/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Genes Homeobox/genética , Oryzias/genética , Oryzias/embriologia , Camundongos
6.
Trends Genet ; 39(11): 844-857, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716846

RESUMO

Canonical Krüppel-associated box (KRAB)-containing zinc finger proteins (KZFPs) act as major repressors of transposable elements (TEs) via the KRAB-mediated recruitment of the heterochromatin scaffold KRAB-associated protein (KAP)1. KZFP genes emerged some 420 million years ago in the last common ancestor of coelacanth, lungfish, and tetrapods, and dramatically expanded to give rise to lineage-specific repertoires in contemporary species paralleling their TE load and turnover. However, the KRAB domain displays sequence and function variations that reveal repeated diversions from a linear TE-KZFP trajectory. This Review summarizes current knowledge on the evolution of KZFPs and discusses how ancestral noncanonical KZFPs endowed with variant KRAB, SCAN or DUF3669 domains have been utilized to achieve KAP1-independent functions.


Assuntos
Proteínas Repressoras , Dedos de Zinco , Proteínas Repressoras/genética , Dedos de Zinco/genética , Fatores de Transcrição/genética , Elementos de DNA Transponíveis , Heterocromatina
7.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38980374

RESUMO

Gene-environment (GE) interactions are essential in understanding human complex traits. Identifying these interactions is necessary for deciphering the biological basis of such traits. In this study, we review state-of-art methods for estimating the proportion of phenotypic variance explained by genome-wide GE interactions and introduce a novel statistical method Linkage-Disequilibrium Eigenvalue Regression for Gene-Environment interactions (LDER-GE). LDER-GE improves the accuracy of estimating the phenotypic variance component explained by genome-wide GE interactions using large-scale biobank association summary statistics. LDER-GE leverages the complete Linkage Disequilibrium (LD) matrix, as opposed to only the diagonal squared LD matrix utilized by LDSC (Linkage Disequilibrium Score)-based methods. Our extensive simulation studies demonstrate that LDER-GE performs better than LDSC-based approaches by enhancing statistical efficiency by ~23%. This improvement is equivalent to a sample size increase of around 51%. Additionally, LDER-GE effectively controls type-I error rate and produces unbiased results. We conducted an analysis using UK Biobank data, comprising 307 259 unrelated European-Ancestry subjects and 966 766 variants, across 217 environmental covariate-phenotype (E-Y) pairs. LDER-GE identified 34 significant E-Y pairs while LDSC-based method only identified 23 significant E-Y pairs with 22 overlapped with LDER-GE. Furthermore, we employed LDER-GE to estimate the aggregated variance component attributed to multiple GE interactions, leading to an increase in the explained phenotypic variance with GE interactions compared to considering main genetic effects only. Our results suggest the importance of impacts of GE interactions on human complex traits.


Assuntos
Interação Gene-Ambiente , Desequilíbrio de Ligação , Fenótipo , Humanos , Herança Multifatorial , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Modelos Genéticos
8.
J Neurosci ; 44(29)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38866486

RESUMO

We investigated sex differences in dopamine (DA) release in the nucleus accumbens (NAc) and dorsolateral striatum (DLS) using a chronic 16-channel carbon fiber electrode and fast-scan cyclic voltammetry (FSCV). Electrical stimulation-induced (ES; 60 Hz) DA release was recorded in the NAc of single- or pair-housed male and female rats. When core (NAcC) and shell (NAcS) were recorded simultaneously, there was greater ES DA release in NAcC of pair-housed females compared with single females and males. Housing did not affect ES NAc DA release in males. In contrast, there was significantly more ES DA release from the DLS of female rats than male rats. This was true prior to and after treatment with methamphetamine. Furthermore, in castrated (CAST) males and ovariectomized (OVX) females, there were no sex differences in ES DA release from the DLS, demonstrating the hormone dependence of this sex difference. However, in the DLS of both intact and gonadectomized rats, DA reuptake was slower in females than that in males. Finally, DA release following ES of the medial forebrain bundle at 60 Hz was studied over 4 weeks. ES DA release increased over time for both CAST males and OVX females, demonstrating sensitization. Using this novel 16-channel chronic FSCV electrode, we found sex differences in the effects of social housing in the NAcS, sex differences in DA release from intact rats in DLS, and sex differences in DA reuptake in DLS of intake and gonadectomized rats, and we report sensitization of ES-induced DA release in DLS in vivo.


Assuntos
Corpo Estriado , Dopamina , Estimulação Elétrica , Núcleo Accumbens , Caracteres Sexuais , Animais , Masculino , Núcleo Accumbens/metabolismo , Feminino , Dopamina/metabolismo , Ratos , Corpo Estriado/metabolismo , Estimulação Elétrica/métodos , Ratos Sprague-Dawley , Abrigo para Animais , Ovariectomia , Metanfetamina/farmacologia
9.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37985178

RESUMO

The dorsomedial posterior parietal cortex (dmPPC) is part of a higher-cognition network implicated in elaborate processes underpinning memory formation, recollection, episode reconstruction, and temporal information processing. Neural coding for complex episodic processing is however under-documented. Here, we recorded extracellular neural activities from three male rhesus macaques (Macaca mulatta) and revealed a set of neural codes of "neuroethogram" in the primate parietal cortex. Analyzing neural responses in macaque dmPPC to naturalistic videos, we discovered several groups of neurons that are sensitive to different categories of ethogram items, low-level sensory features, and saccadic eye movement. We also discovered that the processing of category and feature information by these neurons is sustained by the accumulation of temporal information over a long timescale of up to 30 s, corroborating its reported long temporal receptive windows. We performed an additional behavioral experiment with additional two male rhesus macaques and found that saccade-related activities could not account for the mixed neuronal responses elicited by the video stimuli. We further observed monkeys' scan paths and gaze consistency are modulated by video content. Taken altogether, these neural findings explain how dmPPC weaves fabrics of ongoing experiences together in real time. The high dimensionality of neural representations should motivate us to shift the focus of attention from pure selectivity neurons to mixed selectivity neurons, especially in increasingly complex naturalistic task designs.


Assuntos
Neurônios , Movimentos Sacádicos , Animais , Masculino , Macaca mulatta , Neurônios/fisiologia , Cognição , Lobo Parietal/fisiologia
10.
Annu Rev Pharmacol Toxicol ; 62: 531-550, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34516287

RESUMO

As costs of next-generation sequencing decrease, identification of genetic variants has far outpaced our ability to understand their functional consequences. This lack of understanding is a central challenge to a key promise of pharmacogenomics: using genetic information to guide drug selection and dosing. Recently developed multiplexed assays of variant effect enable experimental measurement of the function of thousands of variants simultaneously. Here, we describe multiplexed assays that have been performed on nearly 25,000 variants in eight key pharmacogenes (ADRB2, CYP2C9, CYP2C19, NUDT15, SLCO1B1, TMPT, VKORC1, and the LDLR promoter), discuss advances in experimental design, and explore key challenges that must be overcome to maximize the utility of multiplexed functional data.


Assuntos
Farmacogenética , Medicina de Precisão , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado , Vitamina K Epóxido Redutases/genética
11.
Am J Hum Genet ; 109(4): 710-726, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35259336

RESUMO

Admixture has been a pervasive phenomenon in human history, extensively shaping the patterns of population genetic diversity. There is increasing evidence to suggest that admixture can also facilitate genetic adaptation to local environments, i.e., admixed populations acquire beneficial mutations from source populations, a process that we refer to as "adaptive admixture." However, the role of adaptive admixture in human evolution and the power to detect it remain poorly characterized. Here, we use extensive computer simulations to evaluate the power of several neutrality statistics to detect natural selection in the admixed population, assuming multiple admixture scenarios. We show that statistics based on admixture proportions, Fadm and LAD, show high power to detect mutations that are beneficial in the admixed population, whereas other statistics, including iHS and FST, falsely detect neutral mutations that have been selected in the source populations only. By combining Fadm and LAD into a single, powerful statistic, we scanned the genomes of 15 worldwide, admixed populations for signatures of adaptive admixture. We confirm that lactase persistence and resistance to malaria have been under adaptive admixture in West Africans and in Malagasy, North Africans, and South Asians, respectively. Our approach also uncovers other cases of adaptive admixture, including APOL1 in Fulani nomads and PKN2 in East Indonesians, involved in resistance to infection and metabolism, respectively. Collectively, our study provides evidence that adaptive admixture has occurred in human populations whose genetic history is characterized by periods of isolation and spatial expansions resulting in increased gene flow.


Assuntos
Genômica , Seleção Genética , Adaptação Fisiológica/genética , Apolipoproteína L1/genética , População Negra , Fluxo Gênico , Genética Populacional , Humanos , Polimorfismo de Nucleotídeo Único
12.
Brain ; 147(4): 1321-1330, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38412555

RESUMO

The pathophysiological underpinnings of critically disrupted brain connectomes resulting in coma are poorly understood. Inflammation is potentially an important but still undervalued factor. Here, we present a first-in-human prospective study using the 18-kDa translocator protein (TSPO) radioligand 18F-DPA714 for PET imaging to allow in vivo neuroimmune activation quantification in patients with coma (n = 17) following either anoxia or traumatic brain injuries in comparison with age- and sex-matched controls. Our findings yielded novel evidence of an early inflammatory component predominantly located within key cortical and subcortical brain structures that are putatively implicated in consciousness emergence and maintenance after severe brain injury (i.e. mesocircuit and frontoparietal networks). We observed that traumatic and anoxic patients with coma have distinct neuroimmune activation profiles, both in terms of intensity and spatial distribution. Finally, we demonstrated that both the total amount and specific distribution of PET-measurable neuroinflammation within the brain mesocircuit were associated with the patient's recovery potential. We suggest that our results can be developed for use both as a new neuroprognostication tool and as a promising biometric to guide future clinical trials targeting glial activity very early after severe brain injury.


Assuntos
Lesões Encefálicas , Coma Pós-Traumatismo da Cabeça , Humanos , Coma/complicações , Coma Pós-Traumatismo da Cabeça/complicações , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Encéfalo/metabolismo , Lesões Encefálicas/complicações , Hipóxia/complicações , Receptores de GABA/metabolismo
13.
Mol Cell Proteomics ; 22(2): 100489, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566012

RESUMO

Data-independent acquisition (DIA) methods have become increasingly popular in mass spectrometry-based proteomics because they enable continuous acquisition of fragment spectra for all precursors simultaneously. However, these advantages come with the challenge of correctly reconstructing the precursor-fragment relationships in these highly convoluted spectra for reliable identification and quantification. Here, we introduce a scan mode for the combination of trapped ion mobility spectrometry with parallel accumulation-serial fragmentation (PASEF) that seamlessly and continuously follows the natural shape of the ion cloud in ion mobility and peptide precursor mass dimensions. Termed synchro-PASEF, it increases the detected fragment ion current several-fold at sub-second cycle times. Consecutive quadrupole selection windows move synchronously through the mass and ion mobility range. In this process, the quadrupole slices through the peptide precursors, which separates fragment ion signals of each precursor into adjacent synchro-PASEF scans. This precisely defines precursor-fragment relationships in ion mobility and mass dimensions and effectively deconvolutes the DIA fragment space. Importantly, the partitioned parts of the fragment ion transitions provide a further dimension of specificity via a lock-and-key mechanism. This is also advantageous for quantification, where signals from interfering precursors in the DIA selection window do not affect all partitions of the fragment ion, allowing to retain only the specific parts for quantification. Overall, we establish the defining features of synchro-PASEF and explore its potential for proteomic analyses.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Proteoma/análise , Peptídeos/análise
14.
J Biol Chem ; 299(10): 105229, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690681

RESUMO

Chemokine receptors are members of the rhodopsin-like class A GPCRs whose signaling through G proteins drives the directional movement of cells in response to a chemokine gradient. Chemokine receptors CXCR4 and CCR5 have been extensively studied due to their roles in leukocyte development and inflammation and their status as coreceptors for HIV-1 infection, among other roles. Both receptors form dimers or oligomers of unclear function. While CXCR4 has been crystallized in a dimeric arrangement, available atomic resolution structures of CCR5 are monomeric. To investigate their dimerization interfaces, we used a bimolecular fluorescence complementation (BiFC)-based screen and deep mutational scanning to find mutations that change how the receptors self-associate, either via specific oligomer assembly or alternative mechanisms of clustering in close proximity. Many disruptive mutations promoted self-associations nonspecifically, suggesting they aggregated in the membrane. A mutationally intolerant region was found on CXCR4 that matched the crystallographic dimer interface, supporting this dimeric arrangement in living cells. A mutationally intolerant region was also observed on the surface of CCR5 by transmembrane helices 3 and 4. Mutations predicted from the scan to reduce BiFC were validated and were localized in the transmembrane domains as well as the C-terminal cytoplasmic tails where they reduced lipid microdomain localization. A mutation in the dimer interface of CXCR4 had increased binding to the ligand CXCL12 and yet diminished calcium signaling. There was no change in syncytia formation with cells expressing HIV-1 Env. The data highlight that multiple mechanisms are involved in self-association of chemokine receptor chains.


Assuntos
Modelos Moleculares , Mutação , Receptores CCR5 , Receptores CXCR4 , Dimerização , Mutagênese , Receptores CCR5/química , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores CXCR4/química , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transdução de Sinais , Humanos , Linhagem Celular , Estrutura Terciária de Proteína
15.
Neuroimage ; 292: 120604, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604537

RESUMO

Despite its widespread use, resting-state functional magnetic resonance imaging (rsfMRI) has been criticized for low test-retest reliability. To improve reliability, researchers have recommended using extended scanning durations, increased sample size, and advanced brain connectivity techniques. However, longer scanning runs and larger sample sizes may come with practical challenges and burdens, especially in rare populations. Here we tested if an advanced brain connectivity technique, dynamic causal modeling (DCM), can improve reliability of fMRI effective connectivity (EC) metrics to acceptable levels without extremely long run durations or extremely large samples. Specifically, we employed DCM for EC analysis on rsfMRI data from the Human Connectome Project. To avoid bias, we assessed four distinct DCMs and gradually increased sample sizes in a randomized manner across ten permutations. We employed pseudo true positive and pseudo false positive rates to assess the efficacy of shorter run durations (3.6, 7.2, 10.8, 14.4 min) in replicating the outcomes of the longest scanning duration (28.8 min) when the sample size was fixed at the largest (n = 160 subjects). Similarly, we assessed the efficacy of smaller sample sizes (n = 10, 20, …, 150 subjects) in replicating the outcomes of the largest sample (n = 160 subjects) when the scanning duration was fixed at the longest (28.8 min). Our results revealed that the pseudo false positive rate was below 0.05 for all the analyses. After the scanning duration reached 10.8 min, which yielded a pseudo true positive rate of 92%, further extensions in run time showed no improvements in pseudo true positive rate. Expanding the sample size led to enhanced pseudo true positive rate outcomes, with a plateau at n = 70 subjects for the targeted top one-half of the largest ECs in the reference sample, regardless of whether the longest run duration (28.8 min) or the viable run duration (10.8 min) was employed. Encouragingly, smaller sample sizes exhibited pseudo true positive rates of approximately 80% for n = 20, and 90% for n = 40 subjects. These data suggest that advanced DCM analysis may be a viable option to attain reliable metrics of EC when larger sample sizes or run times are not feasible.


Assuntos
Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Tamanho da Amostra , Conectoma/métodos , Conectoma/normas , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Adulto , Feminino , Masculino , Descanso/fisiologia , Fatores de Tempo
16.
Neuroimage ; 292: 120607, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38614372

RESUMO

INTRODUCTION: In Alzheimer's disease (AD), early diagnosis facilitates treatment options and leads to beneficial outcomes for patients, their carers and the healthcare system. The neuropsychological battery of the Uniform Data Set (UDSNB3.0) assesses cognition in ageing and dementia, by measuring scores across different cognitive domains such as attention, memory, processing speed, executive function and language. However, its neuroanatomical correlates have not been investigated using 7 Tesla MRI (7T MRI). METHODS: We used 7T MRI to investigate the correlations between hippocampal subfield volumes and the UDSNB3.0 in 24 individuals with Amyloidß-status AD and 18 age-matched controls, with respective age ranges of 60 (42-76) and 62 (52-79) years. AD participants with a Medial Temporal Atrophy scale of higher than 2 on 3T MRI were excluded from the study. RESULTS: A significant difference in the entire hippocampal volume was observed in the AD group compared to healthy controls (HC), primarily influenced by CA1, the largest hippocampal subfield. Notably, no significant difference in whole brain volume between the groups implied that hippocampal volume loss was not merely reflective of overall brain atrophy. UDSNB3.0 cognitive scores showed significant differences between AD and HC, particularly in Memory, Language, and Visuospatial domains. The volume of the Dentate Gyrus (DG) showed a significant association with the Memory and Executive domain scores in AD patients as assessed by the UDSNB3.0.. The data also suggested a non-significant trend for CA1 volume associated with UDSNB3.0 Memory, Executive, and Language domain scores in AD. In a reassessment focusing on hippocampal subfields and MoCA memory subdomains in AD, associations were observed between the DG and Cued, Uncued, and Recognition Memory subscores, whereas CA1 and Tail showed associations only with Cued memory. DISCUSSION: This study reveals differences in the hippocampal volumes measured using 7T MRI, between individuals with early symptomatic AD compared with healthy controls. This highlights the potential of 7T MRI as a valuable tool for early AD diagnosis and the real-time monitoring of AD progression and treatment efficacy. CLINICALTRIALS: GOV: ID NCT04992975 (Clinicaltrial.gov 2023).


Assuntos
Doença de Alzheimer , Região CA1 Hipocampal , Giro Denteado , Imageamento por Ressonância Magnética , Transtornos da Memória , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Masculino , Imageamento por Ressonância Magnética/métodos , Feminino , Idoso , Giro Denteado/diagnóstico por imagem , Giro Denteado/patologia , Pessoa de Meia-Idade , Região CA1 Hipocampal/diagnóstico por imagem , Região CA1 Hipocampal/patologia , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/patologia , Adulto , Peptídeos beta-Amiloides/metabolismo
17.
J Neurochem ; 168(6): 1097-1112, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38323657

RESUMO

Microdosing ketamine is a novel antidepressant for treatment-resistant depression. Traditional antidepressants, like selective serotonin reuptake inhibitors (SSRIs), inhibit serotonin reuptake, but it is not clear if ketamine shows a similar mechanism. Here, we tested the effects of feeding ketamine and SSRIs to Drosophila melanogaster larvae, which has a similar serotonin system to mammals and is a good model to track depressive behaviors, such as locomotion and feeding. Fast-scan cyclic voltammetry (FSCV) was used to measure optogenetically stimulated serotonin changes, and locomotion tracking software and blue dye feeding to monitor behavior. We fed larvae various doses (1-100 mM) of antidepressants for 24 h and found that 1 mM ketamine did not affect serotonin, but increased locomotion and feeding. Low doses (≤10 mM) of escitalopram and fluoxetine inhibited dSERT and also increased feeding and locomotion behaviors. At 100 mM, ketamine inhibited dSERT and increased serotonin concentrations, but decreased locomotion and feeding because of its anesthetic properties. Since microdosing ketamine causes behavioral effects, we further investigated behavioral changes with a SERT16 mutant and low doses of other NMDA receptor antagonists and 5-HT1A and 2 agonists. Feeding and locomotion changes were similar to ketamine in the mutant, and we found NMDA receptor antagonism increased feeding, while serotonin receptor agonism increased locomotion, which could explain these effects with ketamine. Ultimately, this work shows that Drosophila is a good model to discern antidepressant mechanisms, and that ketamine does not work on dSERT like SSRIs, but effects behavior with other mechanisms that should be investigated further.


Assuntos
Drosophila melanogaster , Ketamina , Locomoção , Receptores de Serotonina , Inibidores Seletivos de Recaptação de Serotonina , Animais , Ketamina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Receptores de Serotonina/metabolismo , Receptores de Serotonina/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Receptores de Glutamato/metabolismo , Receptores de Glutamato/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Serotonina/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Relação Dose-Resposta a Droga , Larva , Fluoxetina/farmacologia , Antidepressivos/farmacologia
18.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36790822

RESUMO

Genomic regions under positive selection harbor variation linked for example to adaptation. Most tools for detecting positively selected variants have computational resource requirements rendering them impractical on population genomic datasets with hundreds of thousands of individuals or more. We have developed and implemented an efficient haplotype-based approach able to scan large datasets and accurately detect positive selection. We achieve this by combining a pattern matching approach based on the positional Burrows-Wheeler transform with model-based inference which only requires the evaluation of closed-form expressions. We evaluate our approach with simulations, and find it to be both sensitive and specific. The computational resource requirements quantified using UK Biobank data indicate that our implementation is scalable to population genomic datasets with millions of individuals. Our approach may serve as an algorithmic blueprint for the era of "big data" genomics: a combinatorial core coupled with statistical inference in closed form.


Assuntos
Genética Populacional , Metagenômica , Genômica , Genoma , Haplótipos
19.
J Mol Evol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886207

RESUMO

Empirical studies of genotype-phenotype-fitness maps of proteins are fundamental to understanding the evolutionary process, in elucidating the space of possible genotypes accessible through mutations in a landscape of phenotypes and fitness effects. Yet, comprehensively mapping molecular fitness landscapes remains challenging since all possible combinations of amino acid substitutions for even a few protein sites are encoded by an enormous genotype space. High-throughput mapping of genotype space can be achieved using large-scale screening experiments known as multiplexed assays of variant effect (MAVEs). However, to accommodate such multi-mutational studies, the size of MAVEs has grown to the point where a priori determination of sampling requirements is needed. To address this problem, we propose calculations and simulation methods to approximate minimum sampling requirements for multi-mutational MAVEs, which we combine with a new library construction protocol to experimentally validate our approximation approaches. Analysis of our simulated data reveals how sampling trajectories differ between simulations of nucleotide versus amino acid variants and among mutagenesis schemes. For this, we show quantitatively that marginal gains in sampling efficiency demand increasingly greater sampling effort when sampling for nucleotide sequences over their encoded amino acid equivalents. We present a new library construction protocol that efficiently maximizes sequence variation, and demonstrate using ultradeep sequencing that the library encodes virtually all possible combinations of mutations within the experimental design. Insights learned from our analyses together with the methodological advances reported herein are immediately applicable toward pooled experimental screens of arbitrary design, enabling further assay upscaling and expanded testing of genotype space.

20.
Development ; 148(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34096572

RESUMO

Vertebrate Hox clusters are comprised of multiple Hox genes that control morphology and developmental timing along multiple body axes. Although results of genetic analyses using Hox-knockout mice have been accumulating, genetic studies in other vertebrates have not been sufficient for functional comparisons of vertebrate Hox genes. In this study, we isolated all of the seven hox cluster loss-of-function alleles in zebrafish using the CRISPR-Cas9 system. Comprehensive analysis of the embryonic phenotype and X-ray micro-computed tomography scan analysis of adult fish revealed several species-specific functional contributions of homologous Hox clusters along the appendicular axis, whereas important shared general principles were also confirmed, as exemplified by serial anterior vertebral transformations along the main body axis, observed in fish for the first time. Our results provide insights into discrete sub/neofunctionalization of vertebrate Hox clusters after quadruplication of the ancient Hox cluster. This set of seven complete hox cluster loss-of-function alleles provide a formidable resource for future developmental genetic analysis of the Hox patterning system in zebrafish.


Assuntos
Genes Homeobox/genética , Família Multigênica , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Sistemas CRISPR-Cas , Desenvolvimento Embrionário/genética , Evolução Molecular , Feminino , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Mutação , Esqueleto/anatomia & histologia , Esqueleto/crescimento & desenvolvimento , Especificidade da Espécie , Microtomografia por Raio-X , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa