Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Small ; 20(25): e2310799, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38213014

RESUMO

In the evolving landscape of water treatment, membrane technology has ascended to an instrumental role, underscored by its unmatched efficacy and ubiquity. Diverse synthesis and modification techniques are employed to fabricate state-of-the-art liquid separation membranes. Click reactions, distinguished by their rapid kinetics, minimal byproduct generation, and simple reaction condition, emerge as a potent paradigm for devising eco-functional materials. While the metal-free thiol-ene click reaction is acknowledged as a viable approach for membrane material innovation, a systematic elucidation of its applicability in liquid separation membrane development remains conspicuously absent. This review elucidates the pre-functionalization strategies of substrate materials tailored for thiol-ene reactions, notably highlighting thiolation and introducing unsaturated moieties. The consequential implications of thiol-ene reactions on membrane properties-including trade-off effect, surface wettability, and antifouling property-are discussed. The application of thiol-ene reaction in fabricating various liquid separation membranes for different water treatment processes, including wastewater treatment, oil/water separation, and ion separation, are reviewed. Finally, the prospects of thiol-ene reaction in designing novel liquid separation membrane, including pre-functionalization, products prediction, and solute-solute separation membrane, are proposed. This review endeavors to furnish invaluable insights, paving the way for expanding the horizons of thiol-ene reaction application in liquid separation membrane fabrication.

2.
Nano Lett ; 23(10): 4167-4175, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37155570

RESUMO

Surface patterning is a promising strategy to overcome the trade-off effect of separation membranes. Herein, a bottom-up patterning strategy of locking micron-sized carbon nanotube cages (CNCs) onto a nanofibrous substrate is developed. The strongly enhanced capillary force triggered by the abundant narrow channels in CNCs endows the precisely patterned substrate with excellent wettability and antigravity water transport. Both are crucial for the preloading of cucurbit[n]uril (CB6)-embeded amine solution to form an ultrathin (∼20 nm) polyamide selective layer clinging to CNCs-patterned substrate. The CNCs-patterning and CB6 modification result in a 40.2% increased transmission area, a reduced thickness, and a lowered cross-linking degree of selective layer, leading to a high water permeability of 124.9 L·m-2 h-1 bar-1 and a rejection of 99.9% for Janus Green B (511.07 Da), an order of magnitude higher than that of commercial membranes. The new patterning strategy provides technical and theoretical guidance for designing next-generation dye/salt separation membranes.

3.
Small ; 19(7): e2205995, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36504175

RESUMO

Accurate detection of trace biomarkers in biological samples is a key task in diagnostic testing, but it remains challenging due to the high concentration of other physiologically relevant interferences. This work presents a new electrochemiluminescence (ECL) sensing device based on a bio-inspired nanochannel membrane (NM) guarded with two differential gates. The recognition event at the aptamer gate is followed by the permitting of stimulator transport toward the metal-organic framework (MOF) gate. Proof of concept application is evaluated using cytochrome C (Cytc) as the analyte, and glucose, a commonly existing nutriment as the stimulator. The oxidase-mimic plasmonic nanoparticles induce an effective release of ECL luminophore from the MOF gate. This cascade-gates guarded NM can effectively separate biological matrices from the detection cell. Consequently, the proposed system can achieve direct sensing of 1.0 nm Cytc in undiluted serum within the threshold concentrations of leukemia and lymphoma, making it attractive for point-of-care applications.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Nanopartículas , Medições Luminescentes , Biomarcadores , Técnicas Eletroquímicas , Limite de Detecção
4.
Nano Lett ; 21(19): 8355-8362, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34596413

RESUMO

Membranes based on covalent organic frameworks (COFs) have demonstrated huge potential to resolve the long-standing bottlenecks in separation fields due to their structural and functional attributes. Herein, a three-dimensional COF featuring interpenetrated apertures, 3D-OH-COF, is rationally synthesized on polyimide supports to generate flexible, robust membranes. The resultant 3D-OH-COF presents excellent crystallinity, prominent porosity, and exceptional solvent resistance, enabling the produced membrane a sharp and durable selectivity to small molecules in water and organic solvents. Impressively, the membrane also exhibits excellent flexibility and robustness as verified by the well-maintained performances after serious bending and solvent soaking under elevated temperatures. We further chemically convert 3D-OH-COF into the carboxyl-decorated 3D-COOH-COF by a postsynthetic strategy. The 3D-COOH-COF retains high crystallinity, and the converted membrane receives a remarkable capture ability for targeted multivalent ions over other competing ions. This study exploits a viable avenue to produce practical 3D COF membranes toward ultimate separations under extreme conditions.

5.
Angew Chem Int Ed Engl ; 61(49): e202214269, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36202753

RESUMO

Zeolitic imidazolate frameworks (ZIFs) are promising for gas separation membrane, but their molecular cut-off differs from that expected from its intrinsic aperture structure because of their flexibility. Herein, we introduced graphene nanoribbons (GNRs) to rigidify the ZIF framework. Because the sp2 edge of the GNRs induces strong anchoring effects, the modified layer can be rigidified. Particularly, when the GNRs were embedded and distributed in the ZIF-8 layer, an intrinsic aperture size of 3.4 Šwas observed, resulting in high H2 /CO2 separation (H2 permeance: 5.2×10-6  mol/m2 Pa s, ideal selectivity: 142). The performance surpasses the upper bound of polycrystalline MOF membrane performance. In addition, the membrane can be applied to blue H2 production, as demonstrated with a simulated steam reformed gas containing H2 /CO2 /CH4 . The separation performance was retained in the presence of water. The fundamentals of the molecular transport through the rigid ZIF-8 framework were revealed using molecular dynamics simulations.

6.
Nano Lett ; 20(7): 4895-4900, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32567866

RESUMO

Ultrafast oil/water separation based on tunable superwettability switch remains a big challenge. Here, inspired by the ultrafast water transport mechanism in sarracenia, we develop a micro/nanostructured porous membrane with conducting polymer nanotip arrays through the surface-initiated polymerizations. By modulating the height (ranging from 49-529 nm) and redox states of nanotips, a smart reversible superwettability switch is facile to obtain with contact angles of water/oil arranging from 161° to about 0°. Besides, liquid transport speed was accelerated more than 1.5 times by increasing the nanotip length. The water flux could reach up to 50326 L m-2 h-1 (1000 times that of a typical industrial ultrafiltration membrane). This is attributed to the stable and continuous water film along the nanotips, which provide a lubrication layer, leading to an increase of permeability. This work provides significant insights into macro/nanostructured membrane design for smart separation, blood lipid filtration, and smart nanoreactors with high permeability.

7.
Small ; 15(49): e1904145, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31642611

RESUMO

CO2 capture and sequestration is an energy-intensive industry to deal with the global greenhouse effect. Membrane separation is considered a cost-effective method to mitigate the emission of CO2 . Though good separation performance and stability have been reported, supported ionic liquid membranes are still not widely applied for CO2 separation due to the high cost. As a novel analogous solvent to ionic liquid, deep eutectic solvent retains the excellent merits of ionic liquid and is cheap with facile preparation. Herein, a highly CO2 -philic separation membrane is constructed by nanoconfining choline chloride/ethylene glycol (ChCl/EG) deep eutectic solvent into graphene oxide nanoslits. Molecular dynamic simulation results indicate that the confinement makes a difference to the structure of the nanoconfined ChCl/EG liquid from their bulk, which remarkably facilitates CO2 transport. By tuning the molar ratio of ChCl/EG and thickness of the membrane, the resultant membrane exhibits outstanding separation performance for CO2 with excellent selectivity over other light gases, good long-term durability, and thermal stability. This makes it a promising membrane for selective CO2 separation.

8.
Polymers (Basel) ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337282

RESUMO

Imidazole ionic liquids (ILs) have good affinity and good solubility for carbon dioxide (CO2). Such ionic liquids, combined with polyimide membrane materials, can solve the problem that, today, CO2 is difficult to separate and recover. In this study, the ionic liquid (IL) of 1-ethyl-3-methylimidazolium tetrafluoroborate (IL1), 1-pentyl-3-methylimidazolium tetrafluoroborate (IL2), 1-octyl-3-methylimidazolium tetrafluoroborate (IL3), and 1-dodecylimidazolium tetrafluoroborate (IL4) with different contents were added to a polyimide matrix, and a series of polyimide membranes blended with ionic liquid were prepared using a high-speed mixer. The mechanical properties and gas separation permeability of the membranes were investigated. Among them, the selectivity of the PI/IL3 membrane for CO2/CH4 was 180.55, which was 2.5 times higher than the PI membrane, and its CO2 permeability was 16.25 Barrer, which exceeded the Robeson curve in 2008; the separation performance of the membrane was the best in this work.

9.
Polymers (Basel) ; 16(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38337305

RESUMO

Temperature-responsive separation membranes can significantly change their permeability and separation properties in response to changes in their surrounding temperature, improving efficiency and reducing membrane costs. This study focuses on the modification of polyvinylidene fluoride (PVDF) membranes with amphiphilic temperature-responsive copolymer and inorganic nanoparticles. We prepared an amphiphilic temperature-responsive copolymer in which the hydrophilic poly(N-isopropyl acrylamide) (PNIPAAm) was side-linked to a hydrophobic polyvinylidene fluoride (PVDF) skeleton. Subsequently, PVDF-g-PNIPAAm polymer and graphene oxide (GO) were blended with PVDF to prepare temperature-responsive separation membranes. The results showed that temperature-responsive polymers with different NIPAAm grafting ratios were successfully prepared by adjusting the material ratio of NIPAAm to PVDF. PVDF-g-PNIPAAm was blended with PVDF with different grafting ratios to obtain separate membranes with different temperature responses. GO and PVDF-g-PNIPAAm formed a relatively stable hydrogen bond network, which improved the internal structure and antifouling performance of the membrane without affecting the temperature response, thus extending the service life of the membrane.

10.
ChemSusChem ; : e202400160, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38596908

RESUMO

Capturing carbon dioxide (CO2) from flue gases is a crucial step towards reducing CO2 emissions. Among the various carbon capture methods, facilitated transport membranes (FTMs) have emerged as a promising technology for CO2 capture owing to their high efficiency and low energy consumption in separating CO2. However, FTMs still face the challenge of losing mobile carriers due to weak interaction between the carriers and membrane matrix. Herein, we report a sulfonated chitosan (SCS) gel membrane with confined amine carriers for effective CO2 capture. In this structure, diethylenetriamine (DETA) as a CO2-mobile carrier is confined within the SCS gel membrane via electrostatic forces, which can react reversibly with CO2 and thus greatly facilitate its transport. The SCS ion gel membrane allows for the fast diffusion of amine carriers within it while blocking the diffusion of nonreactive gases, like N2. Thus, the prepared membrane exhibits exceptional CO2 separation capabilities when tested under simulated flue gas conditions with CO2 permeance of 1155 GPU and an ultra-high CO2/N2 selectivity of above 550. Moreover, the membrane retains a stable separation performance during the 170 h continuous test. The excellent CO2 separation performance demonstrates the high potential of gel membranes for CO2 capture from flue gas.

11.
Membranes (Basel) ; 13(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37367783

RESUMO

Separation membranes have a wide application in the food industry, for instance, in the clarification/fractionation of milk, the concentration/separation of selected components, and wastewater treatment. They provide a large area for bacteria to attach and colonize. When a product comes into contact with a membrane, it initiates bacterial attachment/colonization and eventually forms biofilms. Several cleaning and sanitation protocols are currently utilized in the industry; however, the heavy fouling of the membrane over a prolonged duration affects the overall cleaning efficiency. In view of this, alternative approaches are being developed. Therefore, the objective of this review is to describe the novel strategies for controlling membrane biofilms such as enzyme-based cleaner, naturally produced antimicrobials of microbial origin, and preventing biofilm development using quorum interruption. Additionally, it aims to report the constitutive microflora of the membrane and the development of the predominance of resistant strains over prolonged usage. The emergence of predominance could be associated with several factors, of which, the release of antimicrobial peptides by selective strains is a prominent factor. Therefore, naturally produced antimicrobials of microbial origin could thus provide a promising approach to control biofilms. Such an intervention strategy could be implemented by developing a bio-sanitizer exhibiting antimicrobial activity against resistant biofilms.

12.
ACS Appl Mater Interfaces ; 15(39): 46261-46268, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37738535

RESUMO

Two-dimensional membranes have shown promising potential for ion-selective separation due to their well-defined interlayer channels. However, the typical "trade-off" effect of throughput and selectivity limits their developments. Herein, we report a precise tailoring of monovalent cation sieving technology with enhanced water throughput via the intercalation of graphene-oxide membranes with selective crown ethers. By tuning the lamellar spacing of graphene oxide, a critical interlayer distance (∼11.04 Å) is revealed to maximize water flux (53.4 mol m-2 h-2 bar-1) without sacrificing ion selectivity. As a result, the elaborately enlarged interlayer distance offers improved water permeance. Meanwhile, various specific cations with remarkably high selectivity can be separated in mixed solutions because of the strong chelation with crown ethers. This work opens up a new avenue for high-throughput and precise regulation of ion separations for various application scenarios.

13.
Heliyon ; 9(1): e12685, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36660457

RESUMO

Semiconducting membrane combined with nanomaterials is an auspicious combination that may successfully eliminate diverse waste products from water while consuming little energy and reducing pollution. Creating an inexpensive, steady, flexible, and diversified business material for membrane production is a critical challenge in membrane technology development. Because of its unusual structure and high catalytic activity, graphitic carbon nitride (g-C3N4) has come out as a viable material for membranes. Furthermore, their great durability, high permanency under challenging environments, and long-term use without decrease in flux are significant advantages. The advanced material techniques used to manage the molecular assembly of g-C3N4 for separation membrane were detailed in this review work. The progress in using g-C3N4-based membranes for water treatment has been detailed in this presentation. The review delivers an updated description of g-C3N4 based membranes and their separation functions and new ideas for future enhancements/adjustments to address their weaknesses in real-world situations. Finally, the ongoing problems and promising future research directions for g-C3N4-based membranes are discussed.

14.
Int J Biol Macromol ; 239: 124264, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37003384

RESUMO

Due to their large specific surface area and numerous diffusion channels, hollow fibers are widely used in wastewater treatment. In this study, we successfully synthesized a chitosan (CS)/polyvinylpyrrolidone (PVP)/polyvinyl alcohol (PVA) hollow nanofiber membrane (CS/PVP/PVA-HNM) via coaxial electrospinning. This membrane demonstrated remarkable permeability and adsorption separation. Specifically, the CS/PVP/PVA-HNM had a pure water permeability of 4367.02 L·m-2·h-1·bar-1. The hollow electrospun nanofibrous membrane exhibited a continuous interlaced nanofibrous framework structure with the extraordinary advantages of high porosity and high permeability. The rejection ratios of CS/PVP/PVA-HNM for Cu2+, Ni2+, Cd2+, Pb2+, malachite green (MG), methylene blue (MB) and crystal violet (CV) were 96.91 %, 95.29 %, 87.50 %, 85.13 %, 88.21 %, 83.91 % and 71.99 %, and the maximum adsorption capacities were 106.72, 97.46, 88.10, 87.81, 53.45, 41.43, and 30.97 mg·g-1, respectively. This work demonstrates a strategy for the synthesis of hollow nanofibers, which provides a novel concept for the design and fabrication of highly efficient adsorption and separation membranes.


Assuntos
Quitosana , Metais Pesados , Nanofibras , Quitosana/química , Nanofibras/química , Álcool de Polivinil/química , Povidona , Corantes
15.
Polymers (Basel) ; 15(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38006167

RESUMO

The use of mixed matrix membranes (MMMs) comprising metal-organic frameworks (MOFs) for the separation of CO2 from flue gas has gained recognition as an effective strategy for enhancing gas separation efficiency. When incorporating porous materials like MOFs into a polymeric matrix to create MMMs, the combined characteristics of each constituent typically manifest. Nevertheless, the inadequate dispersion of an inorganic MOF filler within an organic polymer matrix can compromise the compatibility between the filler and matrix. In this context, the aspiration is to develop an MMM that not only exhibits optimal interfacial compatibility between the polymer and filler but also delivers superior gas separation performance, specifically in the efficient extraction of CO2 from flue gas. In this study, we introduce a modification technique involving the grafting of poly(ethylene glycol) diglycidyl ether (PEGDE) onto a UiO-66-NH2 MOF filler (referred to as PEG-MOF), aimed at enhancing its compatibility with the 6FDA-durene matrix. Moreover, the inherent CO2-philic nature of PEGDE is anticipated to enhance the selectivity of CO2 over N2 and CH4. The resultant MMM, incorporating 10 wt% of PEG-MOF loading, exhibits a CO2 permeability of 1671.00 Barrer and a CO2/CH4 selectivity of 22.40. Notably, these values surpass the upper bound reported by Robeson in 2008.

16.
Materials (Basel) ; 16(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629978

RESUMO

Studies on self-healing capsules embedded in cement composites to heal such cracks have recently been actively researched in order to improve the dimensional stability of concrete structures. In particular, capsule studies were mainly conducted to separately inject reactive healing solutions into different capsules. However, with this method, there is an important limitation in that the probability of self-healing is greatly reduced because the two healing solutions must meet and react. Therefore, we propose three-dimensional (3D) printer-based self-healing capsules with a membrane structure that allows two healing solutions to be injected into one capsule. Among many 3D printing methods, we used the fusion deposition modeling (FDM) to design, analyze, and produce new self-healing capsules, which are widely used due to their low cost, precise manufacturing, and high-speed. However, polylactic lactic acid (PLA) extruded in the FDM has low adhesion energy between stacked layers, which causes different fracture strengths depending on the direction of the applied load and the subsequent performance degradation of the capsule. Therefore, the isotropic fracture characteristics of the newly proposed four types of separated membrane capsules were analyzed using finite element method analysis. Additionally, capsules were produced using the FDM method, and the compression test was conducted by applying force in the x, y, and z directions. The isotropic fracture strength was also analyzed using the relative standard deviation (RSD) parameter. As a result, the proposed separated membrane capsule showed that the RSD of isotropic fracture strength over all directions fell to about 18% compared to other capsules.

17.
ACS Nano ; 17(8): 7584-7594, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37026681

RESUMO

Covalent organic framework (COF) membranes have emerged as a promising candidate for energy-efficient separations, but the angstrom-precision control of the channel size in the subnanometer region remains a challenge that has so far restricted their potential for gas separation. Herein, we report an ultramicropore-in-nanopore concept of engineering matreshka-like pore-channels inside a COF membrane. In this concept, α-cyclodextrin (α-CD) is in situ encapsulated during the interfacial polymerization which presumably results in a linear assembly (LA) of α-CDs in the 1D nanochannels of COF. The LA-α-CD-in-TpPa-1 membrane shows a high H2 permeance (∼3000 GPU) together with an enhanced selectivity (>30) of H2 over CO2 and CH4 due to the formation of fast and selective H2-transport pathways. The overall performance for H2/CO2 and H2/CH4 separation transcends the Robeson upper bounds and ranks among the most powerful H2-selective membranes. The versatility of this strategy is demonstrated by synthesizing different types of LA-α-CD-in-COF membranes.

18.
Polymers (Basel) ; 15(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232011

RESUMO

Composite polymolecular separation membranes were prepared by combining multi-branched ZIF-L with high-porosity electrospinning nanofibers PI. Meanwhile, PDA and PEI were introduced into the membrane in order to improve its adhesion. The new membrane is called the "PI@PDA@PEI/ZIF-L-4" composite membrane. Compared with the PI@PDA@PEI/ZIF-8 composite membrane, the new membrane's filtration rates for heavy metal ions such as Cd2+, Cr3+, and Pb2+ were increased by 7.0%, 6.6%, and 9.3%, respectively. Furthermore, the new membrane has a permeability of up to 1140.0 L·m-2·h-1·bar-1, and displayed a very stable performance after four repeated uses. The separation mechanism of the PI@PDA@PEI/ZIF-L composite membrane was analyzed further in order to provide a basis to support the production of separation membranes with a high barrier rate and high flux.

19.
Membranes (Basel) ; 12(12)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36557157

RESUMO

Thin-film composite (TFC) polyamide (PA) membrane has been widely applied in nanofiltration, reverse osmosis, and forward osmosis, including a PA rejection layer by interfacial polymerization on a porous support layer. However, the separation performance of TFC membrane is constrained by the trade-off relationship between permeability and selectivity. Although thin-film nanocomposite (TFN) membrane can enhance the permeability, due to the existence of functionalized nanoparticles in the PA rejection layer, the introduction of nanoparticles leads to the problems of the poor interface compatibility and the nanoparticles agglomeration. These issues often lead to the defect of PA rejection layers and reduction in selectivity. In this review, we summarize a new class of structures of TFN membranes with functionalized interlayers (TFNi), which promises to overcome the problems associated with TFN membranes. Recently, functionalized two-dimensional (2D) nanomaterials have received more attention in the assembly materials of membranes. The reported TFNi membranes with 2D interlayers exhibit the remarkable enhancement on the permeability, due to the shorter transport path by the "gutter mechanism" of 2D interlayers. Meanwhile, the functionalized 2D interlayers can affect the diffusion of two-phase monomers during the interfacial polymerization, resulting in the defect-free and highly crosslinked PA rejection layer. Thus, the 2D interlayers enabled TFNi membranes to potentially overcome the longstanding trade-off between membrane permeability and selectivity. This paper provides a critical review on the emerging 2D nanomaterials as the functionalized interlayers of TFNi membranes. The characteristics, function, modification, and advantages of these 2D interlayers are summarized. Several perspectives are provided in terms of the critical challenges for 2D interlayers, managing the trade-off between permeability, selectivity, and cost. The future research directions of TFNi membranes with 2D interlayers are proposed.

20.
Environ Sci Pollut Res Int ; 29(41): 61881-61895, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34545517

RESUMO

The current improvement in science and engineering, actively dealing with surfaces and interfaces, turns into a functioning control with a thriving advancement propensity. Superlyophobic/superlyophilic phenomena in surface sciences have pulled in broad considerations of researchers and specialists. Inspired by the natural and living organism, researchers have designed different biomimetic materials with exceptional surface wettability, such as the smart wetting of asymmetric spider silk surfaces. These smart materials with superlyophobic/superlyophilic wettability are generally utilized for water assortment, self-cleaning, fluid transportation and separation, and many researchers' domains. Among them, emulsion separation, including division of oil-water blend, mixtures of immiscible liquids and oil-water emulsions, is highlighted by an increasing number of researchers. Numerous materials with one- and two-dimensional morphology, smart surfaces, and super wettability have been effectively designed and utilized in various scientific research applications. We expect that these bioinspired materials with super wettability can have promising applications in practical for emulsion destabilization and liquid transportation.


Assuntos
Petróleo , Emulsões , Hidrocarbonetos , Água , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa