RESUMO
Oregano oil (OrO) possesses well-pronounced antimicrobial properties but its application is limited due to low water solubility and possible instability. The aim of this study was to evaluate the possibility to incorporate OrO in an aqueous dispersion of chitosan-alginate nanoparticles and how this will affect its antimicrobial activity. The encapsulation of OrO was performed by emulsification and consequent electrostatic gelation of both polysaccharides. OrO-loaded nanoparticles (OrO-NP) have small size (320 nm) and negative charge (-25 mV). The data from FTIR spectroscopy and XRD analyses reveal successful encapsulation of the oil into the nanoparticles. The results of thermogravimetry suggest improved thermal stability of the encapsulated oil. The minimal inhibitory concentrations of OrO-NP determined on a panel of Gram-positive and Gram-negative pathogens (ISO 20776-1:2006) are 4-32-fold lower than those of OrO. OrO-NP inhibit the respiratory activity of the bacteria (MTT assay) to a lower extent than OrO; however, the minimal bactericidal concentrations still remain significantly lower. OrO-NP exhibit significantly lower in vitro cytotoxicity than pure OrO on the HaCaT cell line as determined by ISO 10993-5:2009. The irritation test (ISO 10993-10) shows no signs of irritation or edema on the application site. In conclusion, the nanodelivery system of oregano oil possesses strong antimicrobial activity and is promising for development of food additives.
Assuntos
Alginatos , Antibacterianos , Quitosana , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Nanopartículas/química , Óleos Voláteis , Origanum/química , Alginatos/química , Alginatos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/química , Quitosana/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologiaRESUMO
INTRODUCTION: In vitro methods have been widely used to assess adverse effects. Reconstructed Human Epidermis (RHE) poses as a fascinating test system employed to assess the dermal irritation hazard potential of chemicals. Although several RHE models are reported in the OECD Test Guideline No. 439, the OECD Document No. 220 encourages the scientific community to develop and validate new RHE test systems due to its relevance for socio-economic advancement. METHODS: Following the criteria documented in the OECD No. 220, a blind study for skin irritation (OECD 439) was conducted employing the Minimum List of Reference Chemicals for Determination of Reproducibility and Predictive Capacity using ES®-RHE. Structural and functional characteristics were assessed alongside the prediction model. RESULTS: The model has shown reproducibility of optical density and barrier function, similarly to internationally validated methods. Furthermore, it shows the cell layers' development and differentiation ability due to Cytokeratin14, Cytokeratin10, and filaggrin expression. The prediction model resulted in sensitivity, specificity and accuracy rates of 100, 70, and 77 %, respectively. CONCLUSIONS: The ES®-RHE demonstrated reliability and relevance, with similar structural and functional characteristics comparable to internationally validated models, in addition to the accepted predictive capacity according to OECD required minimum criteria, thus confirming the suitability of the national ES®-RHE in the hazard prediction of dermal irritation based on OECD Test Guideline No. 439.
RESUMO
Physiologically-relevant in vitro skin models hold the utmost importance for efficacy assessments of pharmaceutical and cosmeceutical formulations, offering valuable alternatives to animal testing. Here, an advanced immunocompetent 3D bioprinted human skin model is presented to assess skin sensitization. Initially, a photopolymerizable bioink is formulated using silk fibroin methacrylate, gelatin methacrylate, and photoactivated human platelet releasate. The developed bioink shows desirable physicochemical and rheological attributes for microextrusion bioprinting. The tunable physical and mechanical properties of bioink are modulated through variable photocuring time for optimization. Thereafter, the bioink is utilized to 3D bioprint "sandwich type" skin construct where an artificial basement membrane supports a biomimetic epidermal layer on one side and a printed pre-vascularized dermal layer on the other side within a transwell system. The printed construct is further cultured in the air-liquid interface for maturation. Immunofluorescence staining demonstrated a differentiated keratinocyte layer and dermal extracellular matrix (ECM)-remodeling by fibroblasts and endothelial cells. The biochemical estimations and gene-expression analysis validate the maturation of the printed model. The incorporation of macrophages further enhances the physiological relevance of the model. This model effectively classifies skin irritative and non-irritative substances, thus establishing itself as a suitable pre-clinical screening platform for sensitization tests.
Assuntos
Bioimpressão , Impressão Tridimensional , Pele , Humanos , Bioimpressão/métodos , Pele/metabolismo , Fibroínas/química , Engenharia Tecidual/métodos , Fibroblastos/citologia , Fibroblastos/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Metacrilatos/química , Alicerces Teciduais/química , Matriz Extracelular/metabolismo , Gelatina/químicaRESUMO
Objectives: This study aimed to develop a microemulsion formula that can increase the solubility and stability of forskolin and its safety for topical use. Materials and Methods: The materials used for the development of the microemulsion formula were triglyceride oil, non-ionic surfactants, and polyethylene glycol (PEG) for cosurfactants, which were selected on the basis of the results of the forskolin solubility test using high performance liquid chromatography (HPLC). The microemulsion was formulated by the phase titration method. Formula stability was determined by storage for 90 days in a refrigerator at room temperature, and an accelerated stability test was performed by determining globule size, forskolin concentration, and pH. The safety of using microemulsions was determined by skin irritation tests on albino rabbits. Results: The optimum microemulsion formula consisted of Maisine® CC, polyoxyethylene sorbitan 20 (POE 20), and PEG 400 with a ratio of 4:25:5 w/v, which increased the solubility of forskolin the most, namely 2.19 mg mL-1. Based on globule size (<50 nm), forskolin concentration (2 mg.mL-1), and pH (6.0-6.35), the formula was stable in refrigerator storage and room temperature but unstable in the accelerated stability test (40 °C) starting on day 21. This optimum formula exhibits a primary irritation index (PII) of 0.11, which is categorized as feeble irritation and can be ignored. Conclusion: The microemulsion prepared by the phase titration method containing Maisine® CC, POE 20, and PEG 400 (4:25:5, w/v) as a base and 0.2% forskolin was stable in refrigerator storage and at room temperature. This microemulsion is mild or negligible irritant with a PII: 0.11.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Atopic dermatitis (AD) is a common chronic inflammatory skin disorder and its prevalence is increasing in the last few decades. No treatment can cure the condition. Pregnancy often worsens the clinical manifestation. There are considerable interests in Chinese Herbal Medicine (CHM) as an alternative treatment for AD. A well tolerated CHM formula (Pentaherbs formulation, PHF) has been proven efficacious in improving life quality and reducing topical corticosteroid use in children with moderate-to-severe AD. However, safety data of PHF are not available. AIM OF THE STUDY: Our study aimed to evaluate the safety of PHF and its 5 individual herbal extracts, including embryotoxicity by Embryonic Stem Cell Test (EST) and irritation by Skin Irritation Test (SIT). MATERIALS AND METHODS: Quality of 5 herbal extracts of PHF was confirmed by chromatography. In EST, mouse embryonic stem cell line (D3) and mouse fibroblast cell line (3T3) were used to study potential embryotoxicity. Three endpoints were assessed by concentration-response curves after 10 days' culture: 50% inhibition of D3 differentiation into beating cardiomyocytes (ID50D3), 50% cytotoxic effects on D3 (IC50D3) and on fibroblasts (IC503T3). A biostatistically based prediction model (PM) was applied to predict the embryotoxic potentials of each CHM. In SIT, epidermis equivalent commercially available kits (EpiDerm™) were used, and concentration-viability curves were obtained by MTT assay to detect skin irritations of each CHM. RESULTS: Chemical authentication confirmed that 5 test herbal extracts contained their main active compounds. EST results indicated that the formula PHF and its individual CHMs were non-embryotoxic, except one CHM, Amur Corktree Bark (Huang Bai, Phellodendron chinense C.K.Schneid), was weakly embryotoxic. SIT results showed that cell viability was above 50% after treatment with different concentrations of all tested CHMs. CONCLUSIONS: Our in vitro tests provided preliminary evidence for safety of the formula PHF in embryonic stem cell test and skin irritation model, but PHF shall be cautiously used in pregnant women with AD. Further studies are needed to support its clinical application as an alternative treatment for AD, especially to the patients who plan for pregnancy or at lactation stages.
Assuntos
Dermatite Atópica , Medicamentos de Ervas Chinesas , Camundongos , Feminino , Animais , Humanos , Gravidez , Medicamentos de Ervas Chinesas/farmacologia , Dermatite Atópica/tratamento farmacológico , Células-Tronco Embrionárias , Linhagem Celular , Técnicas In VitroRESUMO
The Organization for Economic Co-operation and Development (OECD) Guidance Document No. 34 and No. 286 on Good In Vitro Method Practices (GIVIMPs) for the development and implementation of in vitro methods for regulatory use in human safety assessment have been endorsed. Considering that China is accelerating the development of alternative approaches in both research and acceptance, early application of these principles is beneficial to the implementation and acceptance of in vitro alternative methods in China. To promote the replacement of animal testing for regulatory use, L'Oréal initiated the EpiSkin™ skin irritation test (SIT) implementation program in China. More than 50 external scientists participated, and the method has been established in 34 organizations including authorities, industries, and testing service laboratories. Taking two collaborations with Guangdong CDC and Shanghai SGS for in vitro SIT as examples, we demonstrated a method implementation process in good alignment with the OECD principles. The current study illustrated the practical way in which both OECD Guidance documents assisted in the transfer and establishment of in vitro approaches and further promoted the future scientific recognition and acceptance of new OECD-accepted alternative testing methodologies in China.
RESUMO
Miconazole nitrate (MCNR) is a BCS class II antifungal drug with poor water solubility. Although numerous attempts have been made to increase its solubility, formulation researchers struggle with this significant issue. Transethosomes are promising novel nanocarriers for improving the solubility and penetration of drugs that are inadequately soluble and permeable. Thus, the objective of this study was to develop MCNR-loaded transethosomal gel in order to enhance skin permeation and antifungal activity. MCNR-loaded transethosomes (MCNR-TEs) were generated using the thin film hydration method and evaluated for their zeta potential, particle size, polydispersity index, and entrapment efficiency (EE%). SEM, FTIR, and DSC analyses were also done to characterize the optimized formulation of MCNR-TEs (MT-8). The optimized formulation of MCNR-TEs was incorporated into a carbopol 934 gel base to form transethosomal gel (MNTG) that was subjected to ex vivo permeation and drug release studies. In vitro antifungal activity was carried out against Candida albicans through the cup plate technique. An in vivo skin irritation test was also performed on Wistar albino rats. MT-8 displayed smooth spherical transethosomal nanoparticles with the highest EE% (89.93 ± 1.32%), lowest particle size (139.3 ± 1.14 nm), polydispersity index (0.188 ± 0.05), and zeta potential (-18.1 ± 0.10 mV). The release profile of MT-8 displayed an initial burst followed by sustained release, and the release data were best fitted with the Korsmeyer-Peppas model. MCNR-loaded transethosomal gel was stable and showed a non-Newtonian flow. It was found that ex vivo drug permeation of MNTG was 48.76%, which was significantly higher than that of MNPG (plain gel) (p ≤ 0.05) following a 24-h permeation study. The prepared MCNR transethosomal gel exhibited increased antifungal activity, and its safety was proven by the results of an in vivo skin irritation test. Therefore, the developed transethosomal gel can be a proficient drug delivery system via a topical route with enhanced antifungal activity and skin permeability.
RESUMO
Since the animal test ban on cosmetics in the EU in 2013, alternative in vitro safety tests have been actively researched to replace in vivo animal tests. For the development and evaluation of a new test method, reference chemicals with quality in vivo data are essential to assess the predictive capacity and applicability domain. Here, we compiled a reference chemical database (ChemSkin DB) for the development and evaluation of new in vitro skin irritation tests. The first candidates were selected from 317 chemicals (source data n = 1567) searched from the literature from the last 20 years, including previous validation study reports, ECETOC, and published papers. Chemicals showing inconsistent classification or those that were commercially unavailable, difficult or dangerous to handle, prohibitively expensive, or without quality in vivo or in vitro data were removed, leaving a total of 100 chemicals. Supporting references, in vivo Draize scores, UN GHS/EU CLP classifications and commercial sources were compiled. Test results produced by the approved methods of OECD Test No. 439 were included and compared using the classification table, scatter plot, and Pearson correlation analysis to identify the false predictions and differences between in vitro skin irritation tests. These results may provide an insight into the future development of new in vitro skin irritation tests.
RESUMO
Following the global trend of reducing animal testing, various reconstructed human epidermis (RHE) models for skin irritation test (SIT) have been developed, verified, validated and included in OECD TG 439. We developed a new RHE called EPiTRI and a SIT method using EPiTRI (EPiTRI-SIT model) following the OECD guidelines. EPiTRI possesses morphological, biochemical and physiological properties similar to human epidermis with well-differentiated multilayered viable cells with barrier function. The EPiTRI-SIT model was tested for 20 reference chemicals in Performance Standard of OECD TG 439 (GD 220), showing good predictive capacity with 100% sensitivity, 70% specificity and 85% accuracy. EPiTRI had sensitivity in detecting di-n-propyl disulphate, as an irritant chemical (UN GHS Category 2), whereas most validated reference methods detected it as a non-irritant. An international validation study of EPiTRI-SIT was conducted in four laboratories to confirm the within- and between-laboratory reproducibility, as well as predictive capacity. The phase I/II within-laboratory and between-laboratory reproducibility was 100%/95% and 95%, respectively. The overall sensitivity, specificity and accuracy of EPiTRI-SIT was 96%, 70% and 83%, respectively, which fulfilled the OECD criteria. Thus, EPiTRI, meets the criteria of Performance Standards of OECD TG 439 (GD 220) and is suitable for screening irritating chemicals in vitro.
Assuntos
Epiderme/efeitos dos fármacos , Técnicas In Vitro , Irritantes/toxicidade , Testes de Irritação da Pele , Sobrevivência Celular/efeitos dos fármacos , Epiderme/ultraestrutura , Prepúcio do Pênis , Humanos , Masculino , Organização para a Cooperação e Desenvolvimento Econômico , Reprodutibilidade dos TestesRESUMO
Aim of this work was to prepare and characterize a hydroxyethyl cellulose hydrogel loaded with ascosomes, nanovesicles based on phosphatidylcholine plus ascorbyl octanoate (ASC8) or ascorbyl decanoate (ASC1), and khellin (2 mg/mL), for topical use. ASC10 vesicles were selected for the hydrogel formulation because of the best biopharmaceutical characteristics, namely size of 115 nm, PDI of 0.26, ζ-potential of -40.1 meV, EE% of 90.2%. After 24 h the in vitro release of khellin was more than 80%, while the ex-vivo skin permeation of khellin after application of the vesicles was 42% of the dose. The hydrogel formulations had a pH value of 5, viscosity properties were different according to the different temperatures and in addition, they presented characteristics of non-Newtonian fluids with a pseudoplastic shear thinning behaviour according to the Herschel-Bulkley equation. These hydrogels combine the advantages of a suitable viscosity for dermal use (hydrogel matrix) and an increased transdermal absorption (ascosome components). The best permeability of the ASC10 ascosomes, led to select the formulation for skin irritation and corrosion tests in rats. Liver and dermal histological and pathological analyses demonstrated that hydroxyethyl cellulose hydrogels based on khellin loaded in the ASC10 ascosomes have no toxic effects.
Assuntos
Celulose/análogos & derivados , Portadores de Fármacos , Hidrogéis , Quelina , Nanoestruturas , Pele/metabolismo , Administração Cutânea , Animais , Celulose/química , Celulose/farmacocinética , Celulose/toxicidade , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/toxicidade , Feminino , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/toxicidade , Quelina/química , Quelina/farmacocinética , Quelina/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanoestruturas/química , Nanoestruturas/toxicidade , Ratos , Ratos Sprague-Dawley , Pele/patologiaRESUMO
The need of in vitro alternative methods has been increasing in toxicology research as well as in cosmetic industry in China recently. Following the establishment of China EpiSkin™ skin corrosion and irritation testing methods, both as stand-alone in vitro tests according to Organization for Economic Co-operation and Development (OECD) TG 431 and TG 439, the present study aims to evaluate the use of these two methods within the Integrated Approach on Testing and Assessment (IATA). The IATA, adopted by OECD as Guidance Document 203, provides guidance on the integration of existing and new data in a modular approach for classification and labelling of chemicals according to Globally Harmonized System of classification and labeling of chemicals (GHS) issued by the United Nations (UN). By applying bottom-up and top-down integrated testing strategies to a set of 60 chemicals representing various chemicals classes (organic acid/base/neutral, inorganic acid/base/salt, and surfactant) and physical states (liquid and solid), the results demonstrated that both strategies reached a high overall accuracy of 83.3% to distinguish non-classified, Category 2, Category 1B/1C and Category 1A according to UN GHS, identically. In conclusion, the integration of China EpiSkin™ skin corrosion and irritation testing data into either bottom-up or top-down strategy allows accurate assessment of potential skin hazard of chemicals. It brings a future extension of application of alternative methods and implementation of alternative testing strategies in China.
Assuntos
Alternativas aos Testes com Animais , Cáusticos/toxicidade , Epiderme/efeitos dos fármacos , Irritantes/toxicidade , Testes de Irritação da Pele , Cáusticos/classificação , China , Corrosão , Humanos , Técnicas In Vitro , Irritantes/classificaçãoRESUMO
We have developed a new in vitro skin irritation test based on an open source reconstructed epidermis (OS-REp) with openly accessible protocols for tissue production and test performance. Due to structural, mechanistic and procedural similarity, a blinded catch-up validation study for skin irritation according to OECD Performance Standards (PS) was conducted in three laboratories to promote regulatory acceptance, with OS-REp models produced at a single production site only. While overall sensitivity and predictive capacity met the PS requirements, overall specificity was only 57%. A thorough analysis of the test results led to the assumption that some of the false-positive classifications could have been evoked by volatile skin-irritating chemicals tested in the same culture plate as the non-irritants falsely predicted as irritants. With GC/MS and biological approaches the cross-contamination effect was confirmed and the experimental set-up adapted accordingly. Retesting of the affected chemicals with the improved experimental set-up and otherwise identical protocol resulted in correct classifications as non-irritants. Taking these re-test results into account, 93% overall sensitivity, 70% specificity and 82% accuracy was achieved, which is in accordance with the OECD PS. A sufficient reliability of the method was indicated by a within-laboratory-reproducibility of 85-95% and a between-laboratory-reproducibility of 90%.
Assuntos
Epiderme/efeitos dos fármacos , Irritantes/toxicidade , Testes de Irritação da Pele , Alternativas aos Testes com Animais , Epiderme/anatomia & histologia , Humanos , Técnicas In Vitro , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Polyamidoamine (PAMAM) dendrimers are multi-branched, three-dimensional polymers with unique architecture, which makes these molecules attractive for medical and pharmaceutical applications. Using PAMAM as drug carriers for topical delivery might be beneficial as they only produce a transient effect without skin irritation. To evaluate the dermal toxicity of cationic PAMAM dendrimers generation 2 and generation 3, skin irritation studies were performed in vivo in the rat skin model. After 10 days topical application of various concentrations of PAMAM-NH2 (0.3 mg/mL, 3 mg/mL, 6 mg/mL, 30 mg/mL, 300 mg/mL), skin irritation was evaluated by visual, histopathological, and immunohistochemical examination. Microscopic assessment after hematoxylin-eosin staining revealed significant morphological changes of epidermal cells after application of PAMAM-NH2 at a concentration of ≥6 mg/mL. Morphological alterations of epidermal cells included cytoplasmic vacuolization of keratinocytes in the basal and spinous layers. Cytomorphological changes in keratinocytes, overall picture of the epidermis, and histopathological changes in the dermis were dose dependent. Detected alterations concerned hyperplasia of connective tissue fibers and leukocyte infiltration. Visible granulocyte infiltration in the upper dermis and sockets formed by necrotic, cornified cells in the hyperplastic foci of epithelium were also noted. Immunohistochemical analyses revealed that increased nuclear immunoreactivity to PCNA correlated with the concentration of PAMAM-NH2, but no significant differences in the cell proliferation activity in skin treated with PAMAM-NH2 generation 2 or generation 3 were observed. Significantly higher expression of PCNA extended throughout the skin layers might suggest abnormal cell proliferation, which, as a consequence, might even lead to neoplastic changes.
Assuntos
Dendrímeros/toxicidade , Modelos Animais de Doenças , Poliaminas/toxicidade , Dermatopatias/induzido quimicamente , Dermatopatias/patologia , Animais , Cátions , Dendrímeros/administração & dosagem , Dendrímeros/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Imuno-Histoquímica , Masculino , Estrutura Molecular , Poliaminas/administração & dosagem , Poliaminas/química , Antígeno Nuclear de Célula em Proliferação/análise , Ratos , Ratos Wistar , Coloração e RotulagemRESUMO
The aim of this work is to examine the effectiveness of mucilage/hydroxypropylmethylcellulose (HPMC) based transdermal patch (matrix type) as a drug delivery device. We have successfully extracted mucilage from Colocasia esculenta (Taro) corms and prepared diltiazem hydrochloride incorporated mucilage/HPMC based transdermal patches using various wt% of mucilage by the solvent evaporation technique. Characterization of both mucilage and transdermal patches has been done by several techniques such as Molisch's test, organoleptic evaluation of mucilage, mechanical, morphological and thermal analysis of transdermal patches. Skin irritation test is studied on hairless Albino rat skin showing that transdermal patches are apparently free of potentially hazardous skin irritation. Fourier transform infrared analysis shows that there is no interaction between drug, mucilage and HPMC while scanning electron microscopy shows the surface morphology of transdermal patches. In vitro drug release time of mucilage-HPMC based transdermal patches is prolonged with increasing mucilage concentration in the formulation.
Assuntos
Colocasia/química , Diltiazem/administração & dosagem , Diltiazem/química , Mucilagem Vegetal/química , Pele/efeitos dos fármacos , Adesivo Transdérmico , Administração Cutânea , Animais , Química Farmacêutica/métodos , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Derivados da Hipromelose/administração & dosagem , Derivados da Hipromelose/química , Mucilagem Vegetal/administração & dosagem , Ratos , Ratos Pelados , Solubilidade , Solventes/químicaRESUMO
A novel synthetic hexapeptide (SFKLRY-NH2) that displays angiogenic activity has been identified by positional scanning of a synthetic peptide combinatorial library (PS-SPCL). This study was carried out to investigate the irritation of the SFKLRY-NH2 on the skin. The tests were performed on the basis of Korea Food and Drug Administration (KFDA) guidelines. In results, cell toxicity is not appeared for SFKLRY-NH2 in HaCaT cells and B16F10 cells. SFKLRY-NH2 induced no skin irritation at low concentration (10 µM), mild irritation at high concentration (10mM). We consider that this result is helpful for saying about the safety of SFKLRY-NH2 in clinical use.
RESUMO
OBJECTIVE:To investigate the safety of Polyisobutylene (PIB) Gutong plaster by transdermal administration. METHODS:66 rabbits were randomly divided into a normal group,a group with intact skin and a group with damaged skin. The latter two groups were respectively re-divided into PIB group,the groups of low,medium and high-dose PIB Gutong plaster and Gutong plaster group. An acute toxicity test was conducted on the rabbits,which 14 d of continuous observation was made 24 h af-ter transdermal administration. Another 60 rabbits were divided into several groups as above except for a normal group. A single pri-mary skin irritation test was conducted on them,where skin irritation reactions were recorded 6 h after a single administration based on intra-individual left/right self comparison method. 70 guinea pigs were randomized into a negative control group (vase-line),a PIB group,a positive control group(2,4-dinitrochlorobenzene),a Gutong plaster group and the groups of low,medium and high-dose PIB Gutong plaster,which were dosed for sensitization,followed by a skin sensitization test. RESULTS:No obvi-ous toxicity symptoms could be seen after administration of PIB Gutong plaster. The rabbits’intact or damaged skin had no irrita-tion response to PIB and low and medium-dose PIB Gutong plaster. PIB Gutong plaster caused no irritation response in the rabbits’ intact skin,but slight irritation in damaged skin 1 h after administration. The allergic reaction incidence of the positive control group of guinea pigs was 100% while that of any other groups was 0. CONCLUSIONS:The PIB Gutong plaster is safe for trans-dermal administration.
RESUMO
A novel synthetic hexapeptide (SFKLRY-NH2) that displays angiogenic activity has been identified by positional scanning of a synthetic peptide combinatorial library (PS-SPCL). This study was carried out to investigate the irritation of the SFKLRY-NH2 on the skin. The tests were performed on the basis of Korea Food and Drug Administration (KFDA) guidelines. In results, cell toxicity is not appeared for SFKLRY-NH2 in HaCaT cells and B16F10 cells. SFKLRY-NH2 induced no skin irritation at low concentration (10 microM), mild irritation at high concentration (10mM). We consider that this result is helpful for saying about the safety of SFKLRY-NH2 in clinical use.