Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Vopr Pitan ; 93(1): 61-71, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38555610

RESUMO

The excessive consumption of sugar-containing foods contributes to the development of a number of diseases, including obesity, diabetes mellitus, etc. As a substitute for sugar, people with diabetes mellitus and obesity most often use sweeteners. Sweet proteins, in particular brazzein, are an alternative to synthetic sweeteners that have natural origin, are broken down in the intestines along with food proteins, and do not affect blood sugar and insulin levels. The purpose of the review was to analyze the available data on the sweet protein brazzein, its physical and chemical properties, existing biotechnological methods of production, and prospects for application in the food industry in order to further develop an optimized heterologous expression system. Material and methods. Google Scholar, Scopus, Web of Science, PubMed, RSCI and eLibrary.ru databases were used for collecting and analyzing literature. Search depth - 30 years. Results. Numerous studies of the physical and chemical properties of brazzein have demonstrated its high potential for use in the food industry. In particular, a short amino acid sequence, thermal stability, the ability to maintain its structure and sweet properties in a wide pH range, hypoallergenicity, lack of genotoxicity, and an extremely high level of sweetness compared to sucrose allow us to conclude that its use is promising. Mutant variants of brazzein have been generated, the sweetest of which (with three amino acid substitutions H31R/E36D/E41A) exceeds sucrose sweetness by 22 500 times. To date, various systems for the expression of recombinant brazzein have already been developed, in which bacteria (Escherichia coli, Lactococcus lactis, Bacillus licheniformis), yeast (Komagataella phaffii, Kluyveromyces lactis, Saccharomyces cerevisiae), plants (Zea mays, Oryza sativa, Lactuca sativa, Nicotiana tabacum, Daucus carota) and animals (Mus musculus) have been used. Conclusion. Due to its high sweetness, organoleptic properties and long history of human consumption, brazzein can be considered as a promising natural sweetener. Despite the short peptide sequence, the production of the recombinant protein faced a number of problems, including low protein yield (for example, it could only be detected in mouse milk by Western blot hybridization) and loss of sweetness. Thus, further optimization of the process is necessary for widespread brazzein use in the food industry, which includes the selection of an adequate producer and the use of extracellular expression systems to reduce the final cost of the product.


Assuntos
Diabetes Mellitus , Edulcorantes , Humanos , Animais , Camundongos , Proteínas de Plantas/genética , Proteínas de Plantas/química , Sacarose , Obesidade/genética , Saccharomyces cerevisiae , Paladar
2.
Planta ; 248(2): 465-476, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29777363

RESUMO

MAIN CONCLUSION: Plastid-based MNEI protein mutants retain the structure, stability and sweetness of their bacterial counterparts, confirming the attractiveness of the plastid transformation technology for high-yield production of recombinant proteins. The prevalence of obesity and diabetes has dramatically increased the industrial demand for the development and use of alternatives to sugar and traditional sweeteners. Sweet proteins, such as MNEI, a single chain derivative of monellin, are the most promising candidates for industrial applications. In this work, we describe the use of tobacco chloroplasts as a stable plant expression platform to produce three MNEI protein mutants with improved taste profile and stability. All plant-based proteins were correctly expressed in tobacco chloroplasts, purified and subjected to in-depth chemical and sensory analyses. Recombinant MNEI mutants showed a protein yield ranging from 5% to more than 50% of total soluble proteins, which, to date, represents the highest accumulation level of MNEI mutants in plants. Comparative analyses demonstrated the high similarity, in terms of structure, stability and function, of the proteins produced in plant chloroplasts and bacteria. The high yield and the extreme sweetness perceived for the plant-derived proteins prove that plastid transformation technology is a safe, stable and cost-effective production platform for low-calorie sweeteners, with an estimated production of up to 25-30 mg of pure protein/plant.


Assuntos
Nicotiana/metabolismo , Edulcorantes/metabolismo , Cloroplastos/metabolismo , Expressão Gênica , Vetores Genéticos/genética , Proteínas Mutantes , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Edulcorantes/isolamento & purificação , Paladar , Nicotiana/genética , Transformação Genética
3.
Biochim Biophys Acta Gen Subj ; 1862(4): 808-815, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29288772

RESUMO

BACKGROUND: MNEI and its variant Y65R-MNEI are sweet proteins with potential applications as sweeteners in food industry. Also, they are often used as model systems for folding and aggregation studies. METHODS: X-ray crystallography was used to structurally characterize Y65R-MNEI at five different pHs, while circular dichroism and fluorescence spectroscopy were used to study their thermal and chemical stability. ThT assay and AFM were used for studying the kinetics of aggregation and morphology of the aggregates. RESULTS: Crystal structures of Y65R-MNEI revealed the existence of a dimer in the asymmetric unit, which, depending on the pH, assumes either an open or a closed conformation. The pH dramatically affects kinetics of formation and morphology of the aggregates: both MNEI and Y65R-MNEI form fibrils at acidic pH while amorphous aggregates are observed at neutral pH. CONCLUSIONS: The mutation Y65R induces structural modifications at the C-terminal region of the protein, which account for the decreased stability of the mutant when compared to MNEI. Furthermore, the pH-dependent conformation of the Y65R-MNEI dimer may explain the different type of aggregates formed as a function of pH. GENERAL SIGNIFICANCE: The investigation of the structural bases of aggregation gets us closer to the possibility of controlling such process, either by tuning the physicochemical environmental parameters or by site directed mutagenesis. This knowledge is helpful to expand the range of stability of proteins with potential industrial applications, such as MNEI and its mutant Y65R-MNEI, which should ideally preserve their structure and soluble state through a wide array of conditions.


Assuntos
Proteínas Mutantes/química , Proteínas de Plantas/química , Conformação Proteica , Edulcorantes/química , Dicroísmo Circular , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Cinética , Microscopia de Força Atômica , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Agregados Proteicos , Desnaturação Proteica , Multimerização Proteica , Edulcorantes/metabolismo
4.
J Agric Food Chem ; 72(35): 19470-19479, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39126644

RESUMO

Honey truffle sweetener (HTS), a 121 amino acid protein is identified as a high-intensity sweetener found naturally occurring in the Hungarian Sweet Truffle Mattirolomyces terfezioides, an edible mushroom used in regional diets. The protein is intensely sweet, but the truffle is difficult to cultivate; therefore, the protein was systematically characterized, and the gene coding for the protein was expressed in a commonly used host yeast Komagataella phaffii. The heterologously expressed protein maintained the structural characteristics and sweet taste of the truffle. Preliminary safety evaluations for use as a food ingredient were performed on the protein including digestibility and in silico approaches for predicting the allergenicity and toxicity of the protein. HTS is predicted to be nonallergenic, nontoxic, and readily digestible. This protein is readily produced by precision fermentation of the host yeast, making it a potential replacement for both added sugars and small molecule high-intensity sweeteners in food.


Assuntos
Proteínas Fúngicas , Edulcorantes , Edulcorantes/química , Edulcorantes/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomycetales/química , Ascomicetos/genética , Ascomicetos/metabolismo , Ascomicetos/química , Humanos , Paladar , Expressão Gênica , Simulação por Computador
5.
Food Chem ; 440: 138279, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159314

RESUMO

Sweet proteins offer a promising solution as sugar substitutes by providing a sugar-like sweetness without the negative health impacts linked to sugar or artificial sweeteners. However, the low thermal stability of sweet proteins has hindered their applications. In this study, we took a computational approach utilizing ΔΔG calculations in PyRosetta to enhance the thermostability of single-chain monellin (MNEI). By generating and characterizing 21 variants with single mutation, we identified 11 variants with higher melting temperature (Tm) than that of MNEI. To further enhance the thermal stability, we conducted structural analysis and designed an additional set of 14 variants with multiple mutations. Among these variants, four exhibited a significant improvement in thermal stability, with an increase of at least 20 °C (Tm > 96 °C) compared to MNEI, while maintaining their sweetness. Remarkably, these variants remained soluble even after being heated in boiling water for one hour. Moreover, they displayed exceptional stability across alkaline, acidic and neutral environments. These findings highlight the tremendous potential of these variants for applications in the food and beverage industry. Additionally, this study provides valuable strategies for protein engineering to enhance the thermal stability of sweet proteins.


Assuntos
Proteínas de Plantas , Engenharia de Proteínas , Proteínas de Plantas/metabolismo , Temperatura Alta , Edulcorantes/química , Açúcares
6.
ACS Synth Biol ; 13(4): 1246-1258, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483353

RESUMO

Saccharomyces cerevisiae is an attractive host for the expression of secreted proteins in a biotechnology context. Unfortunately, many heterologous proteins fail to enter, or efficiently progress through, the secretory pathway, resulting in poor yields. Similarly, yeast surface display has become a widely used technique in protein engineering but achieving sufficient levels of surface expression of recombinant proteins is often challenging. Signal peptides (SPs) and translational fusion partners (TFPs) can be used to direct heterologous proteins through the yeast secretory pathway, however, selection of the optimal secretion promoting sequence is largely a process of trial and error. The yeast modular cloning (MoClo) toolkit utilizes type IIS restriction enzymes to facilitate an efficient assembly of expression vectors from standardized parts. We have expanded this toolkit to enable the efficient incorporation of a panel of 16 well-characterized SPs and TFPs and five surface display anchor proteins into S. cerevisiae expression cassettes. The secretion promoting signals are validated by using five different proteins of interest. Comparison of intracellular and secreted protein levels reveals the optimal secretion promoting sequence for each individual protein. Large, protein of interest-specific variations in secretion efficiency are observed. SP sequences are also used with the five surface display anchors, and the combination of SP and anchor protein proves critical for efficient surface display. These observations highlight the value of the described panel of MoClo compatible parts to allow facile screening of SPs and TFPs and anchor proteins for optimal secretion and/or surface display of a given protein of interest in S. cerevisiae.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Proteico , Sinais Direcionadores de Proteínas/genética , Clonagem Molecular
7.
Foods ; 12(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38002123

RESUMO

This article presents the results of a comprehensive toxicity assessment of brazzein and monellin, yeast-produced recombinant sweet-tasting proteins. Excessive sugar consumption is one of the leading dietary and nutritional problems in the world, resulting in health complications such as obesity, high blood pressure, and cardiovascular disease. Although artificial small-molecule sweeteners widely replace sugar in food, their safety and long-term health effects remain debatable. Many sweet-tasting proteins, including thaumatin, miraculin, pentadin, curculin, mabinlin, brazzein, and monellin have been found in tropical plants. These proteins, such as brazzein and monellin, are thousands-fold sweeter than sucrose. Multiple reports have presented preparations of recombinant sweet-tasting proteins. A thorough and comprehensive assessment of their toxicity and safety is necessary to introduce and apply sweet-tasting proteins in the food industry. We experimentally assessed acute, subchronic, and chronic toxicity effects, as well as allergenic and mutagenic properties of recombinant brazzein and monellin. Our study was performed on three mammalian species (mice, rats, and guinea pigs). Assessment of animals' physiological, biochemical, hematological, morphological, and behavioral indices allows us to assert that monellin and brazzein are safe and nontoxic for the mammalian organism, which opens vast opportunities for their application in the food industry as sugar alternatives.

8.
Biotechnol J ; 17(8): e2100676, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35481893

RESUMO

Optogenetics has great potential for biotechnology and metabolic engineering due to the cost-effective control of cellular activities. The usage of optogenetics techniques for the biosynthesis of bioactive molecules ensures reduced costs and enhanced regulatory possibilities. This requires development of efficient methods for light-delivery during a production process in a fermenter. Here, we benchmarked the fermenter production of a low-caloric sweetener in Saccharomyces cerevisiae with optogenetic tools against the production in small scale cell culture flasks. An expression system based on the light-controlled interaction between Cry2 and Cib1 was used for sweet-protein production. Optimization of the fermenter process was achieved by increasing the light-flux during the production phase to circumvent shading by yeast cells at high densities. Maximal amounts of the sweet-protein were produced in a pre-stationary growth phase, whereas at later stages, a decay in protein abundance was observable. Our investigation showcases the upscaling of an optogenetic production process from small flasks to a bioreactor. Optogenetic-controlled production in a fermenter is highly cost-effective due to the cheap inducer and therefore a viable alternative to chemicals for a process that requires an induction step.


Assuntos
Reatores Biológicos , Saccharomyces cerevisiae , Biotecnologia , Engenharia Metabólica , Optogenética/métodos , Saccharomyces cerevisiae/metabolismo
9.
Food Res Int ; 162(Pt A): 111853, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461268

RESUMO

Artificial sweeteners have become increasingly popular worldwide owing to their lower calorie content in addition to the claims of health benefits such as weight control, blood glucose level regulation in diabetics, and protection against dental caries. Nevertheless, there is still controversy regarding their safety, especially when administered over the long term, taking into account that most of the safety studies are based on animal models and only a few human studies. This review focuses on low-calorie protein/peptide sweeteners. These include artificial sweeteners, i.e. aspartame, advantame, neotame, and alitame which are synthetic, versus those of natural origin such as thaumatin, monellin, brazzein, pentadin, mabinlin, curculin, and egg white lysozyme. We conducted a systematic literature survey to ensure the accuracy of the data regarding the chemical properties, synthesis, and industrial applications. The health benefits and safety of these sweeteners in humans are presented for the first time in context to their metabolic profiles and gut interaction.


Assuntos
Cárie Dentária , Edulcorantes , Animais , Humanos , Edulcorantes/efeitos adversos , Doces , Dipeptídeos , Aspartame/efeitos adversos
10.
Bioengineered ; 13(4): 9815-9828, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35435127

RESUMO

Owing to various undesirable health effects of sugar overconsumption, joint efforts are being made by industrial sectors and regulatory authorities to reduce sugar consumption practices, worldwide. Artificial sweeteners are considered potential substitutes in several products, e.g., sugar alcohols (polyols), high-fructose corn syrup, powdered drink mixes, and other beverages. Nevertheless, their long-standing health effects continue to be debatable. Consequently, growing interest has been shifted in producing non-caloric sweetenersfrom renewable resources to meet consumers' dietary requirements. Except for the lysozyme protein, various sweet proteins including thaumatin, mabinlin, brazzein, monellin, miraculin, pentadin, and curculin have been identified in tropical plants. Given the high cost and challenging extortion of natural resources, producing these sweet proteins using engineered microbial hosts, such as Yarrowia lipolytica, Pichia pastoris, Hansenula polymorpha, Candida boidinii, Arxula adeninivorans, Pichia methanolica, Saccharomyces cerevisiae, and Kluyveromyces lactis represents an appealing choice. Engineering techniques can be applied for large-scale biosynthesis of proteins, which can be used in biopharmaceutical, food, diagnostic, and medicine industries. Nevertheless, extensive work needs to be undertaken to address technical challenges in microbial production of sweet-tasting proteins in bulk. This review spotlights historical aspects, physicochemical properties (taste, safety, stability, solubility, and cost), and recombinant biosynthesis of sweet proteins. Moreover, future opportunities for process improvement based on metabolic engineering strategies are also discussed.


Assuntos
Bioprospecção , Paladar , Biotecnologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Edulcorantes/química
11.
Front Mol Biosci ; 8: 705102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368232

RESUMO

Sweet proteins are the sweetest natural molecules. This aspect prompted several proposals for their use as food additives, mainly because the amounts to be added to food would be very small and safe for people suffering from sucrose-linked diseases. During studies of sweet proteins as food additives we found that their sweetness is affected by water salinity, while there is no influence on protein's structure. Parallel tasting of small size sweeteners revealed no influence of the water quality. This result is explained by the interference of ionic strength with the mechanism of action of sweet proteins and provides an experimental validation of the wedge model for the interaction of proteins with the sweet receptor.

12.
Life (Basel) ; 11(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809397

RESUMO

Sweet proteins are a class of proteins with the ability to elicit a sweet sensation in humans upon interaction with sweet taste receptor T1R2/T1R3. Single-chain Monellin, MNEI, is among the sweetest proteins known and it could replace sugar in many food and beverage recipes. Nonetheless, its use is limited by low stability and high aggregation propensity at neutral pH. To solve this inconvenience, we designed a new construct of MNEI, dubbed Mut9, which led to gains in both sweetness and stability. Mut9 showed an extraordinary stability in acidic and neutral environments, where we observed a melting temperature over 20 °C higher than that of MNEI. In addition, Mut9 resulted twice as sweet than MNEI. Both proteins were extensively characterized by biophysical and sensory analyses. Notably, Mut9 preserved its structure and function even after 10 min boiling, with the greatest differences being observed at pH 6.8, where it remained folded and sweet, whereas MNEI lost its structure and function. Finally, we performed a 6-month shelf-life assessment, and the data confirmed the greater stability of the new construct in a wide range of conditions. These data prove that Mut9 has an even greater potential for food and beverage applications than MNEI.

14.
Curr Biol ; 29(7): 1178-1186.e6, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30905604

RESUMO

Potato plants form tuberous storage organs on underground modified stems called stolons. Tubers are rich in starch, proteins, and other important nutrients, making potato one of the most important staple food crops. The timing of tuber development in wild potato is regulated by day length through a mechanism that is closely related to floral transition [1, 2]. Tuberization is also known to be regulated by the availability of assimilates, in particular sucrose, the transported form of sugar, required for starch synthesis. During the onset of tuber development, the mode of sucrose unloading switches from apoplastic to symplastic [3]. Here, we show that this switch may be mediated by the interaction between the tuberization-specific FT homolog StSP6A and the sucrose efflux transporter StSWEET11 [4]. The binding of StSP6A to StSWEET11 blocked the leakage of sucrose to the apoplast, and is therefore likely to promote symplastic sucrose transport. The direct physical interaction between StSWEET11 and StSP6A proteins represents a link between the sugar and photoperiodic pathways for the regulation of potato tuber formation. Our data suggest that a previously undiscovered function for the FT family of proteins extends their role as mobile signals to mediators of source-sink partitioning, opening the possibility for modifying source-sink interactions.


Assuntos
Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Solanum tuberosum/metabolismo , Sacarose/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Tubérculos/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/genética , Amido/metabolismo , Fatores de Transcrição/metabolismo
15.
Environ Sci Pollut Res Int ; 24(10): 9734-9740, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28251536

RESUMO

Low-calorie sweeteners are widespread. They are routinely introduced into commonly consumed food such as diet sodas, cereals, and sugar-free desserts. Recent data revealed the presence in considerable quantities of some of these artificial sweeteners in water samples qualifying them as a class of potential new emerging contaminants. This study aimed at evaluating the ecotoxicity profile of MNEI and Y65R-MNEI, two engineered products derived from the natural protein monellin, employing representative test organism such as Daphnia magna, Ceriodaphnia dubia, and Raphidocelis subcapitata. Potential genotoxicity and mutagenicity effects on Salmonella typhimurium (strain TA97a, TA98, TA100, and TA1535) and Escherichia coli (strain WP2 pkM101) were evaluated. No genotoxicity effects were detected, whereas slight mutagenicity was highlighted by TA98 S. typhimurium. Ecotoxicity results evidenced effects approximately up to 14 and 20% with microalgae at 500 mg/L of MNEI and Y65R-MNEI, in that order. Macrophytes and crustaceans showed no significant effects. No median effective concentrations were determined. Overall, MNEI and Y65R-MNEI can be classified as not acutely toxic for the environment.


Assuntos
Ecotoxicologia , Adoçantes não Calóricos , Animais , Escherichia coli/genética , Testes de Mutagenicidade , Mutagênicos , Salmonella typhimurium/genética , Edulcorantes
16.
Food Chem ; 173: 1179-86, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25466141

RESUMO

Sweet proteins represent a class of natural molecules, which are extremely interesting regarding their potential use as safe low-calories sweeteners for individuals who need to control sugar intake, such as obese or diabetic subjects. Punctual mutations of amino acid residues of MNEI, a single chain derivative of the natural sweet protein monellin, allow the modulation of its taste. In this study we present a structural and functional comparison between MNEI and a sweeter mutant Y65R, containing an extra positive charge on the protein surface, in conditions mimicking those of typical beverages. Y65R exhibits superior sweetness in all the experimental conditions tested, has a better solubility at mild acidic pH and preserves a significant thermal stability in a wide range of pH conditions, although slightly lower than MNEI. Our findings confirm the advantages of structure-guided protein engineering to design improved low-calorie sweeteners and excipients for food and pharmaceutical preparations.


Assuntos
Proteínas de Plantas/química , Relação Estrutura-Atividade , Edulcorantes/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Conformação Proteica , Paladar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa