Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 951
Filtrar
1.
Cell ; 187(10): 2375-2392.e33, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653238

RESUMO

Lysine lactylation is a post-translational modification that links cellular metabolism to protein function. Here, we find that AARS1 functions as a lactate sensor that mediates global lysine lacylation in tumor cells. AARS1 binds to lactate and catalyzes the formation of lactate-AMP, followed by transfer of lactate to the lysince acceptor residue. Proteomics studies reveal a large number of AARS1 targets, including p53 where lysine 120 and lysine 139 in the DNA binding domain are lactylated. Generation and utilization of p53 variants carrying constitutively lactylated lysine residues revealed that AARS1 lactylation of p53 hinders its liquid-liquid phase separation, DNA binding, and transcriptional activation. AARS1 expression and p53 lacylation correlate with poor prognosis among cancer patients carrying wild type p53. ß-alanine disrupts lactate binding to AARS1, reduces p53 lacylation, and mitigates tumorigenesis in animal models. We propose that AARS1 contributes to tumorigenesis by coupling tumor cell metabolism to proteome alteration.


Assuntos
Carcinogênese , Ácido Láctico , Proteína Supressora de Tumor p53 , Animais , Feminino , Humanos , Camundongos , Carcinogênese/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Ácido Láctico/metabolismo , Lisina/metabolismo , Neoplasias/metabolismo , Neoplasias/genética , Processamento de Proteína Pós-Traducional , Proteína Supressora de Tumor p53/metabolismo , Masculino
2.
Annu Rev Cell Dev Biol ; 39: 223-252, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37339680

RESUMO

Transfer RNAs (tRNAs) decode messenger RNA codons to peptides at the ribosome. The nuclear genome contains many tRNA genes for each amino acid and even each anticodon. Recent evidence indicates that expression of these tRNAs in neurons is regulated, and they are not functionally redundant. When specific tRNA genes are nonfunctional, this results in an imbalance between codon demand and tRNA availability. Furthermore, tRNAs are spliced, processed, and posttranscriptionally modified. Defects in these processes lead to neurological disorders. Finally, mutations in the aminoacyl tRNA synthetases (aaRSs) also lead to disease. Recessive mutations in several aaRSs cause syndromic disorders, while dominant mutations in a subset of aaRSs lead to peripheral neuropathy, again due to an imbalance between tRNA supply and codon demand. While it is clear that disrupting tRNA biology often leads to neurological disease, additional research is needed to understand the sensitivity of neurons to these changes.

3.
Annu Rev Biochem ; 83: 379-408, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24555827

RESUMO

Genetic code expansion and reprogramming enable the site-specific incorporation of diverse designer amino acids into proteins produced in cells and animals. Recent advances are enhancing the efficiency of unnatural amino acid incorporation by creating and evolving orthogonal ribosomes and manipulating the genome. Increasing the number of distinct amino acids that can be site-specifically encoded has been facilitated by the evolution of orthogonal quadruplet decoding ribosomes and the discovery of mutually orthogonal synthetase/tRNA pairs. Rapid progress in moving genetic code expansion from bacteria to eukaryotic cells and animals (C. elegans and D. melanogaster) and the incorporation of useful unnatural amino acids has been aided by the development and application of the pyrrolysyl-transfer RNA (tRNA) synthetase/tRNA pair for unnatural amino acid incorporation. Combining chemoselective reactions with encoded amino acids has facilitated the installation of posttranslational modifications, as well as rapid derivatization with diverse fluorophores for imaging.


Assuntos
Escherichia coli/genética , Código Genético , Aminoácidos/química , Aminoacil-tRNA Sintetases/química , Animais , Caenorhabditis elegans , Drosophila melanogaster , Evolução Molecular , Deleção de Genes , Genoma , Engenharia de Proteínas/métodos , RNA de Transferência/química , Ribossomos/química , Saccharomyces cerevisiae/genética
4.
Mol Cell ; 81(2): 398-407.e4, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33340489

RESUMO

Mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and proliferation by sensing fluctuations in environmental cues such as nutrients, growth factors, and energy levels. The Rag GTPases (Rags) serve as a critical module that signals amino acid (AA) availability to modulate mTORC1 localization and activity. Recent studies have demonstrated how AAs regulate mTORC1 activity through Rags. Here, we uncover an unconventional pathway that activates mTORC1 in response to variations in threonine (Thr) levels via mitochondrial threonyl-tRNA synthetase TARS2. TARS2 interacts with inactive Rags, particularly GTP-RagC, leading to increased GTP loading of RagA. mTORC1 activity in cells lacking TARS2 is resistant to Thr repletion, showing that TARS2 is necessary for Thr-dependent mTORC1 activation. The requirement of TARS2, but not cytoplasmic threonyl-tRNA synthetase TARS, for this effect demonstrates an additional layer of complexity in the regulation of mTORC1 activity.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Mitocôndrias/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Treonina-tRNA Ligase/genética , Treonina/metabolismo , Regulação da Expressão Gênica , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Transdução de Sinais , Treonina-tRNA Ligase/antagonistas & inibidores , Treonina-tRNA Ligase/metabolismo
5.
Mol Cell ; 75(5): 957-966.e8, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31178354

RESUMO

Present in all realms of life, dinucleoside tetraphosphates (Np4Ns) are generally considered signaling molecules. However, only a single pathway for Np4N signaling has been delineated in eukaryotes, and no receptor that mediates the influence of Np4Ns has ever been identified in bacteria. Here we show that, under disulfide stress conditions that elevate cellular Np4N concentrations, diverse Escherichia coli mRNAs and sRNAs acquire a cognate Np4 cap. Purified E. coli RNA polymerase and lysyl-tRNA synthetase are both capable of adding such 5' caps. Cap removal by either of two pyrophosphatases, ApaH or RppH, triggers rapid RNA degradation in E. coli. ApaH, the predominant decapping enzyme, functions as both a sensor and an effector of disulfide stress, which inactivates it. These findings suggest that the physiological changes attributed to elevated Np4N concentrations in bacteria may result from widespread Np4 capping, leading to altered RNA stability and consequent changes in gene expression.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Estabilidade de RNA , RNA Bacteriano/metabolismo , Hidrolases Anidrido Ácido/genética , Fosfatos de Dinucleosídeos/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , RNA Bacteriano/genética
6.
Proc Natl Acad Sci U S A ; 121(35): e2409628121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39163341

RESUMO

Protein kinase Gcn2 attenuates protein synthesis in response to amino acid starvation while stimulating translation of a transcriptional activator of amino acid biosynthesis. Gcn2 activation requires a domain related to histidyl-tRNA synthetase (HisRS), the enzyme that aminoacylates tRNAHis. While evidence suggests that deacylated tRNA binds the HisRS domain for kinase activation, ribosomal P-stalk proteins have been implicated as alternative activating ligands on stalled ribosomes. We report crystal structures of the HisRS domain of Chaetomium thermophilum Gcn2 that reveal structural mimicry of both catalytic (CD) and anticodon-binding (ABD) domains, which in authentic HisRS bind the acceptor stem and anticodon loop of tRNAHis. Elements for forming histidyl adenylate and aminoacylation are lacking, suggesting that Gcn2HisRS was repurposed for kinase activation, consistent with mutations in the CD that dysregulate yeast Gcn2 function. Substituting conserved ABD residues well positioned to contact the anticodon loop or that form a conserved ABD-CD interface impairs Gcn2 function in starved cells. Mimicry in Gcn2HisRS of two highly conserved structural domains for binding both ends of tRNA-each crucial for Gcn2 function-supports that deacylated tRNAs activate Gcn2 and exemplifies how a metabolic enzyme is repurposed to host new local structures and sequences that confer a novel regulatory function.


Assuntos
Chaetomium , Histidina-tRNA Ligase , Proteínas Serina-Treonina Quinases , Chaetomium/enzimologia , Chaetomium/genética , Chaetomium/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Histidina-tRNA Ligase/metabolismo , Histidina-tRNA Ligase/química , Histidina-tRNA Ligase/genética , Estresse Fisiológico , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Cristalografia por Raios X , Modelos Moleculares , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
7.
Proc Natl Acad Sci U S A ; 121(30): e2303642121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39012819

RESUMO

Glutamyl-prolyl-tRNA synthetase (EPRS1) is a bifunctional aminoacyl-tRNA-synthetase (aaRS) essential for decoding the genetic code. EPRS1 resides, with seven other aaRSs and three noncatalytic proteins, in the cytoplasmic multi-tRNA synthetase complex (MSC). Multiple MSC-resident aaRSs, including EPRS1, exhibit stimulus-dependent release from the MSC to perform noncanonical activities distinct from their primary function in protein synthesis. Here, we show EPRS1 is present in both cytoplasm and nucleus of breast cancer cells with constitutively low phosphatase and tensin homolog (PTEN) expression. EPRS1 is primarily cytosolic in PTEN-expressing cells, but chemical or genetic inhibition of PTEN, or chemical or stress-mediated activation of its target, AKT, induces EPRS1 nuclear localization. Likewise, preferential nuclear localization of EPRS1 was observed in invasive ductal carcinoma that were also P-Ser473-AKT+. EPRS1 nuclear transport requires a nuclear localization signal (NLS) within the linker region that joins the catalytic glutamyl-tRNA synthetase and prolyl-tRNA synthetase domains. Nuclear EPRS1 interacts with poly(ADP-ribose) polymerase 1 (PARP1), a DNA-damage sensor that directs poly(ADP-ribosyl)ation (PARylation) of proteins. EPRS1 is a critical regulator of PARP1 activity as shown by markedly reduced ADP-ribosylation in EPRS1 knockdown cells. Moreover, EPRS1 and PARP1 knockdown comparably alter the expression of multiple tumor-related genes, inhibit DNA-damage repair, reduce tumor cell survival, and diminish tumor sphere formation by breast cancer cells. EPRS1-mediated regulation of PARP1 activity provides a mechanistic link between PTEN loss in breast cancer cells, PARP1 activation, and cell survival and tumor growth. Targeting the noncanonical activity of EPRS1, without inhibiting canonical tRNA ligase activity, provides a therapeutic approach potentially supplementing existing PARP1 inhibitors.


Assuntos
Neoplasias da Mama , Núcleo Celular , Poli(ADP-Ribose) Polimerase-1 , Proteínas Proto-Oncogênicas c-akt , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Núcleo Celular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Linhagem Celular Tumoral , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/genética , Transporte Ativo do Núcleo Celular , Sinais de Localização Nuclear/metabolismo
8.
Hum Mol Genet ; 33(5): 435-447, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-37975900

RESUMO

Mitochondrial aminoacyl-tRNA synthetase (mt-ARS) mutations cause severe, progressive, and often lethal diseases with highly heterogeneous and tissue-specific clinical manifestations. This study investigates the molecular mechanisms triggered by three different mt-ARS defects caused by biallelic mutations in AARS2, EARS2, and RARS2, using an in vitro model of human neuronal cells. We report distinct molecular mechanisms of mitochondrial dysfunction among the mt-ARS defects studied. Our findings highlight the ability of proliferating neuronal progenitor cells (iNPCs) to compensate for mitochondrial translation defects and maintain balanced levels of oxidative phosphorylation (OXPHOS) components, which becomes more challenging in mature neurons. Mutant iNPCs exhibit unique compensatory mechanisms, involving specific branches of the integrated stress response, which may be gene-specific or related to the severity of the mitochondrial translation defect. RNA sequencing revealed distinct transcriptomic profiles showing dysregulation of neuronal differentiation and protein translation. This study provides valuable insights into the tissue-specific compensatory mechanisms potentially underlying the phenotypes of patients with mt-ARS defects. Our novel in vitro model may more accurately represent the neurological presentation of patients and offer an improved platform for future investigations and therapeutic development.


Assuntos
Aminoacil-tRNA Sintetases , Humanos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Neurônios/metabolismo , RNA de Transferência/metabolismo
9.
EMBO J ; 41(11): e109985, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35466425

RESUMO

Halofuginone (HF) is a phase 2 clinical compound that inhibits the glutamyl-prolyl-tRNA synthetase (EPRS) thereby inducing the integrated stress response (ISR). Here, we report that halofuginone indeed triggers the predicted canonical ISR adaptations, consisting of attenuation of protein synthesis and gene expression reprogramming. However, the former is surprisingly atypical and occurs to a similar magnitude in wild-type cells, cells lacking GCN2 and those incapable of phosphorylating eIF2α. Proline supplementation rescues the observed HF-induced changes indicating that they result from inhibition of EPRS. The failure of the GCN2-to-eIF2α pathway to elicit a measurable protective attenuation of translation initiation allows translation elongation defects to prevail upon HF treatment. Exploiting this vulnerability of the ISR, we show that cancer cells with increased proline dependency are more sensitive to halofuginone. This work reveals that the consequences of EPRS inhibition are more complex than anticipated and provides novel insights into ISR signaling, as well as a molecular framework to guide the targeted development of halofuginone as a therapeutic.


Assuntos
Piperidinas , Quinazolinonas , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fosforilação , Piperidinas/farmacologia , Prolina/metabolismo , Biossíntese de Proteínas , Quinazolinonas/farmacologia
10.
RNA ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255994

RESUMO

Modifications at the wobble position (position 34) of tRNA facilitate interactions that enable or stabilize non-Watson-Crick basepairs. In bacterial tRNA, 5-hydroxyuridine (ho5U) derivatives xo5U [x: methyl (mo5U), carboxymethyl (cmo5U), and methoxycarbonylmethyl (mcmo5U)] present at the wobble positions of tRNAs are responsible for recognition of NYN codon families. These modifications of U34 allow basepairing not only with A and G but also with U and in some cases C. mo5U was originally found in Gram-positive bacteria, and cmo5U and mcmo5U were found in Gram-negative bacteria. tRNAs of Mycoplasma species, mitochondria, and chloroplasts adopt four-way decoding in which unmodified U34 recognizes codons ending in A, G, C, and U. Lactobacillus casei, Gram-positive bacteria and lactic acid bacteria, lacks the modification enzyme genes for xo5U biosynthesis. Nevertheless, L. casei has only one type of tRNAVal with the anticodon UAC [tRNAVal(UAC)]. However, the genome of L. casei encodes an undetermined tRNA (tRNAUnd) gene, and the sequence corresponding to the anticodon region is GAC. Here, we confirm that U34 in L. casei tRNAVal is unmodified and that there is no tRNAUnd expression in the cells. In addition, in vitro transcribed tRNAUnd was not aminoacylated by L. casei valyl-tRNA synthetase suggesting that tRNAUnd is not able to accept valine, even if expressed in cells. Correspondingly, native tRNAVal(UAC) with unmodified U34 bound to all four valine codons in the ribosome A site. This suggests that L. casei tRNAVal decodes all valine codons by four-way decoding, similarly to tRNAs from Mycoplasma species, mitochondria, and chloroplasts.

11.
RNA ; 30(10): 1328-1344, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38981655

RESUMO

T-box riboswitches are widespread bacterial regulatory noncoding RNAs that directly interact with tRNAs and switch conformations to regulate the transcription or translation of genes related to amino acid metabolism. Recent studies in Bacilli have revealed the core mechanisms of T-boxes that enable multivalent, specific recognition of both the identity and aminoacylation status of the tRNA substrates. However, in-depth knowledge on a vast number of T-boxes in other bacterial species remains scarce, although a remarkable structural diversity, particularly among pathogens, is apparent. In the present study, analysis of T-boxes that control the transcription of glycyl-tRNA synthetases from four prominent human pathogens revealed significant structural idiosyncrasies. Nonetheless, these diverse T-boxes maintain functional T-box:tRNAGly interactions both in vitro and in vivo. Probing analysis not only validated recent structural observations, but also expanded our knowledge on the substantial diversities among T-boxes and suggest interesting distinctions from the canonical Bacilli T-boxes. Surprisingly, some glycyl T-boxes seem to redirect the T-box trajectory in the absence of recognizable K-turns or contain Stem II modules that are generally absent in glycyl T-boxes. These results consolidate the notion of a lineage-specific diversification and elaboration of the T-box mechanism and corroborate the potential of T-boxes as promising species-specific RNA targets for next-generation antibacterial compounds.


Assuntos
Conformação de Ácido Nucleico , RNA Bacteriano , Riboswitch , Riboswitch/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Bacteriano/química , Regulação Bacteriana da Expressão Gênica , Glicina-tRNA Ligase/genética , Glicina-tRNA Ligase/metabolismo , Glicina-tRNA Ligase/química , RNA de Transferência de Glicina/metabolismo , RNA de Transferência de Glicina/genética , RNA de Transferência de Glicina/química , Sequência de Bases , Bactérias/genética , Bactérias/metabolismo , Humanos , RNA de Transferência/metabolismo , RNA de Transferência/genética , RNA de Transferência/química
12.
Proc Natl Acad Sci U S A ; 120(37): e2309714120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669377

RESUMO

Proofreading (editing) of mischarged tRNAs by cytoplasmic aminoacyl-tRNA synthetases (aaRSs), whose impairment causes neurodegeneration and cardiac diseases, is of high significance for protein homeostasis. However, whether mitochondrial translation needs fidelity and the significance of editing by mitochondrial aaRSs have been unclear. Here, we show that mammalian cells critically depended on the editing of mitochondrial threonyl-tRNA synthetase (mtThrRS, encoded by Tars2), disruption of which accumulated Ser-tRNAThr and generated a large abundance of Thr-to-Ser misincorporated peptides in vivo. Such infidelity impaired mitochondrial translation and oxidative phosphorylation, causing oxidative stress and cell cycle arrest in the G0/G1 phase. Notably, reactive oxygen species (ROS) scavenging by N-acetylcysteine attenuated this abnormal cell proliferation. A mouse model of heart-specific defective mtThrRS editing was established. Increased ROS levels, blocked cardiomyocyte proliferation, contractile dysfunction, dilated cardiomyopathy, and cardiac fibrosis were observed. Our results elucidate that mitochondria critically require a high level of translational accuracy at Thr codons and highlight the cellular dysfunctions and imbalance in tissue homeostasis caused by mitochondrial mistranslation.


Assuntos
Aminoacil-tRNA Sintetases , Cardiomiopatias , Cardiopatias , Animais , Camundongos , Espécies Reativas de Oxigênio , Pontos de Checagem do Ciclo Celular , Estresse Oxidativo , Mamíferos
13.
Proc Natl Acad Sci U S A ; 120(8): e2219758120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36787361

RESUMO

Synthetic biology tools for regulating gene expression have many useful biotechnology and therapeutic applications. Most tools developed for this purpose control gene expression at the level of transcription, and relatively few methods are available for regulating gene expression at the translational level. Here, we design and engineer split orthogonal aminoacyl-tRNA synthetases (o-aaRS) as unique tools to control gene translation in bacteria and mammalian cells. Using chemically induced dimerization domains, we developed split o-aaRSs that mediate gene expression by conditionally suppressing stop codons in the presence of the small molecules rapamycin and abscisic acid. By activating o-aaRSs, these molecular switches induce stop codon suppression, and in their absence stop codon suppression is turned off. We demonstrate, in Escherichia coli and in human cells, that split o-aaRSs function as genetically encoded AND gates where stop codon suppression is controlled by two distinct molecular inputs. In addition, we show that split o-aaRSs can be used as versatile biosensors to detect therapeutically relevant protein-protein interactions, including those involved in cancer, and those that mediate severe acute respiratory syndrome-coronavirus-2 infection.


Assuntos
Aminoacil-tRNA Sintetases , Códon de Terminação , Humanos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Ligases/metabolismo , Biossíntese de Proteínas , RNA de Transferência/genética , Escherichia coli
14.
J Biol Chem ; 300(10): 107756, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39260699

RESUMO

Aminoacyl-tRNA synthetases are fundamental to the translation machinery with emerging roles in transcriptional regulation. Previous cellular studies have demonstrated tyrosyl-tRNA synthetase (YARS1 or TyrRS) as a stress response protein through its cytosol-nucleus translocation to maintain cellular homeostasis. Here, we established a mouse model with a disrupted TyrRS nuclear localization signal, revealing its systemic impact on metabolism. Nuclear TyrRS deficiency (YarsΔNLS) led to reduced lean mass, reflecting a mild developmental defect, and reduced fat mass, possibly due to increased energy expenditure. Consistently, YarsΔNLS mice exhibit improved insulin sensitivity and reduced insulin levels, yet maintain normoglycemia, indicative of enhanced insulin action. Notably, YarsΔNLS mice also develop progressive hearing loss. These findings underscore the crucial function of nuclear TyrRS in the maintenance of fat storage and hearing and suggest that aminoacyl-tRNA synthetases' regulatory roles can affect metabolic pathways and tissue-specific health. This work broadens our understanding of how protein synthesis interconnects metabolic regulation to ensure energy efficiency.

15.
J Biol Chem ; 300(3): 105718, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311173

RESUMO

Starvation of Schizosaccharomyces pombe for inorganic phosphate elicits adaptive transcriptome changes in which mRNAs driving ribosome biogenesis, tRNA biogenesis, and translation are globally downregulated, while those for autophagy and phosphate mobilization are upregulated. Here, we interrogated three components of the starvation response: upregulated autophagy; the role of transcription factor Pho7 (an activator of the PHO regulon); and upregulated expression of ecl3, one of three paralogous genes (ecl1, ecl2, and ecl3) collectively implicated in cell survival during other nutrient stresses. Ablation of autophagy factor Atg1 resulted in early demise of phosphate-starved fission yeast, as did ablation of Pho7. Transcriptome profiling of phosphate-starved pho7Δ cells highlighted Pho7 as an activator of genes involved in phosphate acquisition and mobilization, not limited to the original three-gene PHO regulon, and additional starvation-induced genes (including ecl3) not connected to phosphate dynamics. Pho7-dependent gene induction during phosphate starvation tracked with the presence of Pho7 DNA-binding elements in the gene promoter regions. Fewer ribosome protein genes were downregulated in phosphate-starved pho7Δ cells versus WT, which might contribute to their shortened lifespan. An ecl3Δ mutant elicited no gene expression changes in phosphate-replete cells and had no impact on survival during phosphate starvation. By contrast, pan-ecl deletion (ecl123Δ) curtailed lifespan during chronic phosphate starvation. Phosphate-starved ecl123Δ cells experienced a more widespread downregulation of mRNAs encoding aminoacyl tRNA synthetases vis-à-vis WT or pho7Δ cells. Collectively, these results enhance our understanding of fission yeast phosphate homeostasis and survival during nutrient deprivation.


Assuntos
Proteínas de Ligação a DNA , Longevidade , Fosfatos , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Fatores de Transcrição , Regulação Fúngica da Expressão Gênica , Longevidade/genética , Fosfatos/deficiência , RNA de Transferência/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcriptoma , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
J Biol Chem ; 300(8): 107488, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908752

RESUMO

Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.


Assuntos
Processamento Pós-Transcricional do RNA , RNA de Transferência , RNA de Transferência/metabolismo , RNA de Transferência/genética , Humanos , Biossíntese de Proteínas , Animais , Anticódon/metabolismo , Anticódon/genética
17.
Circulation ; 149(16): 1268-1284, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38362779

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a common heritable heart disease. Although HCM has been reported to be associated with many variants of genes involved in sarcomeric protein biomechanics, pathogenic genes have not been identified in patients with partial HCM. FARS2 (the mitochondrial phenylalanyl-tRNA synthetase), a type of mitochondrial aminoacyl-tRNA synthetase, plays a role in the mitochondrial translation machinery. Several variants of FARS2 have been suggested to cause neurological disorders; however, FARS2-associated diseases involving other organs have not been reported. We identified FARS2 as a potential novel pathogenic gene in cardiomyopathy and investigated its effects on mitochondrial homeostasis and the cardiomyopathy phenotype. METHODS: FARS2 variants in patients with HCM were identified using whole-exome sequencing, Sanger sequencing, molecular docking analyses, and cell model investigation. Fars2 conditional mutant (p.R415L) or knockout mice, fars2-knockdown zebrafish, and Fars2-knockdown neonatal rat ventricular myocytes were engineered to construct FARS2 deficiency models both in vivo and in vitro. The effects of FARS2 and its role in mitochondrial homeostasis were subsequently evaluated using RNA sequencing and mitochondrial functional analyses. Myocardial tissues from patients were used for further verification. RESULTS: We identified 7 unreported FARS2 variants in patients with HCM. Heart-specific Fars2-deficient mice presented cardiac hypertrophy, left ventricular dilation, progressive heart failure accompanied by myocardial and mitochondrial dysfunction, and a short life span. Heterozygous cardiac-specific Fars2R415L mice displayed a tendency to cardiac hypertrophy at age 4 weeks, accompanied by myocardial dysfunction. In addition, fars2-knockdown zebrafish presented pericardial edema and heart failure. FARS2 deficiency impaired mitochondrial homeostasis by directly blocking the aminoacylation of mt-tRNAPhe and inhibiting the synthesis of mitochondrial proteins, ultimately contributing to an imbalanced mitochondrial quality control system by accelerating mitochondrial hyperfragmentation and disrupting mitochondrion-related autophagy. Interfering with the mitochondrial quality control system using adeno-associated virus 9 or specific inhibitors mitigated the cardiac and mitochondrial dysfunction triggered by FARS2 deficiency by restoring mitochondrial homeostasis. CONCLUSIONS: Our findings unveil the previously unrecognized role of FARS2 in heart and mitochondrial homeostasis. This study may provide new insights into the molecular diagnosis and prevention of heritable cardiomyopathy as well as therapeutic options for FARS2-associated cardiomyopathy.


Assuntos
Cardiomiopatia Hipertrófica , Insuficiência Cardíaca , Doenças Mitocondriais , Fenilalanina-tRNA Ligase , Animais , Humanos , Recém-Nascido , Camundongos , Ratos , Cardiomiopatia Hipertrófica/patologia , Insuficiência Cardíaca/patologia , Homeostase , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/metabolismo , Simulação de Acoplamento Molecular , Fenilalanina-tRNA Ligase/genética , Fenilalanina-tRNA Ligase/metabolismo , Peixe-Zebra/genética , Mutação
18.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39099254

RESUMO

Aminoacyl-tRNA synthetases (aaRSs), also known as tRNA ligases, are essential enzymes in translation. Owing to their functional essentiality, these enzymes are conserved in all domains of life and used as informative markers to trace the evolutionary history of cellular organisms. Unlike cellular organisms, viruses generally lack aaRSs because of their obligate parasitic nature, but several large and giant DNA viruses in the phylum Nucleocytoviricota encode aaRSs in their genomes. The discovery of viral aaRSs led to the idea that the phylogenetic analysis of aaRSs can shed light on ancient viral evolution. However, conflicting results have been reported from previous phylogenetic studies: one posited that nucleocytoviruses recently acquired their aaRSs from their host eukaryotes, while another hypothesized that the viral aaRSs have ancient origins. Here, we investigated 4,168 nucleocytovirus genomes, including metagenome-assembled genomes (MAGs) derived from large-scale metagenomic studies. In total, we identified 780 viral aaRS sequences in 273 viral genomes. We generated and examined phylogenetic trees of these aaRSs with a large set of cellular sequences to trace evolutionary relationships between viral and cellular aaRSs. The analyses suggest that the origins of some viral aaRSs predate the last common eukaryotic ancestor. Inside viral aaRS clades, we identify intricate evolutionary trajectories of viral aaRSs with horizontal transfers, losses, and displacements. Overall, these results suggest that ancestral nucleocytoviruses already developed complex genomes with an expanded set of aaRSs in the proto-eukaryotic era.


Assuntos
Aminoacil-tRNA Sintetases , Evolução Molecular , Genoma Viral , Filogenia , Aminoacil-tRNA Sintetases/genética , Vírus de DNA/genética
19.
Mol Ther ; 32(6): 1956-1969, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38627967

RESUMO

Epithelial-to-mesenchymal transition (EMT) that endows cancer cells with increased invasive and migratory capacity enables cancer dissemination and metastasis. This process is tightly associated with metabolic reprogramming acquired for rewiring cell status and signaling pathways for survival in dietary insufficiency conditions. However, it remains largely unclear how transcription factor (TF)-mediated transcriptional programs are modulated during the EMT process. Here, we reveal that depletion of a key epithelial TF, ELF3 (E74-like factor-3), triggers a transforming growth factor ß (TGF-ß) signaling activation-like mesenchymal transcriptomic profile and metastatic features linked to the aminoacyl-tRNA biogenesis pathway. Moreover, the transcriptome alterations elicited by ELF3 depletion perfectly resemble an ATF4-dependent weak response to amino acid starvation. Intriguingly, we observe an exclusive enrichment of ELF3 and ATF4 in epithelial and TGF-ß-induced or ELF3-depletion-elicited mesenchymal enhancers, respectively, with rare co-binding on altered enhancers. We also find that the upregulation of aminoacyl-tRNA synthetases and some mesenchymal genes upon amino acid deprivation is diminished in ATF4-depleted cells. In sum, the loss of ELF3 binding on epithelial enhancers and the gain of ATF4 binding on the enhancers of mesenchymal factors and amino acid deprivation responsive genes facilitate the loss of epithelial cell features and the gain of TGF-ß-signaling-associated mesenchymal signatures, which further promote lung cancer cell metastasis.


Assuntos
Fator 4 Ativador da Transcrição , Aminoácidos , Proteínas de Ligação a DNA , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição , Fator de Crescimento Transformador beta , Transição Epitelial-Mesenquimal/genética , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Aminoácidos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Linhagem Celular Tumoral , Transdução de Sinais , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Transcriptoma , Animais
20.
Mol Ther ; 32(10): 3597-3617, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39066478

RESUMO

Cancer vaccines have been developed as a promising way to boost cancer immunity. However, their clinical potency is often limited due to the imprecise delivery of tumor antigens. To overcome this problem, we conjugated an endogenous Toll-like receptor (TLR)2/6 ligand, UNE-C1, to human papilloma virus type 16 (HPV-16)-derived peptide antigen, E7, and found that the UNE-C1-conjugated cancer vaccine (UCV) showed significantly enhanced antitumor activity in vivo compared with the noncovalent combination of UNE-C1 and E7. The combination of UCV with PD-1 blockades further augmented its therapeutic efficacy. Specifically, the conjugation of UNE-C1 to E7 enhanced its retention in inguinal draining lymph nodes, the specific delivery to dendritic cells and E7 antigen-specific T cell responses, and antitumor efficacy in vivo compared with the noncovalent combination of the two peptides. These findings suggest the potential of UNE-C1 derived from human cysteinyl-tRNA synthetase 1 as a unique vehicle for the specific delivery of cancer antigens to antigen-presenting cells via TLR2/6 for the improvement of cancer vaccines.


Assuntos
Células Apresentadoras de Antígenos , Vacinas Anticâncer , Proteínas E7 de Papillomavirus , Receptor 2 Toll-Like , Vacinas Anticâncer/imunologia , Animais , Camundongos , Receptor 2 Toll-Like/metabolismo , Humanos , Proteínas E7 de Papillomavirus/imunologia , Proteínas E7 de Papillomavirus/metabolismo , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Linhagem Celular Tumoral , Ligantes , Feminino , Camundongos Endogâmicos C57BL , Antígenos de Neoplasias/imunologia , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa