Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Nanotechnology ; 35(29)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599177

RESUMO

Recent advances in materials science, device designs and advanced fabrication technologies have enabled the rapid development of transient electronics, which represents a class of devices or systems that their functionalities and constitutions can be partially/completely degraded via chemical reaction or physical disintegration over a stable operation. Therefore, numerous potentials, including zero/reduced waste electronics, bioresorbable electronic implants, hardware security, and others, are expected. In particular, transient electronics with biocompatible and bioresorbable properties could completely eliminate the secondary retrieval surgical procedure after their in-body operation, thus offering significant potentials for biomedical applications. In terms of material strategies for the manufacturing of transient electronics, silicon nanomembranes (SiNMs) are of great interest because of their good physical/chemical properties, modest mechanical flexibility (depending on their dimensions), robust and outstanding device performances, and state-of-the-art manufacturing technologies. As a result, continuous efforts have been made to develop silicon-based transient electronics, mainly focusing on designing manufacturing strategies, fabricating various devices with different functionalities, investigating degradation or failure mechanisms, and exploring their applications. In this review, we will summarize the recent progresses of silicon-based transient electronics, with an emphasis on the manufacturing of SiNMs, devices, as well as their applications. After a brief introduction, strategies and basics for utilizing SiNMs for transient electronics will be discussed. Then, various silicon-based transient electronic devices with different functionalities are described. After that, several examples regarding on the applications, with an emphasis on the biomedical engineering, of silicon-based transient electronics are presented. Finally, summary and perspectives on transient electronics are exhibited.

2.
Nanotechnology ; 35(26)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38513286

RESUMO

In recent years quantum dot (QDs) based resistive switching devices(memristors) have gained a lot of attention. Here we report the resistive switching behavior of nitrogen-doped graphene quantum dots/Polyvinyl alcohol (N-GQDs/PVA) degradable nanocomposite thin film with different weight percentages (wt.%) of N-GQDs. The memristor device was fabricated by a simple spin coating technique. It was found that 1 wt% N-GQDs/PVA device shows a prominent resistive switching phenomenon with good cyclic stability, high on/off ratio of ~102and retention time of ∼104s. From a detailed experimental study of band structure, we conclude that memristive behavior originates from the space charge controlled conduction (SCLC) mechanism. Further transient property of built memristive device was studied. Within three minutes of being submerged in distilled water, the fabricated memory device was destroyed. This phenomenon facilitates the usage of fabricated memristor devices to develop memory devices for military and security purposes.

3.
Small ; 19(15): e2205598, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36651124

RESUMO

A pseudo-capacitor with transient behavior is applied in implantable, disposable, and bioresorbable devices, incorporating an Na ion-doped bioderived ionic liquid, molybdenum trioxide (MoO3 )-covered molybdenum foil, and silk sheet as the electrolyte, electrode, and separator, respectively. Sodium lactate is dissolved in choline lactate as a source of Na ions. The Experimental results reveal that the Na ions are intercalated into the van der Waals gaps in MoO3 , and the pseudo-capacitor shows an areal capacitance (1.5 mF cm-2 ) that is three times larger than that without the Na ion. The fast ion diffusion of the electrolyte and the low resistance of the MoO3 and Mo interface result in an equivalent series resistance of 96 Ω. A cycle test indicates that the pseudo-capacitor exhibited a high capacitance retention of 82.8% after 10 000 cycles. The transient behavior is confirmed by the dissolution of the pseudo-capacitor into phosphate-buffered saline solution after 101 days. Potential applications of transient pseudo-capacitors include electronics without the need for device retrieval after use, including smart agriculture, implantable, and wearable devices.

4.
Small ; 19(36): e2302385, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37119462

RESUMO

Choline lactate, an ionic liquid composed of bioderived materials, offers an opportunity to develop biodegradable electrochemical devices. Although ionic liquids possess large potential windows, high conductivity, and are nonvolatile, they do not exhibit electrochemical characteristics such as intercalation pseudocapacitance, redox pseudocapacitance, and electrochromism. Herein, bioderived ionic liquids are developed, including metal ions, Li, Na, and Ca, to yield ionic liquid with electrochemical behavior. Differential scanning calorimetry results reveal that the ionic liquids remained in liquid state from 230.42 to 373.15 K. The conductivities of the ionic liquids with metal are lower than those of the pristine ionic liquid, whereas the capacitance change negligibly. A protocol of the Organization for Economic Co-operation and Development 301C modified MITI test (I) confirms that the pristine ionic liquid and ionic liquids with metal are readily biodegradable. Additionally, an ionic gel comprising the ionic liquid and poly(vinyl alcohol) is biodegradable. An electrochromic device is developed using an ionic liquid containing Li ions. The device successfully changes color at -2.5 V, demonstrating the intercalation of Li ions into the WO3 crystal. The results suggest that the electrochemically active ionic liquids have potential for the development of environmentally benign devices, sustainable electronics, and bioresorbable/implantable devices.

5.
Nano Lett ; 22(8): 3447-3456, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35411774

RESUMO

Transient power sources with excellent biocompatibility and bioresorablility have attracted significant attention. Here, we report high-performance, transient glucose enzymatic biofuel cells (TEBFCs) based on the laser-induced graphene (LIG)/gold nanoparticles (Au NPs) composite electrodes. Such LIG electrodes can be easily fabricated from polyimide (PI) with an infrared CO2 laser and exhibit a low impedance (16 Ω). The resulted TEBFC yields a high open circuit potential (OCP) of 0.77 V and a maximum power density of 483.1 µW/cm2. The TEBFC not only exhibits a quick response time that enables reaching the maximum OCP within 1 min but also owns a long lifetime over 28 days in vitro. The excellent biocompatibility and transient performance from in vitro and in vivo tests allow long-term implantation of TEBFCs in rats for energy harvesting. The TEBFCs with advanced processing methods provide a promising power solution for transient electronics.


Assuntos
Fontes de Energia Bioelétrica , Grafite , Nanopartículas Metálicas , Animais , Eletrodos , Ouro , Lasers , Ratos
6.
Sensors (Basel) ; 22(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35161547

RESUMO

Thin-film silicon (Si)-based transient electronics represents an emerging technology that enables spontaneous dissolution, absorption and, finally, physical disappearance in a controlled manner under physiological conditions, and has attracted increasing attention in pertinent clinical applications such as biomedical implants for on-body sensing, disease diagnostics, and therapeutics. The degradation behavior of thin-film Si materials and devices is critically dependent on the device structure as well as the environment. In this work, we experimentally investigated the dissolution of planar Si thin films and micropatterned Si pillar arrays in a cell culture medium, and systematically analyzed the evolution of their topographical, physical, and chemical properties during the hydrolysis. We discovered that the cell culture medium significantly accelerates the degradation process, and Si pillar arrays present more prominent degradation effects by creating rougher surfaces, complicating surface states, and decreasing the electrochemical impedance. Additionally, the dissolution process leads to greatly reduced mechanical strength. Finally, in vitro cell culture studies demonstrate desirable biocompatibility of corroded Si pillars. The results provide a guideline for the use of thin-film Si materials and devices as transient implants in biomedicine.


Assuntos
Eletrônica , Silício , Técnicas de Cultura de Células , Indicadores e Reagentes
7.
Sensors (Basel) ; 22(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35459047

RESUMO

Close monitoring of vital physiological parameters is often key in following the evolution of certain medical conditions (e.g., diabetes, infections, post-operative status or post-traumatic injury). The allocation of trained medical staff and specialized equipment is, therefore, necessary and often translates into a clinical and economic burden on modern healthcare systems. As a growing field, transient electronics may establish fully bioresorbable medical devices capable of remote real-time monitoring of therapeutically relevant parameters. These devices could alert remote medical personnel in case of any anomaly and fully disintegrate in the body without a trace. Unfortunately, the need for a multitude of biodegradable electronic components (power supplies, wires, circuitry) in addition to the electrochemical biosensing interface has halted the arrival of fully bioresorbable electronically active medical devices. In recent years molybdenum (Mo) and tungsten (W) have drawn increasing attention as promising candidates for the fabrication of both energy-powered active (e.g., transistors and integrated circuits) and passive (e.g., resistors and capacitors) biodegradable electronic components. In this review, we discuss the latest Mo and W-based dissolvable devices for potential biomedical applications and how these soluble metals could pave the way towards next-generation fully transient implantable electronic systems.


Assuntos
Molibdênio , Tungstênio , Fontes de Energia Elétrica , Eletrônica , Humanos , Próteses e Implantes
8.
Chimia (Aarau) ; 76(4): 298-302, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069767

RESUMO

Transient electronics is an emerging class of innovative technology wherein electronic devices undergo controlled degradation processes after a period of stable operation, leaving no toxic products behind. This technology offers exciting opportunities in research areas of green electronics, temporary biomedical implants, data-secure hardware systems, and many others. However, one major challenge with these devices is their rigid and bulky batteries that contain toxic chemicals and are not at all degradable. So, to realize autonomous and self-sufficient transient electronics, the development of transient batteries is a pre-requisite. This review provides an overview of the advancements in the field of transient batteries, their materials, output performance, transience behaviour, and a few potential applications.

9.
Adv Funct Mater ; 31(29)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-36189172

RESUMO

Injured peripheral nerves typically exhibit unsatisfactory and incomplete functional outcomes, and there are no clinically approved therapies for improving regeneration. Post-operative electrical stimulation (ES) increases axon regrowth, but practical challenges from the cost of extended operating room time to the risks and pitfalls associated with transcutaneous wire placement have prevented broad clinical adoption. This study presents a possible solution in the form of advanced bioresorbable materials for thin, flexible, wireless implant that provides precisely controlled ES of the injured nerve for a brief time in the immediate post-operative period. Afterward, rapid, complete and safe modes of bioresorption naturally and quickly eliminate all of the constituent materials in their entirety, without the need for surgical extraction. The unusually high rate of bioresorption follows from the use of a unique, bilayer enclosure that combines two distinct formulations of a biocompatible form of polyanhydride as an encapsulating structure, to accelerate the resorption of active components and confine fragments until complete resorption. Results from mouse models of tibial nerve transection with re-anastomosis indicate that this system offers levels of performance and efficacy that match those of conventional wired stimulators, but without the need to extend the operative period or to extract the device hardware.

10.
Biomed Microdevices ; 21(1): 17, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30747407

RESUMO

Biodegradable batteries play an important role in fully degradable biomedical or environmental systems. The development of biodegradable batteries faces many challenges including power content, device compactness, performance stability, shelf and functional lifetime. In particular, a key driver in the lifetime and overall size of microfabricated biodegradable batteries is the liquid electrolyte volume. Harnessing liquid from the environment to serve as the battery electrolyte may, therefore, be desirable; however, for stable operation, maintaining a constant electrochemical environment inside the cell is required even in the presence of changing body or environmental conditions. We report a biodegradable battery featuring a solid electrolyte of sodium chloride and polycaprolactone. This approach harnesses the body fluid that diffuses into the cell as an element of the electrolyte; however, the large excess of sodium chloride suspended in the polycaprolactone holds intracell ionic conditions constant. A constant discharge profile can then be achieved even in the presence of varying external aqueous conditions, enabling compact, stable-performing cells. This design also features easy integration and automatic activation, providing a simplified strategy to fabricate batteries with long shelf life and desirable functional life span. In addition, the polymeric skeleton of the solid electrolyte system acts as an insulating layer between electrodes, preventing the metallic structure from short-circuit during discharge.


Assuntos
Fontes de Energia Elétrica , Eletrólitos/química , Poliésteres/química , Cloreto de Sódio/química , Eletrodos
11.
Small ; 14(32): e1801332, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29974639

RESUMO

New options in the material context of transient electronics are essential to create or expand potential applications and to progress in the face of technological challenges. A soft, transparent, and cost-effective polymer of levan polysaccharide that is capable of complete, programmable dissolution is described when immersed in water and implanted in an animal model. The results include chemical analysis, the kinetics of hydrolysis, and adjustable dissolution rates of levan, and a simple theoretical model of reactive diffusion governed by temperature. In vivo experiments of the levan represent nontoxicity and biocompatibility without any adverse reactions. On-demand, selective control of dissolution behaviors with an animal model demonstrates an effective triggering strategy to program the system's lifetime, providing the possibility of potential applications in envisioned areas such as bioresorbable electronic implants and drug release systems.


Assuntos
Eletrônica , Frutanos/química , Polissacarídeos/química , Animais , Magnésio/química , Metais/química , Óxidos/química , Ratos Sprague-Dawley , Semicondutores , Silício/química , Transistores Eletrônicos
12.
Small ; 14(47): e1802985, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30303618

RESUMO

Flexible transient photodetectors, a form of optoelectronic sensors that can be physically self-destroyed in a controllable manner, could be one of the important components for future transient electronic systems. In this work, a scalable, device-first, and bottom-up thinning process enables the fabrication of a flexible transient phototransistor on a wafer-compatible transferred silicon nanomembrane. A gate modulation significantly restrains the dark current to 10-12 A. With full exposure of the light-sensitive channel, such a device yields an ultrahigh photo-to-dark current ratio of 107 with a responsivity of 1.34 A W-1 (λ = 405 nm). The use of a high-temperature degradable polymer transient interlayer realizes on-demand self-destruction of the fabricated phototransistors, which offers a solution to the technical security issue of advanced flexible electronics. Such demonstration paves a new way for designing transient optoelectronic devices with a wafer-compatible process.

13.
Small ; 14(28): e1800994, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29806124

RESUMO

Biodegradable transient devices represent an emerging type of electronics that could play an essential role in medical therapeutic/diagnostic processes, such as wound healing and tissue regeneration. The associated biodegradable power sources, however, remain as a major challenge toward future clinical applications, as the demonstrated electrical stimulation and sensing functions are limited by wired external power or wireless energy harvesters via near-field coupling. Here, materials' strategies and fabrication schemes that enable a high-performance fully biodegradable magnesium-molybdenum trioxide battery as an alternative approach for an in vivo on-board power supply are reported. The battery can deliver a stable high output voltage as well as prolonged lifetime that could satisfy requirements of representative implantable electronics. The battery is fully biodegradable and demonstrates desirable biocompatibility. The battery system provides a promising solution to advanced energy harvesters for self-powered transient bioresorbable implants as well as eco-friendly electronics.


Assuntos
Fontes de Energia Elétrica , Próteses e Implantes , Animais , Linhagem Celular , Eletrodos , Camundongos , Imagem Óptica , Ratos Sprague-Dawley
14.
Macromol Rapid Commun ; 39(11): e1800046, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29709094

RESUMO

Thermally triggerable polymer films that degrade at modest temperatures (≈85 °C) are created from a blend of cyclic polyphthalaldehyde (cPPA) and a polymeric thermoacid generator, poly(vinyl tert-butyl carbonate sulfone) (PVtBCS). PVtBCS depolymerizes when heated, generating acid which initiates the depolymerization of cPPA into volatile byproducts. The mass loss onset for 2 wt% PVtBCS/cPPA is 22 °C lower than the onset for neat cPPA alone in dynamic thermogravimetric analysis experiments. Increased concentrations of PVtBCS increase the rate of depolymerization of cPPA. Raman spectroscopy reveals that the monomer, o-phthalaldehyde, is the main depolymerization product of the acid-catalyzed depolymerization of cPPA. The PVtBCS/cPPA blend is a promising material for the design and manufacture of transient electronic packaging and polymers.


Assuntos
Ácidos/química , Polímeros/química , o-Ftalaldeído/química , Catálise , Análise Espectral Raman , Temperatura , Termogravimetria , Água/química
15.
Small ; 12(20): 2715-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27028213

RESUMO

Physically transient resistive switching devices based on silk protein are successfully demonstrated. The devices can be absolutely dissolved in deionized water or in phosphate-buffered saline in 2 h. At the same time, a reasonable resistance OFF/ON ratio of larger than 10(2) and a retention time of more than 10(4) s are achieved for nonvolatile memory applications.


Assuntos
Eletrônica/métodos , Nanotecnologia/métodos , Seda/química , Fibroínas/química
16.
Nano Lett ; 15(7): 4664-71, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26083530

RESUMO

Transient battery is a new type of technology that allows the battery to disappear by an external trigger at any time. In this work, we successfully demonstrated the first transient rechargeable batteries based on dissoluble electrodes including V2O5 as the cathode and lithium metal as the anode as well as a biodegradable separator and battery encasement (PVP and sodium alginate, respectively). All the components are robust in a traditional lithium-ion battery (LIB) organic electrolyte and disappear in water completely within minutes due to triggered cascade reactions. With a simple cut-and-stack method, we designed a fully transient device with an area of 0.5 cm by 1 cm and total energy of 0.1 J. A shadow-mask technique was used to demonstrate the miniature device, which is compatible with transient electronics manufacturing. The materials, fabrication methods, and integration strategy discussed will be of interest for future developments in transient, self-powered electronics. The demonstration of a miniature Li battery shows the feasibility toward system integration for all transient electronics.

17.
ACS Appl Mater Interfaces ; 16(31): 41223-41229, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39076078

RESUMO

Making ingestible devices edible facilitates diagnosis and therapy inside the body without the risk of retention; however, food materials are generally soft, absorb water molecules, and are not suitable for electronic devices. Here, we fabricated an edible water diffusion barrier film made by gelatin-beeswax composites for the encapsulation of transient electronics. Hydrophobic beeswax and hydrophilic gelatin are inherently difficult to mix; therefore, we created an emulsion simply by raising the temperature high enough to melt the materials and vigorous stirring them. As they cool, the beeswax with a relatively high solidification temperature aggregates and forms microspheres, which increases the gelatin gel's viscoelasticity and immobilizes the emulsion structure in the film. The thermoresponsive gelatin imparts degradability to the barrier and its stickiness also enables transfer of metal patterned electronics. Furthermore, we designed an edible resonator on the film and demonstrated its operation in an abdominal phantom environment; the resonator was made to be degradable in a warm aqueous solution by optimizing the composition ratio of the gelatin and beeswax. Our findings provide insight into criteria for making transient electronics on hydrophilic substrates with hydrophobic water diffusion barriers. This proof-of-concept study expands the potential of operating edible electronics in aqueous environments in harmony with the human body and nature.


Assuntos
Gelatina , Água , Ceras , Gelatina/química , Ceras/química , Água/química , Difusão , Temperatura , Interações Hidrofóbicas e Hidrofílicas , Eletrônica , Humanos
18.
ACS Appl Mater Interfaces ; 16(12): 14759-14769, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497977

RESUMO

Primary batteries are the fundamental power sources in small electronic gadgets and bio/ecoresorbable batteries. They are fabricated from benign and biodegradable materials and are of interest in environmental sensing and implants because of their low toxicity toward the environment and human body during decomposition. However, current bio/ecoresorbable batteries suffer from low operating voltages and output powers because of the occurrence of undesired hydrogen evolution reactions (HERs) at cathodes. Herein, Mo2C MXene was used as a cathode to achieve high operating voltage and areal power. Mo2C provides energy barriers for HERs in alkaline solutions, and such barriers suppress HERs and allow the oxygen reduction reaction to dominate at the cathode. The fabricated battery exhibits an operating voltage and areal power of 1.4 V and 0.92 mW cm-2, respectively. Degradation tests show that the full cell completely degrades within 123 days, leaving only Mo fragments from the electrode and biodegradable encapsulation. This study provides insights into bio/ecoresorbable batteries with high power and operating voltage, which can be used for environmental sensing.

19.
Nanomicro Lett ; 16(1): 102, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300387

RESUMO

Substrates or encapsulants in soft and stretchable formats are key components for transient, bioresorbable electronic systems; however, elastomeric polymers with desired mechanical and biochemical properties are very limited compared to non-transient counterparts. Here, we introduce a bioresorbable elastomer, poly(glycolide-co-ε-caprolactone) (PGCL), that contains excellent material properties including high elongation-at-break (< 1300%), resilience and toughness, and tunable dissolution behaviors. Exploitation of PGCLs as polymer matrices, in combination with conducing polymers, yields stretchable, conductive composites for degradable interconnects, sensors, and actuators, which can reliably function under external strains. Integration of device components with wireless modules demonstrates elastic, transient electronic suture system with on-demand drug delivery for rapid recovery of post-surgical wounds in soft, time-dynamic tissues.

20.
Adv Mater ; 36(11): e2307391, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37770105

RESUMO

Current research in the area of surgical mesh implants is somewhat limited to traditional designs and synthesis of various mesh materials, whereas meshes with multiple functions may be an effective approach to address long-standing challenges including postoperative complications. Herein, a bioresorbable electronic surgical mesh is presented that offers high mechanical strength over extended timeframes, wireless post-operative pressure monitoring, and on-demand drug delivery for the restoration of tissue structure and function. The study of materials and mesh layouts provides a wide range of tunability of mechanical and biochemical properties. Dissolvable dielectric composite with porous structure in a pyramidal shape enhances sensitivity of a wireless capacitive pressure sensor, and resistive microheaters integrated with inductive coils provide thermo-responsive drug delivery system for an antibacterial agent. In vivo evaluations demonstrate reliable, long-lived operation, and effective treatment for abdominal hernia defects, by clear evidence of suppressed complications such as adhesion formation and infections.


Assuntos
Implantes Absorvíveis , Hérnia Abdominal , Humanos , Telas Cirúrgicas , Hérnia Abdominal/cirurgia , Sistemas de Liberação de Medicamentos , Eletrônica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa