Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Exp Bot ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023232

RESUMO

Domesticated strawberry is susceptible to sudden frost episodes, limiting the productivity of this cash crop in regions, where they are grown during early spring. In contrast, the ancestral woodland strawberry (Fragaria vesca) has successfully colonised many habitats of the Northern Hemisphere. Thus, this species seems to harbour genetic factors promoting cold tolerance. Screening a germplasm established in frame of the German Gene Bank for Crop Wild Relatives we identified, among 70 wild accessions, a pair contrasting with respect to cold tolerance. By following the physiological, biochemical, molecular, and metabolic responses of this contrasting pair, we identified the transcription factor Cold Box Factor 4 and the dehydrin Xero-2 as molecular markers associated with superior tolerance to cold stress. Overexpression of GFP fusions with Xero-2 in tobacco BY-2 cells conferred cold tolerance to these recipient cells. A detailed analysis of the metabolome for the two contrasting genotypes allows to define metabolic signatures correlated with cold tolerance versus cold stress. This work provides a proof-of-concept for the value of crop wild relatives as genetic resources to identify genetic factors suitable to increase the stress resilience of crop plants.

2.
Ann Bot ; 134(1): 117-130, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38482916

RESUMO

BACKGROUND AND AIMS: The timing of flowering onset is often correlated with latitude, indicative of climatic gradients. Flowering onset in temperate species commonly requires exposure to cold temperatures, known as vernalization. Hence, population differentiation of flowering onset with latitude might reflect adaptation to the local climatic conditions experienced by populations. METHODS: Within its western range, seeds from Linum bienne populations (the wild relative of cultivated Linum usitatissimum) were used to describe the latitudinal differentiation of flowering onset to determine its association with the local climate of the population. A vernalization experiment including different crop cultivars was used to determine how vernalization accelerates flowering onset, in addition to the vernalization sensitivity response among populations and cultivars. Additionally, genetic differentiation of L. bienne populations along the latitudinal range was scrutinized using microsatellite markers. KEY RESULTS: Flowering onset varied with latitude of origin, with southern populations flowering earlier than their northern counterparts. Vernalization reduced the number of days to flowering onset, but vernalization sensitivity was greater in northern populations compared with southern ones. Conversely, vernalization delayed flowering onset in the crop, exhibiting less variation in sensitivity. In L. bienne, both flowering onset and vernalization sensitivity were better predicted by the local climate of the population than by latitude itself. Microsatellite data unveiled genetic differentiation of populations, forming two groups geographically partitioned along latitude. CONCLUSIONS: The consistent finding of latitudinal variation across experiments suggests that both flowering onset and vernalization sensitivity in L. bienne populations are under genetic regulation and might depend on climatic cues at the place of origin. The association with climatic gradients along latitude suggests that the climate experienced locally drives population differentiation of the flowering onset and vernalization sensitivity patterns. The genetic population structure suggests that past population history could have influenced the flowering initiation patterns detected, which deserves further work.


Assuntos
Clima , Flores , Flores/fisiologia , Flores/crescimento & desenvolvimento , Flores/genética , Temperatura Baixa , Repetições de Microssatélites/genética , Variação Genética , Geografia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Vernalização
3.
J Plant Res ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977618

RESUMO

The genetic diversity found in natural populations is the result of the evolutionary forces in response to historical and contemporary factors. The environmental characteristics and geological history of Mexico promoted the evolution and diversification of plant species, including wild relatives of crops such as the wild pumpkins (Cucurbita). Wild pumpkin species are found in a variety of habitats, evidencing their capability to adapt to different environments. Despite the potential value of wild Cucurbita as a genetic reservoir for crops, there is a lack of studies on their genetic diversity. Cucurbita radicans is an endangered species threatened by habitat destruction leading to low densities in small and isolated populations. Here, we analyze Genotype by Sequencing genomic data of the wild pumpkin C. radicans to evaluate the influence of factors like isolation, demographic history, and the environment shaping the amount and distribution of its genetic variation. We analyzed 91 individuals from 14 localities along its reported distribution. We obtained 5,107 SNPs and found medium-high levels of genetic diversity and genetic structure distributed in four main geographic areas with different environmental conditions. Moreover, we found signals of demographic growth related to historical climatic shifts. Outlier loci analysis showed significant association with the environment, principally with precipitation variables. Also, the outlier loci displayed differential changes in their frequencies in response to future global climate change scenarios. Using the results of genetic structure, outlier loci and multivariate analyses of the environmental conditions, we propose priority localities for conservation that encompass most of the genetic diversity of C. radicans.

4.
Plant J ; 110(2): 419-439, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35061306

RESUMO

Domestication is considered a model of adaptation that can be used to draw conclusions about the modus operandi of selection in natural systems. Investigating domestication may give insights into how plants react to different intensities of human manipulation, which has direct implication for the continuing efforts of crop improvement. Therefore, scientists of various disciplines study domestication-related questions to understand the biological and cultural bases of the domestication process. We employed restriction site-associated DNA sequencing (RAD-seq) of 494 Pisum sativum (pea) samples from all wild and domesticated groups to analyze the genetic structure of the collection. Patterns of ancient admixture were investigated by analysis of admixture graphs. We used two complementary approaches, one diversity based and one based on differentiation, to detect the selection signatures putatively associated with domestication. An analysis of the subpopulation structure of wild P. sativum revealed five distinct groups with a notable geographic pattern. Pisum abyssinicum clustered unequivocally within the P. sativum complex, without any indication of hybrid origin. We detected 32 genomic regions putatively subjected to selection: 29 in P. sativum ssp. sativum and three in P. abyssinicum. The two domesticated groups did not share regions under selection and did not display similar haplotype patterns within those regions. Wild P. sativum is structured into well-diverged subgroups. Although Pisum sativum ssp. humile is not supported as a taxonomic entity, the so-called 'southern humile' is a genuine wild group. Introgression did not shape the variation observed within the sampled germplasm. The two domesticated pea groups display distinct genetic bases of domestication, suggesting two genetically independent domestication events.


Assuntos
Domesticação , Pisum sativum , Variação Genética , Genômica , Haplótipos , Pisum sativum/genética , Filogenia , Seleção Genética
5.
Planta ; 257(6): 106, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127808

RESUMO

MAIN CONCLUSION: Cucurbita argyrosperma domestication affected plant defence by downregulating the cucurbitacin synthesis-associated genes. However, tissue-specific suppression of defences made the cultivars less attractive to co-evolved herbivores Diabrotica balteata and Acalymma spp. Plant domestication reduces the levels of defensive compounds, increasing susceptibility to insects. In squash, the reduction of cucurbitacins has independently occurred several times during domestication. The mechanisms underlying these changes and their consequences for insect herbivores remain unknown. We investigated how Cucurbita argyrosperma domestication has affected plant chemical defence and the interactions with two herbivores, the generalist Diabrotica balteata and the specialist Acalymma spp. Cucurbitacin levels and associated genes in roots and cotyledons in three wild and four domesticated varieties were analysed. Domesticated varieties contained virtually no cucurbitacins in roots and very low amounts in cotyledons. Contrastingly, cucurbitacin synthesis-associated genes were highly expressed in the roots of wild populations. Larvae of both insects strongly preferred to feed on the roots of wild squash, negatively affecting the generalist's performance but not that of the specialist. Our findings illustrate that domestication results in tissue-specific suppression of chemical defence, making cultivars less attractive to co-evolved herbivores. In the case of squash, this may be driven by the unique role of cucurbitacins in stimulating feeding in chrysomelid beetles.


Assuntos
Cucurbita , Herbivoria , Animais , Domesticação , Insetos/fisiologia , Plantas , Cucurbitacinas
6.
Plant Biotechnol J ; 21(3): 482-496, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35598169

RESUMO

Wheat is a globally vital crop, but its limited genetic variation creates a challenge for breeders aiming to maintain or accelerate agricultural improvements over time. Introducing novel genes and alleles from wheat's wild relatives into the wheat breeding pool via introgression lines is an important component of overcoming this low variation but is constrained by poor genomic resolution and limited understanding of the genomic impact of introgression breeding programmes. By sequencing 17 hexaploid wheat/Ambylopyrum muticum introgression lines and the parent lines, we have precisely pinpointed the borders of introgressed segments, most of which occur within genes. We report a genome assembly and annotation of Am. muticum that has facilitated the identification of Am. muticum resistance genes commonly introgressed in lines resistant to stripe rust. Our analysis has identified an abundance of structural disruption and homoeologous pairing across the introgression lines, likely caused by the suppressed Ph1 locus. mRNAseq analysis of six of these introgression lines revealed that novel introgressed genes are rarely expressed and those that directly replace a wheat orthologue have a tendency towards downregulation, with no discernible compensation in the expression of homoeologous copies. This study explores the genomic impact of introgression breeding and provides a schematic that can be followed to characterize introgression lines and identify segments and candidate genes underlying the phenotype. This will facilitate more effective utilization of introgression pre-breeding material in wheat breeding programmes.


Assuntos
Poaceae , Transcriptoma , Triticum , Alelos , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética , Poaceae/genética
7.
Appl Microbiol Biotechnol ; 107(18): 5613-5625, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37480373

RESUMO

Shampoo ginger (Zingiber zerumbet) is a multipurpose ginger that has confirmed their role as food, medicine, and for decorative purposes. The rhizome possesses zerumbone, curcuminoids, and other bioactive molecules that play crucial roles in treating several human diseases. To date, several reports are existing on the in vitro biotechnology of Z. zerumbet. The present review highlights the consolidated clarification and comprehensive explanation of in vitro biotechnological implications based on plant tissue culture for the improvement of Z. zerumbet. Studies on biotechnological involvement in shampoo ginger were primarily emphasized in the study of the last 3 decades, for instance, in vitro regeneration, micro-rhizome production, callus culture, somatic embryogenesis, ex vitro establishment, and molecular assessment of in vitro-raised clones. Moreover, this review provides insights into different in vitro culture systems and endophytes involvement in the production of secondary metabolites. This review will assist for advanced research areas related to in vitro manipulation of shampoo ginger, especially for the commercial cultivation of secondary metabolites rich clones of Z. zerumbet. Moreover, it will provide an insight into crop upgrading and breeding programs of this underutilized, aromatic, and medicinal plant for amended yield and quality. KEY POINTS: • Z. zerumbet is an aromatic spice and an ornamental • This review comprehensively assesses Z. zerumbet tissue culture • Key shortcomings and future directions of Z. zerumbet biotechnology.


Assuntos
Zingiber officinale , Humanos , Biotecnologia , Diarileptanoides , Endófitos , Alimentos
8.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675270

RESUMO

Pod borer Helicoverpa armigera, a polyphagus herbivorous pest, tremendously incurs crop damage in economically important crops. This necessitates the identification and utility of novel genes for the control of the herbivore. The present study deals with the characterization of a flavonoid 3'5' hydroxylase_2 (F3'5'H_2) from a pigeonpea wild relative Cajanus platycarpus, possessing a robust chemical resistance response to H. armigera. Though F3'5'H_2 displayed a dynamic expression pattern in both C. platycarpus (Cp) and the cultivated pigeonpea, Cajanus cajan (Cc) during continued herbivory, CpF3'5'H_2 showed a 4.6-fold increase vis a vis 3-fold in CcF3'5'H_2. Despite similar gene copy numbers in the two Cajanus spp., interesting genic and promoter sequence changes highlighted the stress responsiveness of CpF3'5'H_2. The relevance of CpF3'5'H_2 in H. armigera resistance was further validated in CpF3'5'H_2-overexpressed transgenic tobacco based on reduced leaf damage and increased larval mortality through an in vitro bioassay. As exciting maiden clues, CpF3'5'H_2 deterred herbivory in transgenic tobacco by increasing total flavonoids, polyphenols and reactive oxygen species (ROS) scavenging capacity. To the best of our knowledge, this is a maiden attempt ascertaining the role of F3'5'H_2 gene in the management of H. armigera. These interesting leads suggest the potential of this pivotal branch-point gene in biotic stress management programs.


Assuntos
Cajanus , Mariposas , Animais , Cajanus/metabolismo , Nicotiana/genética , Polifenóis/farmacologia , Polifenóis/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Oxigenases de Função Mista/metabolismo , Mariposas/genética , Animais Geneticamente Modificados
9.
Am J Bot ; 109(7): 1120-1138, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35709340

RESUMO

PREMISE: Although vanilla is one of the best-known spices, there is only a limited understanding of its biology and genetics within Mexico, where its cultivation originated and where phenotypic variability is high. This study aims to augment our understanding of vanilla's genetic resources by assessing species delimitation and genetic, geographic, and climatic variability within Mexican cultivated vanilla. METHODS: Using nuclear and plastid DNA sequence data from 58 Mexican samples collected from three regions and 133 ex situ accessions, we assessed species monophyly using phylogenetic analyses and genetic distances. Intraspecific genetic variation was summarized through the identification of haplotypes. Within the primarily cultivated species, Vanilla planifolia, haplotype relationships were further verified using plastome and rRNA gene sequences. Climatic niche and haplotype composition were assessed across the landscape. RESULTS: Three species (Vanilla planifolia, V. pompona, and V. insignis) and 13 haplotypes were identified among Mexican vanilla. Within V. planifolia haplotypes, hard phylogenetic incongruences between plastid and nuclear sequences suggest past hybridization events. Eight haplotypes consisted exclusively of Mexican samples. The dominant V. planifolia haplotype occurred throughout all three regions as well as outside of its country of origin. Haplotype richness was found to be highest in regions around Papantla and Chinantla. CONCLUSIONS: Long histories of regional cultivation support the consideration of endemic haplotypes as landraces shaped by adaptation to local conditions and/or hybridization. Results may aid further genomic investigations of vanilla's genetic resources and ultimately support the preservation of genetic diversity within the economically important crop.


Assuntos
Vanilla , Variação Genética , Genômica , Haplótipos/genética , México , Filogenia , Vanilla/genética
10.
Proc Natl Acad Sci U S A ; 116(5): 1651-1658, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30642962

RESUMO

Date palm (Phoenix dactylifera L.) is a major fruit crop of arid regions that were domesticated ∼7,000 y ago in the Near or Middle East. This species is cultivated widely in the Middle East and North Africa, and previous population genetic studies have shown genetic differentiation between these regions. We investigated the evolutionary history of P. dactylifera and its wild relatives by resequencing the genomes of date palm varieties and five of its closest relatives. Our results indicate that the North African population has mixed ancestry with components from Middle Eastern P. dactylifera and Phoenix theophrasti, a wild relative endemic to the Eastern Mediterranean. Introgressive hybridization is supported by tests of admixture, reduced subdivision between North African date palm and P. theophrasti, sharing of haplotypes in introgressed regions, and a population model that incorporates gene flow between these populations. Analysis of ancestry proportions indicates that as much as 18% of the genome of North African varieties can be traced to P. theophrasti and a large percentage of loci in this population are segregating for single-nucleotide polymorphisms (SNPs) that are fixed in P. theophrasti and absent from date palm in the Middle East. We present a survey of Phoenix remains in the archaeobotanical record which supports a late arrival of date palm to North Africa. Our results suggest that hybridization with P. theophrasti was of central importance in the diversification history of the cultivated date palm.


Assuntos
Hibridização Genética/genética , Phoeniceae/genética , África do Norte , DNA de Plantas/genética , Domesticação , Variação Genética/genética , Genoma de Planta/genética , Hibridização de Ácido Nucleico/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos
11.
Plant J ; 104(5): 1195-1214, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32920943

RESUMO

Ancestral adaptations in crop wild relatives can provide a genetic reservoir for crop improvement. Here we document physiological changes to mild and severe drought stress, and the associated transcriptome dynamics in both wild and cultivated chickpea. Over 60% of transcriptional changes were related to metabolism, indicating that metabolic plasticity is a core and conserved drought response. In addition, changes in RNA processing and protein turnover were predominant in the data, suggestive of broad restructuring of the chickpea proteome in response to drought. While 12% of the drought-responsive transcripts have similar dynamics in cultivated and wild accessions, numerous transcripts had expression patterns unique to particular genotypes, or that distinguished wild from cultivated genotypes and whose divergence may be a consequence of domestication. These and other comparisons provide a transcriptional correlate of previously described species' genetic diversity, with wild accessions well differentiated from each other and from cultivars, and cultivars essentially indistinguishable at the broad transcriptome level. We identified metabolic pathways such as phenylpropanoid metabolism, and biological processes such as stomatal development, which are differentially regulated across genotypes with potential consequences on drought tolerance. These data indicate that wild Cicer reticulatum may provide both conserved and divergent mechanisms as a resource in breeding for drought tolerance in cultivated chickpea.


Assuntos
Cicer/genética , Desidratação/genética , Regulação da Expressão Gênica de Plantas , Adaptação Fisiológica/genética , Cicer/fisiologia , Produtos Agrícolas/genética , Secas , Perfilação da Expressão Gênica , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
New Phytol ; 229(1): 94-105, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31990995

RESUMO

Plants typically respond to waterlogging by producing new adventitious roots with aerenchyma and many wetland plants form a root barrier to radial O2 loss (ROL), but it was not known if this was also the case for lateral roots. We tested the hypothesis that lateral roots arising from adventitious roots can form a ROL barrier, using root-sleeving electrodes and O2 microsensors to assess ROL of Zea nicaraguensis, the maize (Zea mays ssp. mays) introgression line with a locus for ROL barrier formation (introgression line (IL) #468) from Z. nicaraguensis and a maize inbred line (Mi29). Lateral roots of Z. nicaraguensis and IL #468 both formed a ROL barrier under stagnant, deoxygenated conditions, whereas Mi29 did not. Lateral roots of Z. nicaraguensis had higher tissue O2 status than for IL #468 and Mi29. The ROL barrier was visible as suberin in the root hypodermis/exodermis. Modelling showed that laterals roots can grow to a maximum length of 74 mm with a ROL barrier, but only to 33 mm without a barrier. Presence of a ROL barrier in lateral roots requires reconsideration of the role of these roots as sites of O2 loss, which for some species now appears to be less than hitherto thought.


Assuntos
Oxigênio , Zea mays , Cromossomos , Raízes de Plantas/genética , Zea mays/genética
13.
Mol Biol Rep ; 48(9): 6323-6333, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34383245

RESUMO

BACKGROUND: Scarlet eggplant (Solanum aethiopicum gr. gilo) is a part of African indigenous vegetables and acknowledged as a source of variations in the breeding of Brinjal. Since its genetic diversity is still largely unexplored, therefore genetic diversity and population structure of this plant were investigated in this study. METHODS AND RESULTS: Scarlet eggplant germplasm made of fifty-two accessions originated from two districts of Rwanda was assessed by employing the iPBS-retrotransposon markers system. Twelve most polymorphic primers were employed for molecular characterization and they yielded 329 total bands whereupon 85.03% were polymorphic. The recorded mean polymorphism information content was 0.363 and other diversity indices such as; mean the effective number of alleles, mean Shannon's information index and gene diversity with the following values; 1.298, 0.300 and 0.187 respectively. A superior level of diversity was noticed among accessions from Musanze district. The model-based structure, neighbor-joining, and principal coordinate analysis (PCoA) gathered scarlet germplasm in a divergence manner to their collection district. Analysis of molecular variance (AMOVA) displayed that the utmost variations (81%) in scarlet eggplant germplasm are resulting in differences within populations. CONCLUSIONS: The extensive diversity of scarlet eggplant in Rwanda might be used to form the base and genetic resource of an exhaustive breeding program of this economically important African indigenous vegetable. For instance, accessions MZE53 and GKE11 might be proposed as parent candidates due to their high relative genetic distance (0.6781).


Assuntos
Primers do DNA/genética , Polimorfismo Genético , Retroelementos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sementes/genética , Solanum melongena/genética , Solanum/genética , Alelos , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Melhoramento Vegetal , Ruanda , Sequências Repetidas Terminais/genética
14.
Proteomics ; 20(19-20): e1900420, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32672417

RESUMO

Lettuce (Lactuca sativa), cultivated mainly for its edible leaves and stems, is an important vegetable crop worldwide. Genomes of cultivated lettuce (L. sativa cv. Salinas) and its wild relative L. serriola accession US96UC23 are sequenced, but a clear understanding of the genetic basis for divergence in phenotypes of the two species is lacking. Tandem mass tag (TMT) based mass spectrometry is used to quantitatively compare protein levels between these two species. Four-day old seedlings is transplanted into 500 mL pots filled with soil. Plants are grown for 8 weeks under 250 µmol m-2 sec-1 continuous light, 20 °C and relative humidity between 50-70%. Leaf discs (1 cm diameter) from three individuals per biological replicate are analyzed. A total of 3000 proteins are identified, of which the levels of 650 are significantly different between 'Salinas' and US96UC23. Pathway analysis indicated a higher flux of carbon in 'Salinas' than US96UC23. Many essential metabolic pathways such as tetrapyrrole metabolism and fatty acid biosynthesis are upregulated in 'Salinas' compared with US96UC23. This study provides a reference proteome for researchers interested in understanding lettuce biology and improving traits for cultivation.


Assuntos
Lactuca , Proteômica , Humanos , Lactuca/fisiologia , Redes e Vias Metabólicas , Fenótipo , Folhas de Planta
15.
Funct Integr Genomics ; 20(4): 551-562, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32064548

RESUMO

Tropical race 4 of Fusarium oxysporum f. sp. cubense (FocTR4) is seriously threatening the banana industry worldwide. Resistant genotypes are present in wild relatives of banana, but little is known about the genetic and molecular mechanisms driving resistance responses. In this work, through in-depth expression analysis, we compared the responses of the resistant wild relative Musa acuminata ssp. burmanicoides (WTB) with the susceptible banana cultivar "Brizilian" (CAV, as it belongs to the Cavendish subgroup) to FocTR4 infection. Our findings showed that 1196 defense-related genes in the resistant WTB were differentially expressed genes (DEGs); only 358 defense-related DEGs were detected in CAV. DEGs related to pattern recognition receptors (PRRs) and disease resistance (R genes) were found in both genotypes, indicating the onset of both basal and specific defenses to FocTR4. Genes associated with cell wall modification exhibited a more remarkable upregulation in WTB than in CAV and might be involved in resistance during penetration steps. Our data also suggested that the high resistance of WTB is quantitatively driven with larger numbers and higher expression levels of defense-related DEGs. Fine-tuning studies to understand the resistance responses of WTB at early stages should be conducted to better support banana breeding programs. Further investigations are also required to validate the role of key genes screened in this study.


Assuntos
Resistência à Doença , Fusarium/patogenicidade , Musa/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , Musa/microbiologia , RNA-Seq , Regulação para Cima
16.
Plant Dis ; 104(5): 1487-1491, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32155112

RESUMO

Blast (Magnaporthe grisea) and rust (Puccinia substriata var. indica) are the two important foliar diseases of pearl millet (Pennisetum glaucum (L.) R. Br.) that can be best managed through host plant resistance. For identification of diverse sources of blast and rust resistance, 305 accessions of Pennisetum violaceum, a wild relative of pearl millet, were screened under greenhouse conditions against five pathotype-isolates of M. grisea and a local isolate of P. substriata var. indica collected from ICRISAT farm, Patancheru, India. Based on the mean blast score (1 to 9 scale), 17 accessions (IP 21525, 21531, 21536, 21540, 21594, 21610, 21640, 21706, 21711, 21716, 21719, 21720, 21721, 21724, 21987, 21988, and 22160) were found resistant (score ≤3.0) to all five pathotypes, and 24 accessions were resistant to four pathotypes of M. grisea. As there was variability for rust resistance within some accessions, individual rust-resistant (<5% severity) plants from 17 accessions were selected, grown in pots and advanced to next generation by selfing, and rescreened for three to four generations following pedigree selection to develop rust-resistant genetic stocks. Single plant selections from nine accessions (IP 21629, 21645, 21658, 21660, 21662, 21711, 21974, 21975, and 22038) were found highly resistant to rust (0% rust severity) after four generations of pedigree selection and subsequent screening. Some of the blast-resistant accessions and rust-resistant genetic stocks are being utilized in a prebreeding program at ICRISAT for introgressing resistance genes from the wild into the parental lines of cultivated and potential pearl millet hybrids and varieties.


Assuntos
Basidiomycota , Magnaporthe , Pennisetum , Índia
18.
BMC Genomics ; 20(1): 1025, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881839

RESUMO

BACKGROUND: Agropyron cristatum (L.) Gaertn. (2n = 4x = 28; genomes PPPP) is a wild relative of common wheat (Triticum aestivum L.) and provides many desirable genetic resources for wheat improvement. However, there is still a lack of reference genome and transcriptome information for A. cristatum, which severely impedes functional and molecular breeding studies. RESULTS: Single-molecule long-read sequencing technology from Pacific Biosciences (PacBio) was used to sequence full-length cDNA from a mixture of leaves, roots, stems and caryopses and constructed the first full-length transcriptome dataset of A. cristatum, which comprised 44,372 transcripts. As expected, the PacBio transcripts were generally longer and more complete than the transcripts assembled via the Illumina sequencing platform in previous studies. By analyzing RNA-Seq data, we identified tissue-enriched transcripts and assessed their GO term enrichment; the results indicated that tissue-enriched transcripts were enriched for particular molecular functions that varied by tissue. We identified 3398 novel and 1352 A. cristatum-specific transcripts compared with the wheat gene model set. To better apply this A. cristatum transcriptome, the A. cristatum transcripts were integrated with the wheat genome as a reference sequence to try to identify candidate A. cristatum transcripts associated with thousand-grain weight in a wheat-A. cristatum translocation line, Pubing 3035. CONCLUSIONS: Full-length transcriptome sequences were used in our study. The present study not only provides comprehensive transcriptomic insights and information for A. cristatum but also proposes a new method for exploring the functional genes of wheat relatives under a wheat genetic background. The sequence data have been deposited in the NCBI under BioProject accession number PRJNA534411.


Assuntos
Agropyron/genética , Grão Comestível/genética , Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Característica Quantitativa Herdável , Transcriptoma , Mapeamento Cromossômico , Cromossomos de Plantas , Biologia Computacional/métodos , Bases de Dados Genéticas , Anotação de Sequência Molecular
19.
Ann Bot ; 124(6): 917-932, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30596881

RESUMO

BACKGROUND: Wild crop relatives have been potentially subjected to stresses on an evolutionary time scale prior to domestication. Among these stresses, drought is one of the main factors limiting crop productivity and its impact is likely to increase under current scenarios of global climate change. We sought to determine to what extent wild common bean (Phaseolus vulgaris) exhibited adaptation to drought stress, whether this potential adaptation is dependent on the climatic conditions of the location of origin of individual populations, and to what extent domesticated common bean reflects potential drought adaptation. METHODS: An extensive and diverse set of wild beans from across Mesoamerica, along with a set of reference Mesoamerican domesticated cultivars, were evaluated for root and shoot traits related to drought adaptation. A water deficit experiment was conducted by growing each genotype in a long transparent tube in greenhouse conditions so that root growth, in addition to shoot growth, could be monitored. RESULTS: Phenotypic and landscape genomic analyses, based on single-nucleotide polymorphisms, suggested that beans originating from central and north-west Mexico and Oaxaca, in the driest parts of their distribution, produced more biomass and were deeper-rooted. Nevertheless, deeper rooting was correlated with less root biomass production relative to total biomass. Compared with wild types, domesticated types showed a stronger reduction and delay in growth and development in response to drought stress. Specific genomic regions were associated with root depth, biomass productivity and drought response, some of which showed signals of selection and were previously related to productivity and drought tolerance. CONCLUSIONS: The drought tolerance of wild beans consists in its stronger ability, compared with domesticated types, to continue growth in spite of water-limited conditions. This study is the first to relate bean response to drought to environment of origin for a diverse selection of wild beans. It provides information that needs to be corroborated in crosses between wild and domesticated beans to make it applicable to breeding programmes.


Assuntos
Phaseolus , Aclimatação , Adaptação Fisiológica , Secas , México
20.
Breed Sci ; 69(3): 439-446, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31598076

RESUMO

The green rice leafhopper (GRH), Nephotettix cincticeps Uhler, is a major insect pest of cultivated rice, Oryza sativa L., throughout the temperate regions of East Asia. GRH resistance had been reported in the wild species Oryza nivara but genetic basis of GRH resistance in wild rice accession has not been clarified. Here, we found a major QTL, qGRH4.2, on chromosome 4 conferred GRH resistance with 14.1 of the logarithm of odds (LOD) score explaining 67.6% of phenotypic variance in the BC1F1 population derived from a cross between the susceptible japonica cultivar 'Taichung 65' (T65) and O. nivara accession IRGC105715. qGRH4.2 has been identified as GRH6 between the markers RM5414 and C60248 in a BC3F2 population derived from two BC3F1 plants resistant to GRH. In a high-resolution mapping, the GRH6 region was delimited between the markers G6-c60k and 7L16f, and corresponded to an 31.2-kbp region of the 'Nipponbare' genome. Understanding the genetic basis of GRH resistance will facilitate the use of GRH resistance genes in marker-assisted breeding in rice.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa