Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.898
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 38: 567-595, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32017655

RESUMO

Caspases are a family of conserved cysteine proteases that play key roles in programmed cell death and inflammation. In multicellular organisms, caspases are activated via macromolecular signaling complexes that bring inactive procaspases together and promote their proximity-induced autoactivation and proteolytic processing. Activation of caspases ultimately results in programmed execution of cell death, and the nature of this cell death is determined by the specific caspases involved. Pioneering new research has unraveled distinct roles and cross talk of caspases in the regulation of programmed cell death, inflammation, and innate immune responses. In-depth understanding of these mechanisms is essential to foster the development of precise therapeutic targets to treat autoinflammatory disorders, infectious diseases, and cancer. This review focuses on mechanisms governing caspase activation and programmed cell death with special emphasis on the recent progress in caspase cross talk and caspase-driven gasdermin D-induced pyroptosis.


Assuntos
Caspases/metabolismo , Morte Celular , Inflamação/etiologia , Inflamação/metabolismo , Proteínas de Neoplasias/genética , Piroptose/genética , Animais , Apoptose , Biomarcadores , Caspases/genética , Morte Celular/genética , Suscetibilidade a Doenças , Ativação Enzimática , Humanos , Inflamação/patologia , Proteínas de Neoplasias/metabolismo , Transdução de Sinais
2.
Cell ; 175(6): 1651-1664.e14, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30392956

RESUMO

The activator and composition of the NLRP6 inflammasome remain poorly understood. We find that lipoteichoic acid (LTA), a molecule produced by Gram-positive bacteria, binds and activates NLRP6. In response to cytosolic LTA or infection with Listeria monocytogenes, NLRP6 recruited caspase-11 and caspase-1 via the adaptor ASC. NLRP6 activation by LTA induced processing of caspase-11, which promoted caspase-1 activation and interleukin-1ß (IL-1ß)/IL-18 maturation in macrophages. Nlrp6-/- and Casp11-/- mice were less susceptible to L. monocytogenes infection, which was associated with reduced pathogen loads and impaired IL-18 production. Administration of IL-18 to Nlrp6-/- or Casp11-/- mice restored the susceptibility of mutant mice to L. monocytogenes infection. These results reveal a previously unrecognized innate immunity pathway triggered by cytosolic LTA that is sensed by NLRP6 and exacerbates systemic Gram-positive pathogen infection via the production of IL-18.


Assuntos
Imunidade Inata , Inflamassomos/imunologia , Lipopolissacarídeos/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Receptores de Superfície Celular/imunologia , Ácidos Teicoicos/imunologia , Animais , Caspase 1/genética , Caspase 1/imunologia , Caspases/genética , Caspases/imunologia , Caspases Iniciadoras , Inflamassomos/genética , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Listeriose/genética , Listeriose/patologia , Camundongos , Camundongos Knockout , Receptores de Superfície Celular/genética
3.
Mol Cell ; 84(1): 170-179, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181758

RESUMO

Apoptosis, the first regulated form of cell death discovered in mammalian cells, is executed by caspase-3/7, which are dormant in living cells but become activated by upstream caspase-8 or caspase-9 in responding to extracellular cytokines or intracellular stress signals, respectively. The same cell death-inducing cytokines also cause necroptosis when caspase-8 is inhibited, resulting in the activation of receptor-interacting protein kinase 3 (RIPK3), which phosphorylates pseudokinase MLKL to trigger its oligomerization and membrane-disrupting activity. Caspase-1/4/5/11, known as inflammatory caspases, instead induce pyroptosis by cleaving gasdermin D, whose caspase-cleaved N terminus forms pores on the plasma membrane. The membrane protein NINJ1 amplifies the extent of membrane rupture initiated by gasdermin D. Additionally, disturbance of peroxidation of polyunsaturated fatty acid tails of membrane phospholipids triggers ferroptosis, an iron-dependent and caspases-independent necrotic death. This review will discuss how these regulated cell death pathways act individually and interconnectively in particular cell types to carry out specific physiological and pathological functions.


Assuntos
Caspases , Gasderminas , Animais , Caspase 8 , Morte Celular , Caspases/genética , Citocinas , Mamíferos
4.
Nat Immunol ; 20(3): 276-287, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30692621

RESUMO

Inflammatory caspases (caspase-1, caspase-4, caspase-5 and caspase-11 (caspase-1/-4/-5/-11)) mediate host defense against microbial infections, processing pro-inflammatory cytokines and triggering pyroptosis. However, precise checkpoints are required to prevent their unsolicited activation. Here we report that serpin family B member 1 (SERPINB1) limited the activity of those caspases by suppressing their caspase-recruitment domain (CARD) oligomerization and enzymatic activation. While the reactive center loop of SERPINB1 inhibits neutrophil serine proteases, its carboxy-terminal CARD-binding motif restrained the activation of pro-caspase-1/-4/-5/-11. Consequently, knockdown or deletion of SERPINB1 prompted spontaneous activation of caspase-1/-4/-5/-11, release of the cytokine IL-1ß and pyroptosis, inducing elevated inflammation after non-hygienic co-housing with pet-store mice and enhanced sensitivity to lipopolysaccharide- or Acinetobacter baumannii-induced endotoxemia. Our results reveal that SERPINB1 acts as a vital gatekeeper of inflammation by restraining neutrophil serine proteases and inflammatory caspases in a genetically and functionally separable manner.


Assuntos
Caspases/imunologia , Mediadores da Inflamação/imunologia , Inflamação/imunologia , Serpinas/imunologia , Animais , Caspases/genética , Caspases/metabolismo , Linhagem Celular , Células Cultivadas , Ativação Enzimática/imunologia , Células HEK293 , Humanos , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/enzimologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Piroptose/efeitos dos fármacos , Piroptose/imunologia , Células RAW 264.7 , Interferência de RNA , Serina Proteases/imunologia , Serina Proteases/metabolismo , Serpinas/genética , Serpinas/metabolismo , Células THP-1 , Células U937
5.
Immunity ; 54(3): 454-467.e6, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33561388

RESUMO

Heparin, a mammalian polysaccharide, is a widely used anticoagulant medicine to treat thrombotic disorders. It is also known to improve outcomes in sepsis, a leading cause of mortality resulted from infection-induced immune dysfunction. Whereas it is relatively clear how heparin exerts its anticoagulant effect, the immunomodulatory mechanisms enabled by heparin remain enigmatic. Here, we show that heparin prevented caspase-11-dependent immune responses and lethality in sepsis independent of its anticoagulant properties. Heparin or a chemically modified form of heparin without anticoagulant function inhibited the alarmin HMGB1-lipopolysaccharide (LPS) interaction and prevented the macrophage glycocalyx degradation by heparanase. These events blocked the cytosolic delivery of LPS in macrophages and the activation of caspase-11, a cytosolic LPS receptor that mediates lethality in sepsis. Survival was higher in septic patients treated with heparin than those without heparin treatment. The identification of this previously unrecognized heparin function establishes a link between innate immune responses and coagulation.


Assuntos
Anticoagulantes/uso terapêutico , Caspases/metabolismo , Heparina/uso terapêutico , Macrófagos/imunologia , Sepse/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Caspases/genética , Linhagem Celular , Feminino , Glucuronidase/genética , Glucuronidase/metabolismo , Glicocálix/metabolismo , Proteína HMGB1/metabolismo , Humanos , Imunomodulação , Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Sepse/mortalidade , Análise de Sobrevida , Adulto Jovem
6.
Mol Cell ; 82(10): 1781-1783, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35594841

RESUMO

Caspases are often considered the final checkpoint for a pathogen to save its replicative niche from collapsing after cell death signaling has been initiated in response to infection. Two recent works (Li et al., 2021; Peng et al., 2022) found that pathogens inhibit host cell death by inactivating multiple caspases with a novel posttranslational modification.


Assuntos
Caspases , Interações Hospedeiro-Patógeno , Caspases/genética , Caspases/metabolismo , Morte Celular , Replicação do DNA
7.
Mol Cell ; 82(10): 1806-1820.e8, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35338844

RESUMO

Caspases are evolutionarily conserved cysteine proteases that are essential for regulating cell death and are involved in multiple development and disease processes, including immunity. Here, we show that the bacterial type III secretion system (T3SS) effector CopC (Chromobacterium outer protein C) from the environmental pathogen Chromobacterium violaceum attacks caspase-3/-7/-8/-9 by ADPR-deacylization to dysregulate programmed cell death, including apoptosis, necroptosis, and pyroptosis. This modification involves ADP-ribosylation- and deamination-mediated cyclization on Arg207 of caspase-3 by a mechanism that requires the eukaryote-specific protein calmodulin (CaM), leading to inhibition of caspase activity. The manipulation of cell death signaling by CopC is essential for the virulence of C. violaceum in a mouse infection model. CopC represents a family of enzymes existing in taxonomically diverse bacteria associated with a wide spectrum of eukaryotes ranging from humans to plants. The unique activity of CopC establishes a mechanism by which bacteria counteract host defenses through a previously unrecognized post-translational modification.


Assuntos
Arginina , Caspases , Animais , Apoptose , Caspase 3 , Caspases/genética , Caspases/metabolismo , Camundongos , Piroptose
8.
Immunity ; 53(1): 6-8, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668229

RESUMO

Proteolytic maturation of the pore-forming protein gasdermin D (GSDMD) by inflammasome-activated caspase-1 is crucial for initiating pyroptosis, a lytic form of cell death. In this issue of Immunity, Lui et al. report the X-ray structure of the caspase-1-GSDMD complex, mapping the interaction interfaces that determine recognition and cleavage of GSDMD by inflammatory caspases.


Assuntos
Caspases , Peptídeos e Proteínas de Sinalização Intracelular , Caspase 1/metabolismo , Caspases/genética , Caspases/metabolismo , Inflamassomos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a Fosfato , Piroptose
9.
Mol Cell ; 81(7): 1397-1410.e9, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33725486

RESUMO

Phospholipid scrambling in dying cells promotes phosphatidylserine exposure, a critical process for efferocytosis. We previously identified the Xkr family protein Xkr4 as a phospholipid-scrambling protein, but its activation mechanisms remain unknown. Here we show that Xkr4 is activated in two steps: dimer formation by caspase-mediated cleavage and structural change caused by activating factors. To identify the factors, we developed a new screening system, "revival screening," using a CRISPR sgRNA library. Applying this system, we identified the nuclear protein XRCC4 as the single candidate for the Xkr4 activator. Upon apoptotic stimuli, XRCC4, contained in the DNA repair complex, is cleaved by caspases, and its C-terminal fragment with an intrinsically disordered region is released into the cytoplasm. Protein interaction screening showed that the fragment interacts directly with the Xkr4 dimer to activate it. This study demonstrates that caspase-mediated cleavage releases a nuclear protein fragment for direct regulation of lipid dynamics on the plasma membrane.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Caspases/metabolismo , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Fosfolipídeos/metabolismo , Proteólise , Animais , Proteínas Reguladoras de Apoptose/genética , Caspases/genética , Linhagem Celular Tumoral , Membrana Celular/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Camundongos , Fosfolipídeos/genética , Multimerização Proteica
10.
Immunity ; 50(6): 1352-1364, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216460

RESUMO

Caspases are an evolutionary conserved family of cysteine proteases that are centrally involved in cell death and inflammation responses. A wealth of foundational insight into the molecular mechanisms that control caspase activation has emerged in recent years. Important advancements include the identification of additional inflammasome platforms and pathways that regulate activation of inflammatory caspases; the discovery of gasdermin D as the effector of pyroptosis and interleukin (IL)-1 and IL-18 secretion; and the existence of substantial crosstalk between inflammatory and apoptotic initiator caspases. A better understanding of the mechanisms regulating caspase activation has supported initial efforts to modulate dysfunctional cell death and inflammation pathways in a suite of communicable, inflammatory, malignant, metabolic, and neurodegenerative diseases. Here, we review current understanding of caspase biology with a prime focus on the inflammatory caspases and outline important topics for future experimentation.


Assuntos
Caspases/metabolismo , Suscetibilidade a Doenças , Inflamação/etiologia , Inflamação/metabolismo , Animais , Apoptose , Biomarcadores , Caspases/química , Caspases/genética , Morte Celular/genética , Citocinas/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Terapia de Alvo Molecular , Piroptose , Transdução de Sinais/efeitos dos fármacos
11.
Plant Cell ; 36(3): 665-687, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-37971931

RESUMO

Caspases are restricted to animals, while other organisms, including plants, possess metacaspases (MCAs), a more ancient and broader class of structurally related yet biochemically distinct proteases. Our current understanding of plant MCAs is derived from studies in streptophytes, and mostly in Arabidopsis (Arabidopsis thaliana) with 9 MCAs with partially redundant activities. In contrast to streptophytes, most chlorophytes contain only 1 or 2 uncharacterized MCAs, providing an excellent platform for MCA research. Here we investigated CrMCA-II, the single type-II MCA from the model chlorophyte Chlamydomonas (Chlamydomonas reinhardtii). Surprisingly, unlike other studied MCAs and similar to caspases, CrMCA-II dimerizes both in vitro and in vivo. Furthermore, activation of CrMCA-II in vivo correlated with its dimerization. Most of CrMCA-II in the cell was present as a proenzyme (zymogen) attached to the plasma membrane (PM). Deletion of CrMCA-II by genome editing compromised thermotolerance, leading to increased cell death under heat stress. Adding back either wild-type or catalytically dead CrMCA-II restored thermoprotection, suggesting that its proteolytic activity is dispensable for this effect. Finally, we connected the non-proteolytic role of CrMCA-II in thermotolerance to the ability to modulate PM fluidity. Our study reveals an ancient, MCA-dependent thermotolerance mechanism retained by Chlamydomonas and probably lost during the evolution of multicellularity.


Assuntos
Arabidopsis , Clorófitas , Animais , Plantas/metabolismo , Caspases/genética , Caspases/química , Caspases/metabolismo , Arabidopsis/genética , Membrana Celular/metabolismo
12.
Immunity ; 49(1): 42-55.e6, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021146

RESUMO

The execution of shock following high dose E. coli lipopolysaccharide (LPS) or bacterial sepsis in mice required pro-apoptotic caspase-8 in addition to pro-pyroptotic caspase-11 and gasdermin D. Hematopoietic cells produced MyD88- and TRIF-dependent inflammatory cytokines sufficient to initiate shock without any contribution from caspase-8 or caspase-11. Both proteases had to be present to support tumor necrosis factor- and interferon-ß-dependent tissue injury first observed in the small intestine and later in spleen and thymus. Caspase-11 enhanced the activation of caspase-8 and extrinsic cell death machinery within the lower small intestine. Neither caspase-8 nor caspase-11 was individually sufficient for shock. Both caspases collaborated to amplify inflammatory signals associated with tissue damage. Therefore, combined pyroptotic and apoptotic signaling mediated endotoxemia independently of RIPK1 kinase activity and RIPK3 function. These observations bring to light the relevance of tissue compartmentalization to disease processes in vivo where cytokines act in parallel to execute diverse cell death pathways.


Assuntos
Caspase 8/metabolismo , Caspases/metabolismo , Infecções por Escherichia coli/enzimologia , Infecções por Escherichia coli/fisiopatologia , Choque Séptico/enzimologia , Choque Séptico/fisiopatologia , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 8/genética , Caspases/genética , Caspases Iniciadoras , Células Cultivadas , Feminino , Inflamação/metabolismo , Inflamação/patologia , Fator Regulador 3 de Interferon/genética , Interferon beta/sangue , Interferon beta/metabolismo , Intestino Delgado/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Lipopolissacarídeos/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Baço/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo
13.
Immunity ; 49(4): 740-753.e7, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30314759

RESUMO

Caspase-11, a cytosolic endotoxin (lipopolysaccharide: LPS) receptor, mediates pyroptosis, a lytic form of cell death. Caspase-11-dependent pyroptosis mediates lethality in endotoxemia, but it is unclear how LPS is delivered into the cytosol for the activation of caspase-11. Here we discovered that hepatocyte-released high mobility group box 1 (HMGB1) was required for caspase-11-dependent pyroptosis and lethality in endotoxemia and bacterial sepsis. Mechanistically, hepatocyte-released HMGB1 bound LPS and targeted its internalization into the lysosomes of macrophages and endothelial cells via the receptor for advanced glycation end-products (RAGE). Subsequently, HMGB1 permeabilized the phospholipid bilayer in the acidic environment of lysosomes. This resulted in LPS leakage into the cytosol and caspase-11 activation. Depletion of hepatocyte HMGB1, inhibition of hepatocyte HMGB1 release, neutralizing extracellular HMGB1, or RAGE deficiency prevented caspase-11-dependent pyroptosis and death in endotoxemia and bacterial sepsis. These findings indicate that HMGB1 interacts with LPS to mediate caspase-11-dependent pyroptosis in lethal sepsis.


Assuntos
Caspases/imunologia , Endotoxinas/imunologia , Proteína HMGB1/imunologia , Piroptose/imunologia , Sepse/imunologia , Animais , Caspases/genética , Caspases/metabolismo , Células Cultivadas , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Endotoxinas/metabolismo , Células HEK293 , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Humanos , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor para Produtos Finais de Glicação Avançada/imunologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Sepse/genética , Sepse/metabolismo , Células THP-1
14.
Mol Cell ; 74(1): 19-31.e7, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30878284

RESUMO

Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the infected cells. Inflammasome-activated caspases are known to cleave cyclic GMP-AMP synthase (cGAS). Here, we found that apoptotic caspases are critically involved in regulating both DNA and RNA virus-triggered host defenses, in which activated caspase-3 cleaved cGAS, MAVS, and IRF3 to prevent cytokine overproduction. Caspase-3 was exclusively required in human cells, whereas caspase-7 was involved only in murine cells to inactivate cGAS, reflecting distinct regulatory mechanisms in different species. Caspase-mediated cGAS cleavage was enhanced in the presence of dsDNA. Alternative MAVS cleavage sites were used to ensure the inactivation of this critical protein. Elevated type I IFNs were detected in caspase-3-deficient cells without any infection. Casp3-/- mice consistently showed increased resistance to viral infection and experimental autoimmune encephalomyelitis. Our results demonstrate that apoptotic caspases control innate immunity and maintain immune homeostasis against viral infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Caspases/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Nucleotidiltransferases/metabolismo , Viroses/enzimologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Caspase 2/genética , Caspase 2/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Caspases/genética , Feminino , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Masculino , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/genética , Vírus Sendai/imunologia , Vírus Sendai/patogenicidade , Transdução de Sinais , Células THP-1 , Vaccinia virus/imunologia , Vaccinia virus/patogenicidade , Viroses/genética , Viroses/imunologia , Viroses/virologia
15.
Annu Rev Biochem ; 80: 1055-87, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21456965

RESUMO

The caspases are unique proteases that mediate the major morphological changes of apoptosis and various other cellular remodeling processes. As we catalog and study the myriad proteins subject to cleavage by caspases, we are beginning to appreciate the full functional repertoire of these enzymes. Here, we examine current knowledge about caspase cleavages: what kinds of proteins are cut, in what contexts, and to what end. After reviewing basic caspase biology, we describe the technologies that enable high-throughput caspase substrate discovery and the datasets they have yielded. We discuss how caspases recognize their substrates and how cleavages are conserved among different metazoan organisms. Rather than comprehensively reviewing all known substrates, we use examples to highlight some functional impacts of caspase cuts during apoptosis and differentiation. Finally, we discuss the roles caspase substrates can play in medicine. Though great progress has been made in this field, many important areas still await exploration.


Assuntos
Apoptose/fisiologia , Caspases/química , Caspases/metabolismo , Diferenciação Celular/fisiologia , Animais , Caspases/classificação , Caspases/genética , Dimerização , Ensaios de Triagem em Larga Escala/métodos , Humanos , Modelos Moleculares , Conformação Proteica , Transdução de Sinais/fisiologia , Especificidade por Substrato
16.
Nat Immunol ; 15(8): 738-48, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24952504

RESUMO

Assembly of the NLRP3 inflammasome activates caspase-1 and mediates the processing and release of the leaderless cytokine IL-1ß and thereby serves a central role in the inflammatory response and in diverse human diseases. Here we found that upon activation of caspase-1, oligomeric NLRP3 inflammasome particles were released from macrophages. Recombinant oligomeric protein particles composed of the adaptor ASC or the p.D303N mutant form of NLRP3 associated with cryopyrin-associated periodic syndromes (CAPS) stimulated further activation of caspase-1 extracellularly, as well as intracellularly after phagocytosis by surrounding macrophages. We found oligomeric ASC particles in the serum of patients with active CAPS but not in that of patients with other inherited autoinflammatory diseases. Our findings support a model whereby the NLRP3 inflammasome, acting as an extracellular oligomeric complex, amplifies the inflammatory response.


Assuntos
Proteínas de Transporte/imunologia , Caspase 1/imunologia , Inflamassomos/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Animais , Proteínas Reguladoras de Apoptose , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Transporte/sangue , Proteínas de Transporte/genética , Caspase 1/genética , Caspases/genética , Caspases/imunologia , Caspases Iniciadoras , Células Cultivadas , Síndromes Periódicas Associadas à Criopirina/sangue , Proteínas do Citoesqueleto/sangue , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/imunologia , Células HEK293 , Humanos , Inflamassomos/sangue , Interleucina-1beta/sangue , Interleucina-1beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fagocitose/imunologia , Transdução de Sinais/imunologia
17.
Nat Rev Mol Cell Biol ; 15(2): 81-94, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24401948

RESUMO

Autophagy and apoptosis control the turnover of organelles and proteins within cells, and of cells within organisms, respectively, and many stress pathways sequentially elicit autophagy, and apoptosis within the same cell. Generally autophagy blocks the induction of apoptosis, and apoptosis-associated caspase activation shuts off the autophagic process. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis or necrosis, and autophagy has been shown to degrade the cytoplasm excessively, leading to 'autophagic cell death'. The dialogue between autophagy and cell death pathways influences the normal clearance of dying cells, as well as immune recognition of dead cell antigens. Therefore, the disruption of the relationship between autophagy and apoptosis has important pathophysiological consequences.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/genética , Autofagia/genética , Transdução de Sinais/genética , Proteínas Reguladoras de Apoptose/genética , Caspases/genética , Caspases/metabolismo , Humanos , Necrose/genética , Organelas/metabolismo
18.
Nature ; 577(7792): 706-710, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942072

RESUMO

Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence1. This problem is of fundamental importance as the structure of a protein largely determines its function2; however, protein structures can be difficult to determine experimentally. Considerable progress has recently been made by leveraging genetic information. It is possible to infer which amino acid residues are in contact by analysing covariation in homologous sequences, which aids in the prediction of protein structures3. Here we show that we can train a neural network to make accurate predictions of the distances between pairs of residues, which convey more information about the structure than contact predictions. Using this information, we construct a potential of mean force4 that can accurately describe the shape of a protein. We find that the resulting potential can be optimized by a simple gradient descent algorithm to generate structures without complex sampling procedures. The resulting system, named AlphaFold, achieves high accuracy, even for sequences with fewer homologous sequences. In the recent Critical Assessment of Protein Structure Prediction5 (CASP13)-a blind assessment of the state of the field-AlphaFold created high-accuracy structures (with template modelling (TM) scores6 of 0.7 or higher) for 24 out of 43 free modelling domains, whereas the next best method, which used sampling and contact information, achieved such accuracy for only 14 out of 43 domains. AlphaFold represents a considerable advance in protein-structure prediction. We expect this increased accuracy to enable insights into the function and malfunction of proteins, especially in cases for which no structures for homologous proteins have been experimentally determined7.


Assuntos
Aprendizado Profundo , Modelos Moleculares , Conformação Proteica , Proteínas/química , Software , Sequência de Aminoácidos , Caspases/química , Caspases/genética , Conjuntos de Dados como Assunto , Dobramento de Proteína , Proteínas/genética
19.
Mol Cell ; 71(4): 629-636.e5, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30118681

RESUMO

The kinases PERK and IRE1 alleviate endoplasmic reticulum (ER) stress by orchestrating the unfolded protein response (UPR). If stress mitigation fails, PERK promotes cell death by activating pro-apoptotic genes, including death receptor 5 (DR5). Conversely, IRE1-which harbors both kinase and endoribonuclease (RNase) modules-blocks apoptosis through regulated IRE1-dependent decay (RIDD) of DR5 mRNA. Under irresolvable ER stress, PERK activity persists, whereas IRE1 paradoxically attenuates, by mechanisms that remain obscure. Here, we report that PERK governs IRE1's attenuation through a phosphatase known as RPAP2 (RNA polymerase II-associated protein 2). RPAP2 reverses IRE1 phosphorylation, oligomerization, and RNase activation. This inhibits IRE1-mediated adaptive events, including activation of the cytoprotective transcription factor XBP1s, and ER-associated degradation of unfolded proteins. Furthermore, RIDD termination by RPAP2 unleashes DR5-mediated caspase activation and drives cell death. Thus, PERK attenuates IRE1 via RPAP2 to abort failed ER-stress adaptation and trigger apoptosis.


Assuntos
Apoptose/genética , Proteínas de Transporte/genética , Endorribonucleases/genética , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas , eIF-2 Quinase/genética , Proteínas de Transporte/metabolismo , Caspases/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo , eIF-2 Quinase/metabolismo
20.
Dev Biol ; 516: 148-157, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39163924

RESUMO

Apoptosis is a regulated cell death that depends on caspases. It has mainly been studied as a mechanism for the removal of unwanted cells. However, apoptotic cells can induce fate or behavior changes of their neighbors and thereby participate in development. Here, we address the functions of apoptosis during metamorphosis of the cnidarian Hydractinia symbiolongicarpus. We describe the apoptotic profile during metamorphosis of the larva and identify Caspase3/7a, but no other executioner caspases, as essential for apoptosis in this context. Using pharmacological and genetic approaches, we find that apoptosis is required for normal head development. Inhibition of apoptosis resulted in defects in head morphogenesis. Neurogenesis was compromised in the body column of apoptosis-inhibited animals but there was no effect on the survival or proliferation of stem cells, suggesting that apoptosis is required for cellular commitment rather than for the maintenance of their progenitors. Differential transcriptomic analysis identifies TRAF genes as downregulated in apoptosis-inhibited larvae and functional experiments provide evidence that they are essential for head development. Finally, we find no major role for apoptosis in head regeneration in this animal, in contrast to the significance of apoptosis in Hydra head regeneration.


Assuntos
Apoptose , Cabeça , Metamorfose Biológica , Animais , Apoptose/genética , Caspases/metabolismo , Caspases/genética , Larva/crescimento & desenvolvimento , Neurogênese/genética , Hidrozoários/genética , Hidrozoários/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regeneração/genética , Regeneração/fisiologia , Cnidários/genética , Células-Tronco/metabolismo , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa