Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 537
Filtrar
1.
Cell ; 182(4): 933-946.e14, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32780992

RESUMO

Methanol, being electron rich and derivable from methane or CO2, is a potentially renewable one-carbon (C1) feedstock for microorganisms. Although the ribulose monophosphate (RuMP) cycle used by methylotrophs to assimilate methanol differs from the typical sugar metabolism by only three enzymes, turning a non-methylotrophic organism to a synthetic methylotroph that grows to a high cell density has been challenging. Here we reprogrammed E. coli using metabolic robustness criteria followed by laboratory evolution to establish a strain that can efficiently utilize methanol as the sole carbon source. This synthetic methylotroph alleviated a so far uncharacterized hurdle, DNA-protein crosslinking (DPC), by insertion sequence (IS)-mediated copy number variations (CNVs) and balanced the metabolic flux by mutations. Being capable of growing at a rate comparable with natural methylotrophs in a wide range of methanol concentrations, this synthetic methylotrophic strain illustrates genome editing and evolution for microbial tropism changes and expands the scope of biological C1 conversion.


Assuntos
Escherichia coli/metabolismo , Engenharia Metabólica , Metanol/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Ciclo do Ácido Cítrico/genética , Variações do Número de Cópias de DNA , Evolução Molecular Direcionada , Escherichia coli/genética , Formaldeído/metabolismo , Glicólise , Mutagênese , Ribosemonofosfatos/metabolismo
2.
Cell ; 182(6): 1490-1507.e19, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32916131

RESUMO

Metabolic reprogramming is a key feature of many cancers, but how and when it contributes to tumorigenesis remains unclear. Here we demonstrate that metabolic reprogramming induced by mitochondrial fusion can be rate-limiting for immortalization of tumor-initiating cells (TICs) and trigger their irreversible dedication to tumorigenesis. Using single-cell transcriptomics, we find that Drosophila brain tumors contain a rapidly dividing stem cell population defined by upregulation of oxidative phosphorylation (OxPhos). We combine targeted metabolomics and in vivo genetic screening to demonstrate that OxPhos is required for tumor cell immortalization but dispensable in neural stem cells (NSCs) giving rise to tumors. Employing an in vivo NADH/NAD+ sensor, we show that NSCs precisely increase OxPhos during immortalization. Blocking OxPhos or mitochondrial fusion stalls TICs in quiescence and prevents tumorigenesis through impaired NAD+ regeneration. Our work establishes a unique connection between cellular metabolism and immortalization of tumor-initiating cells.


Assuntos
Neoplasias Encefálicas/metabolismo , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Dinâmica Mitocondrial , NAD/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neurais/metabolismo , Fosforilação Oxidativa , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Carcinogênese/patologia , Transformação Celular Neoplásica/patologia , Ciclo do Ácido Cítrico/genética , Biologia Computacional , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Glicólise/genética , Espectrometria de Massas , Metabolômica , Microscopia Eletrônica de Transmissão , Família Multigênica , Células-Tronco Neurais/patologia , Consumo de Oxigênio/genética , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Análise de Célula Única , Transcriptoma/genética
3.
Cell ; 177(5): 1201-1216.e19, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31031005

RESUMO

Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatory signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the immune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DCs) are exacerbated by a high-fatty-acid (FA) metabolic environment. FAs suppress the TLR-induced hexokinase activity and perturb tricarboxylic acid cycle metabolism. These metabolic changes enhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded protein response (UPR), leading to a distinct transcriptomic signature with IL-23 as hallmark. Interestingly, chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response. Conversely, reducing mtROS production or DC-specific deficiency in XBP1 attenuated IL-23 expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innate immunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR.


Assuntos
Microambiente Celular/imunologia , Células Dendríticas/imunologia , Imunidade Inata , Mitocôndrias/imunologia , Espécies Reativas de Oxigênio/imunologia , Resposta a Proteínas não Dobradas/imunologia , Animais , Microambiente Celular/genética , Ciclo do Ácido Cítrico/genética , Ciclo do Ácido Cítrico/imunologia , Células Dendríticas/patologia , Hexoquinase/genética , Hexoquinase/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Resposta a Proteínas não Dobradas/genética , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/imunologia
4.
Nature ; 629(8010): 184-192, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600378

RESUMO

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios , Glucocorticoides , Inflamação , Macrófagos , Mitocôndrias , Succinatos , Animais , Feminino , Humanos , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Carboxiliases/metabolismo , Carboxiliases/antagonistas & inibidores , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Citocinas/imunologia , Citocinas/metabolismo , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Hidroliases/deficiência , Hidroliases/genética , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Complexo Piruvato Desidrogenase/metabolismo , Receptores de Glucocorticoides/metabolismo , Succinatos/metabolismo , Ativação Enzimática/efeitos dos fármacos
5.
Nature ; 591(7850): 445-450, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658719

RESUMO

Mitochondria are specialized eukaryotic organelles that have a dedicated function in oxygen respiration and energy production. They evolved about 2 billion years ago from a free-living bacterial ancestor (probably an alphaproteobacterium), in a process known as endosymbiosis1,2. Many unicellular eukaryotes have since adapted to life in anoxic habitats and their mitochondria have undergone further reductive evolution3. As a result, obligate anaerobic eukaryotes with mitochondrial remnants derive their energy mostly from fermentation4. Here we describe 'Candidatus Azoamicus ciliaticola', which is an obligate endosymbiont of an anaerobic ciliate and has a dedicated role in respiration and providing energy for its eukaryotic host. 'Candidatus A. ciliaticola' contains a highly reduced 0.29-Mb genome that encodes core genes for central information processing, the electron transport chain, a truncated tricarboxylic acid cycle, ATP generation and iron-sulfur cluster biosynthesis. The genome encodes a respiratory denitrification pathway instead of aerobic terminal oxidases, which enables its host to breathe nitrate instead of oxygen. 'Candidatus A. ciliaticola' and its ciliate host represent an example of a symbiosis that is based on the transfer of energy in the form of ATP, rather than nutrition. This discovery raises the possibility that eukaryotes with mitochondrial remnants may secondarily acquire energy-providing endosymbionts to complement or replace functions of their mitochondria.


Assuntos
Anaerobiose , Bactérias/metabolismo , Cilióforos/metabolismo , Desnitrificação , Metabolismo Energético , Interações entre Hospedeiro e Microrganismos , Simbiose , Trifosfato de Adenosina/metabolismo , Bactérias/genética , Evolução Biológica , Respiração Celular , Cilióforos/química , Cilióforos/citologia , Ciclo do Ácido Cítrico/genética , Transporte de Elétrons/genética , Genoma Bacteriano/genética , Interações entre Hospedeiro e Microrganismos/genética , Mitocôndrias , Nitratos/metabolismo , Oxigênio/metabolismo , Filogenia
6.
Mol Cell ; 71(4): 567-580.e4, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30118679

RESUMO

The electron transport chain (ETC) is an important participant in cellular energy conversion, but its biogenesis presents the cell with numerous challenges. To address these complexities, the cell utilizes ETC assembly factors, which include the LYR protein family. Each member of this family interacts with the mitochondrial acyl carrier protein (ACP), the scaffold protein upon which the mitochondrial fatty acid synthesis (mtFAS) pathway builds fatty acyl chains from acetyl-CoA. We demonstrate that the acylated form of ACP is an acetyl-CoA-dependent allosteric activator of the LYR protein family used to stimulate ETC biogenesis. By tuning ETC assembly to the abundance of acetyl-CoA, which is the major fuel of the TCA cycle and ETC, this system could provide an elegant mechanism for coordinating the assembly of ETC complexes with one another and with substrate availability.


Assuntos
Acetilcoenzima A/metabolismo , Proteína de Transporte de Acila/metabolismo , Mitocôndrias/enzimologia , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/enzimologia , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/genética , Acilação , Regulação Alostérica , Sítios de Ligação , Ciclo do Ácido Cítrico/genética , Transporte de Elétrons/genética , Ácidos Graxos/biossíntese , Regulação Fúngica da Expressão Gênica , Mitocôndrias/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
J Biol Chem ; 300(1): 105485, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992808

RESUMO

EZH2 (Enhancer of Zeste Homolog 2), a subunit of Polycomb Repressive Complex 2 (PRC2), catalyzes the trimethylation of histone H3 at lysine 27 (H3K27me3), which represses expression of genes. It also has PRC2-independent functions, including transcriptional coactivation of oncogenes, and is frequently overexpressed in lung cancers. Clinically, EZH2 inhibition can be achieved with the FDA-approved drug EPZ-6438 (tazemetostat). To realize the full potential of EZH2 blockade, it is critical to understand how cell-cell/cell-matrix interactions present in 3D tissue and cell culture systems influences this blockade in terms of growth-related metabolic functions. Here, we show that EZH2 suppression reduced growth of human lung adenocarcinoma A549 cells in 2D cultures but stimulated growth in 3D cultures. To understand the metabolic underpinnings, we employed [13C6]-glucose stable isotope-resolved metabolomics to determine the effect of EZH2 suppression on metabolic networks in 2D versus 3D A549 cultures. The Krebs cycle, neoribogenesis, γ-aminobutyrate metabolism, and salvage synthesis of purine nucleotides were activated by EZH2 suppression in 3D spheroids but not in 2D cells, consistent with the growth effect. Using simultaneous 2H7-glucose + 13C5,15N2-Gln tracers and EPZ-6438 inhibition of H3 trimethylation, we delineated the effects on the Krebs cycle, γ-aminobutyrate metabolism, gluconeogenesis, and purine salvage to be PRC2-dependent. Furthermore, the growth/metabolic effects differed for mouse Matrigel versus self-produced A549 extracellular matrix. Thus, our findings highlight the importance of the presence and nature of extracellular matrix in studying the function of EZH2 and its inhibitors in cancer cells for modeling the in vivo outcomes.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Reprogramação Metabólica , Humanos , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Reprogramação Metabólica/genética , Complexo Repressor Polycomb 2/antagonistas & inibidores , Complexo Repressor Polycomb 2/genética , Células A549 , Adenocarcinoma de Pulmão/fisiopatologia , Técnicas de Silenciamento de Genes , Glicólise/genética , Ciclo do Ácido Cítrico/genética , Via de Pentose Fosfato/genética , Nucleotídeos de Purina/genética , Regulação Neoplásica da Expressão Gênica
8.
J Bacteriol ; 206(5): e0000324, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38606980

RESUMO

In most actinomycetes, GlnR governs both nitrogen and non-nitrogen metabolisms (e.g., carbon, phosphate, and secondary metabolisms). Although GlnR has been recognized as a global regulator, its regulatory role in central carbon metabolism [e.g., glycolysis, gluconeogenesis, and the tricarboxylic acid (TCA) cycle] is largely unknown. In this study, we characterized GlnR as a direct transcriptional repressor of the pckA gene that encodes phosphoenolpyruvate carboxykinase, catalyzing the conversion of the TCA cycle intermediate oxaloacetate to phosphoenolpyruvate, a key step in gluconeogenesis. Through the transcriptomic and quantitative real-time PCR analyses, we first showed that the pckA transcription was upregulated in the glnR null mutant of Amycolatopsis mediterranei. Next, we proved that the pckA gene was essential for A. mediterranei gluconeogenesis when the TCA cycle intermediate was used as a sole carbon source. Furthermore, with the employment of the electrophoretic mobility shift assay and DNase I footprinting assay, we revealed that GlnR was able to specifically bind to the pckA promoter region from both A. mediterranei and two other representative actinomycetes (Streptomyces coelicolor and Mycobacterium smegmatis). Therefore, our data suggest that GlnR may repress pckA transcription in actinomycetes, which highlights the global regulatory role of GlnR in both nitrogen and central carbon metabolisms in response to environmental nutrient stresses. IMPORTANCE: The GlnR regulator of actinomycetes controls nitrogen metabolism genes and many other genes involved in carbon, phosphate, and secondary metabolisms. Currently, the known GlnR-regulated genes in carbon metabolism are involved in the transport of carbon sources, the assimilation of short-chain fatty acid, and the 2-methylcitrate cycle, although little is known about the relationship between GlnR and the TCA cycle and gluconeogenesis. Here, based on the biochemical and genetic results, we identified GlnR as a direct transcriptional repressor of pckA, the gene that encodes phosphoenolpyruvate carboxykinase, a key enzyme for gluconeogenesis, thus highlighting that GlnR plays a central and complex role for dynamic orchestration of cellular carbon, nitrogen, and phosphate fluxes and bioactive secondary metabolites in actinomycetes to adapt to changing surroundings.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Gluconeogênese , Nitrogênio , Gluconeogênese/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Nitrogênio/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Amycolatopsis/metabolismo , Amycolatopsis/genética , Regiões Promotoras Genéticas , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Ciclo do Ácido Cítrico/genética , Actinobacteria/genética , Actinobacteria/metabolismo
9.
Immunity ; 42(3): 406-17, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25786173

RESUMO

Mitochondria are well appreciated for their role as biosynthetic and bioenergetic organelles. In the past two decades, mitochondria have emerged as signaling organelles that contribute critical decisions about cell proliferation, death, and differentiation. Mitochondria not only sustain immune cell phenotypes but also are necessary for establishing immune cell phenotype and their function. Mitochondria can rapidly switch from primarily being catabolic organelles generating ATP to anabolic organelles that generate both ATP and building blocks for macromolecule synthesis. This enables them to fulfill appropriate metabolic demands of different immune cells. Mitochondria have multiple mechanisms that allow them to activate signaling pathways in the cytosol including altering in AMP/ATP ratio, the release of ROS and TCA cycle metabolites, as well as the localization of immune regulatory proteins on the outer mitochondrial membrane. In this Review, we discuss the evidence and mechanisms that mitochondrial dependent signaling controls innate and adaptive immune responses.


Assuntos
Imunidade Adaptativa , Trifosfato de Adenosina/imunologia , Imunidade Inata , Mitocôndrias/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Ciclo do Ácido Cítrico/genética , Ciclo do Ácido Cítrico/imunologia , Citocinas/genética , Citocinas/imunologia , Regulação da Expressão Gênica , Humanos , Inflamassomos/genética , Inflamassomos/imunologia , Linfócitos/citologia , Linfócitos/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/imunologia , Fosforilação Oxidativa , Transdução de Sinais
10.
Appl Microbiol Biotechnol ; 108(1): 353, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819481

RESUMO

Hydroxyectoine is an important compatible solute that holds potential for development into a high-value chemical with broad applications. However, the traditional high-salt fermentation for hydroxyectoine production presents challenges in treating the high-salt wastewater. Here, we report the rational engineering of Halomonas salifodinae to improve the bioproduction of hydroxyectoine under lower-salt conditions. The comparative transcriptomic analysis suggested that the increased expression of ectD gene encoding ectoine hydroxylase (EctD) and the decreased expressions of genes responsible for tricarboxylic acid (TCA) cycle contributed to the increased hydroxyectoine production in H. salifodinae IM328 grown under high-salt conditions. By blocking the degradation pathway of ectoine and hydroxyectoine, enhancing the expression of ectD, and increasing the supply of 2-oxoglutarate, the engineered H. salifodinae strain HS328-YNP15 (ΔdoeA::PUP119-ectD p-gdh) produced 8.3-fold higher hydroxyectoine production than the wild-type strain and finally achieved a hydroxyectoine titer of 4.9 g/L in fed-batch fermentation without any detailed process optimization. This study shows the potential to integrate hydroxyectoine production into open unsterile fermentation process that operates under low-salinity and high-alkalinity conditions, paving the way for next-generation industrial biotechnology. KEY POINTS: • Hydroxyectoine production in H. salifodinae correlates with the salinity of medium • Transcriptomic analysis reveals the limiting factors for hydroxyectoine production • The engineered strain produced 8.3-fold more hydroxyectoine than the wild type.


Assuntos
Diamino Aminoácidos , Fermentação , Halomonas , Engenharia Metabólica , Halomonas/genética , Halomonas/metabolismo , Engenharia Metabólica/métodos , Diamino Aminoácidos/biossíntese , Diamino Aminoácidos/metabolismo , Diamino Aminoácidos/genética , Ciclo do Ácido Cítrico/genética , Perfilação da Expressão Gênica , Cloreto de Sódio/metabolismo , Salinidade , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ácidos Cetoglutáricos/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526685

RESUMO

We previously reported a model of progressive retinal degeneration resulting from the knockout of the retina-specific riboflavin binding protein, retbindin (Rtbdn-/- ). We also demonstrated a reduction in neural retinal flavins as a result of the elimination of RTBDN. Given the role of flavins in metabolism, herein we investigated the underlying mechanism of this retinal degeneration by performing metabolomic analyses on predegeneration at postnatal day (P) 45 and at the onset of functional degeneration in the P120 retinas. Metabolomics of hydrophilic metabolites revealed that individual glycolytic products accumulated in the P45 Rtbdn-/- neural retinas along with the elevation of pentose phosphate pathway, while TCA cycle intermediates remained unchanged. This was confirmed by using 13C-labeled flux measurements and immunoblotting, revealing that the key regulatory step of phosphoenolpyruvate to pyruvate was inhibited via down-regulation of the tetrameric pyruvate kinase M2 (PKM2). Separate metabolite assessments revealed that almost all intermediates of acylcarnitine fatty acid oxidation, ceramides, sphingomyelins, and multiple toxic metabolites were significantly elevated in the predegeneration Rtbdn-/- neural retina. Our data show that lack of RTBDN, and hence reduction in flavins, forced the neural retina into repurposing glucose for free-radical mitigation over ATP production. However, such sustained metabolic reprogramming resulted in an eventual metabolic collapse leading to neurodegeneration.


Assuntos
Proteínas do Olho/genética , Piruvato Quinase/genética , Retina/metabolismo , Degeneração Retiniana/genética , Animais , Ciclo do Ácido Cítrico/genética , Modelos Animais de Doenças , Proteínas do Olho/metabolismo , Flavinas/metabolismo , Glicólise/genética , Homeostase , Humanos , Camundongos , Piruvato Quinase/metabolismo , Retina/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia
12.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845033

RESUMO

Brown adipose tissue has been extensively studied in the last decade for its potential to counteract the obesity pandemic. However, the paracrine regulation within brown tissue is largely unknown. Here, we show that local acetate directly inhibits brown fat thermogenesis, without changing acetate levels in the circulation. We demonstrate that modulating acetate within brown tissue at physiological levels blunts its function and systemically decreases energy expenditure. Using a series of transcriptomic analyses, we identified genes related to the tricarboxylic acid cycle and brown adipocyte formation, which are down-regulated upon local acetate administration. Overall, these findings demonstrate that local acetate inhibits brown fat function.


Assuntos
Acetatos/metabolismo , Tecido Adiposo Marrom/fisiologia , Termogênese/fisiologia , Acetatos/farmacologia , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Ciclo do Ácido Cítrico/genética , Dieta Hiperlipídica , Ingestão de Alimentos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Termogênese/efeitos dos fármacos , Transcriptoma/genética
13.
PLoS Genet ; 17(10): e1009871, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34714823

RESUMO

Kohlschütter-Tönz syndrome (KTS) manifests as neurological dysfunctions, including early-onset seizures. Mutations in the citrate transporter SLC13A5 are associated with KTS, yet their underlying mechanisms remain elusive. Here, we report that a Drosophila SLC13A5 homolog, I'm not dead yet (Indy), constitutes a neurometabolic pathway that suppresses seizure. Loss of Indy function in glutamatergic neurons caused "bang-induced" seizure-like behaviors. In fact, glutamate biosynthesis from the citric acid cycle was limiting in Indy mutants for seizure-suppressing glutamate transmission. Oral administration of the rate-limiting α-ketoglutarate in the metabolic pathway rescued low glutamate levels in Indy mutants and ameliorated their seizure-like behaviors. This metabolic control of the seizure susceptibility was mapped to a pair of glutamatergic neurons, reversible by optogenetic controls of their activity, and further relayed onto fan-shaped body neurons via the ionotropic glutamate receptors. Accordingly, our findings reveal a micro-circuit that links neural metabolism to seizure, providing important clues to KTS-associated neurodevelopmental deficits.


Assuntos
Ciclo do Ácido Cítrico/fisiologia , Ácido Glutâmico/metabolismo , Convulsões/metabolismo , Animais , Ácido Cítrico/metabolismo , Ciclo do Ácido Cítrico/genética , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ácido Glutâmico/genética , Masculino , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Mutação/genética , Neurônios/metabolismo , Convulsões/genética , Simportadores/genética , Simportadores/metabolismo
14.
Int J Mol Sci ; 25(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39337307

RESUMO

The antibiotic resistance crisis has seriously jeopardized public health and human safety. As one of the ways of horizontal transfer, transformation enables bacteria to acquire exogenous genes naturally. Bisphenol compounds are now widely used in plastics, food, and beverage packaging, and have become a new environmental pollutant. However, their potential relationship with the spread of antibiotic resistance genes (ARGs) in the environment remains largely unexplored. In this study, we aimed to assess whether the ubiquitous bisphenol S (BPS) could promote the transformation of plasmid-borne ARGs. Using plasmid pUC19 carrying the ampicillin resistance gene as an extracellular ARG and model microorganism E. coli DH5α as the recipient, we established a transformation system. Transformation assays revealed that environmentally relevant concentrations of BPS (0.1-10 µg/mL) markedly enhanced the transformation frequency of plasmid-borne ARGs into E. coli DH5α up to 2.02-fold. Fluorescent probes and transcript-level analyses suggest that BPS stimulated increased reactive oxygen species (ROS) production, activated the SOS response, induced membrane damage, and increased membrane fluidity, which weakened the barrier for plasmid transfer, allowing foreign DNA to be more easily absorbed. Moreover, BPS stimulates ATP supply by activating the tricarboxylic acid (TCA) cycle, which promotes flagellar motility and expands the search for foreign DNA. Overall, these findings provide important insight into the role of bisphenol compounds in facilitating the horizontal spread of ARGs and emphasize the need to monitor the residues of these environmental contaminants.


Assuntos
Escherichia coli , Fenóis , Plasmídeos , Sulfonas , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Sulfonas/farmacologia , Plasmídeos/genética , Espécies Reativas de Oxigênio/metabolismo , Transformação Bacteriana , Resistência Microbiana a Medicamentos/genética , Transferência Genética Horizontal , Farmacorresistência Bacteriana/genética , Compostos Benzidrílicos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética
15.
Mol Biol Rep ; 50(1): 719-730, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36372816

RESUMO

BACKGROUND: Streptomyces strains degrade many complex organic compounds and produce secondary metabolites. In aerobic organisms such as Streptomyces species, the tricarboxylic acid (TCA) cycle represents an indispensable central carbon metabolic pathway for energy generation and metabolic intermediary replenishment. Although various precursors for antibiotic biosynthesis are derived from this cycle, relatively few studies have focused on determining how a single carbon source can impact this metabolic pathway at different growth phases. In this study, we identified chromosomal genes involved in the TCA cycle in Streptomyces coelicolor and determined their mRNA levels. METHODS AND RESULTS: We searched the genes involved in the TCA cycle in S. coelicolor through bioinformatic analysis. Growth, glucose concentration quantification and RNA isolation were made from cultures of S. coelicolor grown on minimal medium with glucose along 72 h. mRNA levels of all identified genes were obtained by RT-qPCR. Five enzymes encoded by a single gene each were found, while for the rest at least two genes were found. The results showed that all the genes corresponding to the TCA enzymes were transcribed at very different levels and some of them displayed growth-phase dependent expression. CONCLUSION: All TCA cycle-associated genes, including paralog genes, were differentially transcribed in S. coelicolor grown in minimal medium with glucose as carbon source. Some of them, such as succinyl-CoA synthetase and succinate dehydrogenase, have low mRNA levels, which could limit the carbon flux through the TCA cycle. Our findings suggest that the genetic expansion of TCA cycle genes could confer to S. coelicolor the ability to adapt to diverse nutritional conditions and metabolic changes through different paralog genes expression.


Assuntos
Streptomyces coelicolor , Streptomyces , Ciclo do Ácido Cítrico/genética , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Glucose/metabolismo , Redes e Vias Metabólicas/genética , Streptomyces/metabolismo , Carbono/metabolismo
16.
Mol Cell ; 58(1): 123-33, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25773600

RESUMO

Mitochondrial diseases and aging are associated with defects in the oxidative phosphorylation machinery (OXPHOS), which are the only complexes composed of proteins encoded by separate genomes. To better understand genome coordination and OXPHOS recovery during mitochondrial dysfunction, we examined ATFS-1, a transcription factor that regulates mitochondria-to-nuclear communication during the mitochondrial UPR, via ChIP-sequencing. Surprisingly, in addition to regulating mitochondrial chaperone, OXPHOS complex assembly factor, and glycolysis genes, ATFS-1 bound directly to OXPHOS gene promoters in both the nuclear and mitochondrial genomes. Interestingly, atfs-1 was required to limit the accumulation of OXPHOS transcripts during mitochondrial stress, which required accumulation of ATFS-1 in the nucleus and mitochondria. Because balanced ATFS-1 accumulation promoted OXPHOS complex assembly and function, our data suggest that ATFS-1 stimulates respiratory recovery by fine-tuning OXPHOS expression to match the capacity of the suboptimal protein-folding environment in stressed mitochondria, while simultaneously increasing proteostasis capacity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , DNA Mitocondrial/metabolismo , Genoma Mitocondrial , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/genética , Ciclo do Ácido Cítrico/genética , DNA Mitocondrial/genética , Genoma Helmíntico , Mitocôndrias/genética , Dados de Sequência Molecular , Fosforilação Oxidativa , Dobramento de Proteína , Estabilidade Proteica , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Transcrição Gênica , Resposta a Proteínas não Dobradas
17.
Mol Cell ; 60(2): 195-207, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26474064

RESUMO

Cancer cells adapt metabolically to proliferate under nutrient limitation. Here we used combined transcriptional-metabolomic network analysis to identify metabolic pathways that support glucose-independent tumor cell proliferation. We found that glucose deprivation stimulated re-wiring of the tricarboxylic acid (TCA) cycle and early steps of gluconeogenesis to promote glucose-independent cell proliferation. Glucose limitation promoted the production of phosphoenolpyruvate (PEP) from glutamine via the activity of mitochondrial PEP-carboxykinase (PCK2). Under these conditions, glutamine-derived PEP was used to fuel biosynthetic pathways normally sustained by glucose, including serine and purine biosynthesis. PCK2 expression was required to maintain tumor cell proliferation under limited-glucose conditions in vitro and tumor growth in vivo. Elevated PCK2 expression is observed in several human tumor types and enriched in tumor tissue from non-small-cell lung cancer (NSCLC) patients. Our results define a role for PCK2 in cancer cell metabolic reprogramming that promotes glucose-independent cell growth and metabolic stress resistance in human tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Regulação Neoplásica da Expressão Gênica , Gluconeogênese/genética , Neoplasias Pulmonares/metabolismo , Neoplasias/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Adaptação Fisiológica/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclo do Ácido Cítrico/genética , Glucose/deficiência , Glutamina/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metabolômica , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Purinas/biossíntese , Ácido Pirúvico/metabolismo , Serina/biossíntese
18.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982394

RESUMO

Mitochondrial RTG (an acronym for ReTroGrade) signaling plays a cytoprotective role under various intracellular or environmental stresses. We have previously shown its contribution to osmoadaptation and capacity to sustain mitochondrial respiration in yeast. Here, we studied the interplay between RTG2, the main positive regulator of the RTG pathway, and HAP4, encoding the catalytic subunit of the Hap2-5 complex required for the expression of many mitochondrial proteins that function in the tricarboxylic acid (TCA) cycle and electron transport, upon osmotic stress. Cell growth features, mitochondrial respiratory competence, retrograde signaling activation, and TCA cycle gene expression were comparatively evaluated in wild type and mutant cells in the presence and in the absence of salt stress. We showed that the inactivation of HAP4 improved the kinetics of osmoadaptation by eliciting both the activation of retrograde signaling and the upregulation of three TCA cycle genes: citrate synthase 1 (CIT1), aconitase 1 (ACO1), and isocitrate dehydrogenase 1 (IDH1). Interestingly, their increased expression was mostly dependent on RTG2. Impaired respiratory competence in the HAP4 mutant does not affect its faster adaptive response to stress. These findings indicate that the involvement of the RTG pathway in osmostress is fostered in a cellular context of constitutively reduced respiratory capacity. Moreover, it is evident that the RTG pathway mediates peroxisomes-mitochondria communication by modulating the metabolic function of mitochondria in osmoadaptation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclo do Ácido Cítrico/genética , Citrato (si)-Sintase/metabolismo , Transdução de Sinais , Regulação Fúngica da Expressão Gênica
19.
Plant J ; 108(2): 478-491, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376020

RESUMO

Seed vigor is an important trait for the direct seeding of rice (Oryza sativa L.). In this study, we examined the genetic architecture of variation in the germination rate using a diverse panel of rice accessions. Four quantitative trait loci for germination rate were identified using a genome-wide association study during early germination. One candidate gene, encoding the 2-oxoglutarate/malate translocator (OsOMT), was validated for qGR11. Disruption of this gene (Osomt mutants) reduced seed vigor, including seed germination and seedling growth, in rice. Functional analysis revealed that OsOMT influences seed vigor mainly by modulating amino acid levels and glycolysis and tricarboxylic acid cycle processes. The levels of most amino acids, including the Glu family (Glu, Pro, Arg, and GABA), Asp family (Asp, Thr, Lys, Ile, and Met), Ser family (Ser, Gly, and Cys), and others (His, Ala, Leu, and Val), were significantly reduced in the mature grains and the early germinating seeds of Osomt mutants compared to wild type (WT). The glucose and soluble sugar contents, as well as adenosine triphosphate levels, were significantly decreased in germinating seeds of Osomt mutants compared to WT. These results provide important insights into the role of OsOMT in seed vigor in rice.


Assuntos
Germinação/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Sementes/fisiologia , Aminoácidos/genética , Aminoácidos/metabolismo , Ciclo do Ácido Cítrico/genética , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Glicólise/genética , Ácidos Cetoglutáricos/metabolismo , Malatos/metabolismo , Mutação , Oryza/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Sementes/genética
20.
Mol Syst Biol ; 17(7): e10253, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34292675

RESUMO

First-principle metabolic modelling holds potential for designing microbial chassis that are resilient against phenotype reversal due to adaptive mutations. Yet, the theory of model-based chassis design has rarely been put to rigorous experimental test. Here, we report the development of Saccharomyces cerevisiae chassis strains for dicarboxylic acid production using genome-scale metabolic modelling. The chassis strains, albeit geared for higher flux towards succinate, fumarate and malate, do not appreciably secrete these metabolites. As predicted by the model, introducing product-specific TCA cycle disruptions resulted in the secretion of the corresponding acid. Adaptive laboratory evolution further improved production of succinate and fumarate, demonstrating the evolutionary robustness of the engineered cells. In the case of malate, multi-omics analysis revealed a flux bypass at peroxisomal malate dehydrogenase that was missing in the yeast metabolic model. In all three cases, flux balance analysis integrating transcriptomics, proteomics and metabolomics data confirmed the flux re-routing predicted by the model. Taken together, our modelling and experimental results have implications for the computer-aided design of microbial cell factories.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae , Ciclo do Ácido Cítrico/genética , Metabolômica , Saccharomyces cerevisiae/genética , Ácido Succínico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa