Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 540
Filtrar
1.
Eur J Clin Microbiol Infect Dis ; 41(2): 331-333, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34671843

RESUMO

The emergence of high-level daptomycin (DAP)-resistant (HLDR) Corynebacterium striatum has been reported as a result of loss-of-function point mutations or premature stop codon mutations in a responsible gene, pgsA2. We herein describe the novel detection of an HLDR C. striatum clinical isolate, in which IS30-insertion was corroborated to cause destruction of pgsA2 gene. We isolated an HLDR C. striatum from a critically ill patient with underlying mycosis fungoides who had been treated with DAP for 10 days. With a sequence investigation, IS30-insertion was discovered to split pgsA2 in the HLDR C. striatum strain, which may cause disrupted phospholipid phosphatidylglycerol (PG) production. Future studies should survey the prevalence of IS-mediated gene inactivation among HLDR C. striatum clinical isolates.


Assuntos
Corynebacterium/enzimologia , Corynebacterium/genética , Farmacorresistência Bacteriana/genética , Mutação , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Antibacterianos/farmacologia , Corynebacterium/efeitos dos fármacos , Infecções por Corynebacterium , Daptomicina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Feminino , Genes Bacterianos/genética , Humanos , Pessoa de Meia-Idade , Fosfatidilgliceróis/farmacologia , Fosfolipídeos/farmacologia
2.
Proteins ; 89(7): 811-818, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33576049

RESUMO

The structure of heterotetrameric sarcosine oxidase (HSO) contains a highly complex system composed of a large cavity and tunnels, which are essential for the reaction and migration of the reactants, products, and intermediates. Previous geometrical analysis using the CAVER program has predicted that there are three possible tunnels, T1, T2, and T3, for the exit pathway of the iminium intermediate, 5-oxazolidinone (5-OXA), of the enzyme reaction. Previous molecular dynamics (MD) simulation of HSO has identified the regions containing the water channels from the density distribution of water. The simulation indicated that tunnel T3 is the most probable exit pathway of 5-OXA. In the present study, the potential of mean force (PMF) for the transport of 5-OXA through tunnels T1, T2, and T3 was calculated using umbrella sampling (US) MD simulations and the weighted histogram analysis method. The PMF profiles for the three tunnels support the notion that tunnel T3 is the exit pathway of 5-OXA, and that 5-OXA tends to stay at the middle of the tunnel. The maximum errors of the calculated PMF for the predicted exit pathway, tunnel T3, were estimated by repeating the US simulations using different sets of initial positions. The PMF profile was also calculated for the transport of glycine within T3. The PMF profiles from the US simulations were in good agreement with the previous predictions that 5-OXA escape through tunnel T3 and how glycine is released to the outside of HSO was discussed.


Assuntos
Proteínas de Bactérias/química , Corynebacterium/química , Glicina/química , Oxazolidinonas/química , Subunidades Proteicas/química , Sarcosina Oxidase/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Transporte Biológico , Corynebacterium/enzimologia , Glicina/metabolismo , Cinética , Simulação de Dinâmica Molecular , Oxazolidinonas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/metabolismo , Sarcosina Oxidase/metabolismo , Especificidade por Substrato , Termodinâmica
3.
BMC Plant Biol ; 21(1): 56, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33478381

RESUMO

BACKGROUND: Lignin deposited in plant cell walls negatively affects biomass conversion into advanced bioproducts. There is therefore a strong interest in developing bioenergy crops with reduced lignin content or altered lignin structures. Another desired trait for bioenergy crops is the ability to accumulate novel bioproducts, which would enhance the development of economically sustainable biorefineries. As previously demonstrated in the model plant Arabidopsis, expression of a 3-dehydroshikimate dehydratase in plants offers the potential for decreasing lignin content and overproducing a value-added metabolic coproduct (i.e., protocatechuate) suitable for biological upgrading. RESULTS: The 3-dehydroshikimate dehydratase QsuB from Corynebacterium glutamicum was expressed in the bioenergy crop switchgrass (Panicum virgatum L.) using the stem-specific promoter of an O-methyltransferase gene (pShOMT) from sugarcane. The activity of pShOMT was validated in switchgrass after observation in-situ of beta-glucuronidase (GUS) activity in stem nodes of plants carrying a pShOMT::GUS fusion construct. Under controlled growth conditions, engineered switchgrass lines containing a pShOMT::QsuB construct showed reductions of lignin content, improvements of biomass saccharification efficiency, and accumulated higher amount of protocatechuate compared to control plants. Attempts to generate transgenic switchgrass lines carrying the QsuB gene under the control of the constitutive promoter pZmUbi-1 were unsuccessful, suggesting possible toxicity issues associated with ectopic QsuB expression during the plant regeneration process. CONCLUSION: This study validates the transfer of the QsuB engineering approach from a model plant to switchgrass. We have demonstrated altered expression of two important traits: lignin content and accumulation of a co-product. We found that the choice of promoter to drive QsuB expression should be carefully considered when deploying this strategy to other bioenergy crops. Field-testing of engineered QsuB switchgrass are in progress to assess the performance of the introduced traits and agronomic performances of the transgenic plants.


Assuntos
Corynebacterium/enzimologia , Hidroliases/metabolismo , Lignina/biossíntese , Panicum/genética , Regiões Promotoras Genéticas/genética , Saccharum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Parede Celular/metabolismo , Corynebacterium/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Hidroliases/genética , Lignina/análise , Metiltransferases/genética , Especificidade de Órgãos , Panicum/crescimento & desenvolvimento , Panicum/metabolismo , Proteínas de Plantas/genética , Caules de Planta/enzimologia , Caules de Planta/genética , Plantas Geneticamente Modificadas , Saccharum/enzimologia
4.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33712427

RESUMO

ε-Poly-l-lysine is a potent antimicrobial produced through fermentation of Streptomyces and used in many Asian countries as a food preservative. It is synthesized and excreted by a special nonribosomal peptide synthetase (NRPS)-like enzyme called Pls. In this study, we discovered a gene from cheese bacterium Corynebacterium variabile that showed high similarity to the Pls from Streptomyces in terms of domain architecture and gene context. By cloning it into Streptomyces coelicolor with a Streptomyces albulus Pls promoter, we confirmed that its product is indeed ε-poly-l-lysine. A comprehensive sequence analysis suggested that Pls genes are widely spread among coryneform actinobacteria isolated from cheese and human skin; 14 out of 15 Brevibacterium isolates and 10 out of 12 Corynebacterium isolates contain it in their genomes. This finding raises the possibility that ε-poly-l-lysine as a bioactive secondary metabolite might be produced and play a role in the cheese and skin ecosystems.IMPORTANCE Every year, microbial contamination causes billions of tons of food wasted and millions of cases of illness. ε-Poly-l-lysine has potent, wide-spectrum inhibitory activity and is heat stable and biodegradable. It has been approved for food preservation by an increasing number of countries. ε-Poly-l-lysine is produced from soil bacteria of the genus Streptomyces, also producers of various antibiotic drugs and toxins and not considered to be a naturally occurring food component. The frequent finding of pls in cheese and skin bacteria suggests that ε-poly-l-lysine may naturally exist in cheese and on our skin, and ε-poly-l-lysine producers are not limited to filamentous actinobacteria.


Assuntos
Proteínas de Bactérias/genética , Corynebacterium/enzimologia , Peptídeo Sintases/genética , Queijo/microbiologia , Clonagem Molecular , Corynebacterium/genética , Humanos , Polilisina/metabolismo , Pele/microbiologia , Streptomyces/genética , Streptomyces coelicolor/genética
5.
PLoS Comput Biol ; 16(8): e1007898, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32797038

RESUMO

New treatments for diseases caused by antimicrobial-resistant microorganisms can be developed by identifying unexplored therapeutic targets and by designing efficient drug screening protocols. In this study, we have screened a library of compounds to find ligands for the flavin-adenine dinucleotide synthase (FADS) -a potential target for drug design against tuberculosis and pneumonia- by implementing a new and efficient virtual screening protocol. The protocol has been developed for the in silico search of ligands of unexplored therapeutic targets, for which limited information about ligands or ligand-receptor structures is available. It implements an integrative funnel-like strategy with filtering layers that increase in computational accuracy. The protocol starts with a pharmacophore-based virtual screening strategy that uses ligand-free receptor conformations from molecular dynamics (MD) simulations. Then, it performs a molecular docking stage using several docking programs and an exponential consensus ranking strategy. The last filter, samples the conformations of compounds bound to the target using MD simulations. The MD conformations are scored using several traditional scoring functions in combination with a newly-proposed score that takes into account the fluctuations of the molecule with a Morse-based potential. The protocol was optimized and validated using a compound library with known ligands of the Corynebacterium ammoniagenes FADS. Then, it was used to find new FADS ligands from a compound library of 14,000 molecules. A small set of 17 in silico filtered molecules were tested experimentally. We identified five inhibitors of the activity of the flavin adenylyl transferase module of the FADS, and some of them were able to inhibit growth of three bacterial species: C. ammoniagenes, Mycobacterium tuberculosis, and Streptococcus pneumoniae, where the last two are human pathogens. Overall, the results show that the integrative VS protocol is a cost-effective solution for the discovery of ligands of unexplored therapeutic targets.


Assuntos
Antibacterianos , Proteínas de Bactérias , Nucleotidiltransferases , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Corynebacterium/efeitos dos fármacos , Corynebacterium/enzimologia , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Ligantes , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo
6.
Appl Microbiol Biotechnol ; 104(12): 5505-5517, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32300856

RESUMO

ClpX and ClpP are involved in many important functions, including stress responses and energy metabolism, in microorganisms. However, the ClpX and ClpP of microbes used in industrial scale have rarely been studied. Industrial bacterial fermentation experiences a variety of stresses, and energy metabolism is extremely important for industrial bacteria. Thus, the role played by the ClpX and ClpP of industrial bacteria in fermentation should be investigated. Most microorganisms have a single clpP gene, while Corynebacterium crenatum AS 1.542 possesses two clpPs. Herein, the clpX, clpP1, and clpP2 of C. crenatum were cloned, and its fusion protein was expressed and characterized. We also constructed clpX deletion mutant and complementation strain. Results indicate that ClpX serves an important function in thermal, pH, and ethanol stresses. It is also involved in NADPH synthesis and glucose consumption during fermentation.


Assuntos
Corynebacterium/enzimologia , Endopeptidase Clp/metabolismo , Metabolismo Energético , Fermentação , Estresse Fisiológico , Clonagem Molecular , Corynebacterium/genética , Endopeptidase Clp/genética , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Microbiologia Industrial , Deleção de Sequência
7.
Int J Mol Sci ; 21(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466340

RESUMO

The last step in the biosynthesis of flavin adenine dinucleotide (FAD) is considered a target for the design of antimicrobial drugs because it is carried out by two non-homologous proteins in eukaryotic and prokaryotic organisms. Monofunctional FMN: adenylyltransferases (FMNAT) in Eukarya and FMNAT modules of bifunctional FAD synthases (FADS) in Prokarya belong to different structural families with dissimilar chemistry and binding modes for the substrates. In this study, we analyzed the relevance of the hydrophobic environment of the flavin isoalloxazine in the FMNAT active site of Corynebacterium ammoniagenes FADS (CaFADS) through the mutational analysis of its F62, Y106, and F128 residues. They form the isoalloxazine binding cavity and are highly conserved in the prokaryotic FADS family. The spectroscopic, steady-state kinetics and thermodynamic data presented indicate that distortion of aromaticity at the FMNAT isoalloxazine binding cavity prevents FMN and FAD from correct accommodation in their binding cavity and, as a consequence, decreases the efficiency of the FMNAT activity. Therefore, the side-chains of F62, Y106 and F128 are relevant in the formation of the catalytic competent complex during FMNAT catalysis in CaFADS. The introduced mutations also modulate the activity occurring at the riboflavin kinase (RFK) module of CaFADS, further evidencing the formation of quaternary assemblies during catalysis.


Assuntos
Proteínas de Bactérias/química , Domínio Catalítico , Nucleotidiltransferases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium/enzimologia , Dinitrocresóis/química , Dinitrocresóis/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Mutação , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fenilalanina/química , Ligação Proteica , Tirosina/química
8.
Nat Chem Biol ; 13(4): 363-365, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28218912

RESUMO

In this study, we engineered fatty acid synthases (FAS) for the biosynthesis of short-chain fatty acids and polyketides, guided by a combined in vitro and in silico approach. Along with exploring the synthetic capability of FAS, we aim to build a foundation for efficient protein engineering, with the specific goal of harnessing evolutionarily related megadalton-scale polyketide synthases (PKS) for the tailored production of bioactive natural compounds.


Assuntos
Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Policetídeos/metabolismo , Engenharia de Proteínas , Corynebacterium/enzimologia , Ácido Graxo Sintases/genética , Modelos Moleculares , Estrutura Molecular , Policetídeos/química
9.
Int J Mol Sci ; 20(20)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31614972

RESUMO

Bifunctional FAD synthases (FADSs) catalyze FMN (flavin mononucleotide) and FAD (flavinadenine dinucleotide) biosynthesis at their C-riboflavin kinase (RFK) and N-FMN:adenylyltransferase (FMNAT) modules, respectively. Biophysical properties and requirements for their FMNAT activity differ among species. Here, we evaluate the relevance of the integrity of the binding site of the isoalloxazine of flavinic substrates for FMNAT catalysis in Corynebacterium ammoniagenes FADS (CaFADS). We have substituted P56 and P58, belonging to a conserved motif, as well as L98. These residues shape the isoalloxazine FMNAT site, although they are not expected to directly contact it. All substitutions override enzyme ability to transform substrates at the FMNAT site, although most variants are able to bind them. Spectroscopic properties and thermodynamic parameters for the binding of ligands indicate that mutations alter their interaction modes. Substitutions also modulate binding and kinetic properties at the RFK site, evidencing the crosstalk of different protomers within CaFADS assemblies during catalysis. In conclusion, despite the FMNAT site for the binding of substrates in CaFADS appearing as a wide open cavity, it is finely tuned to provide the competent binding conformation of substrates. In particular, P56, P58 and L98 shape the isoalloxazine site to place the FMN- and FAD-reacting phosphates in optimal geometry for catalysis.


Assuntos
Corynebacterium/enzimologia , Óxido Nítrico Sintase/química , Nucleotidiltransferases/química , Termodinâmica , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Domínio Catalítico/genética , Corynebacterium/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Cinética , Ligantes , Modelos Moleculares , Óxido Nítrico Sintase/genética , Nucleotidiltransferases/genética , Especificidade por Substrato
10.
World J Microbiol Biotechnol ; 35(4): 62, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30923994

RESUMO

Bacterial L-aspartate α-decarboxylase (PanD) is a potential biocatalyst for the green production of ß-alanine, an important block chemical for manufacturing nitrogen-containing chemicals in bio-refinery field. It was reported that the poor catalytic stability caused by substrate inactivation limited the large-scale application. Here, we investigated the characters of inactivation by L-aspartate of PanD from Corynebacterium jeikeium (PDCjei), and found that L-aspartate induced a time-, and concentration-dependent inactivation of PDCjei with the values of KI and kinact being 288.4 mM and 0.235/min, respectively. To improve the catalytic stability of PDCjei, conserved amino acid residues essential to catalytic stability were analyzed by comparing the discrepancy in the observed inactivation rate of various sources. By an efficient colorimetric high-throughput screening method, four mutants with 3.18-24.69% higher activity were obtained from mutant libraries. Among them, the best mutation (R3K) also performed 66.38% higher catalytic stability than the wild type, showing great potential for industrial bio-production of ß-alanine.


Assuntos
Ácido Aspártico/metabolismo , Corynebacterium/enzimologia , Estabilidade Enzimática , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Mutagênese Sítio-Dirigida , Sequência de Aminoácidos , Ácido Aspártico/farmacologia , Bactérias/enzimologia , Carboxiliases/genética , Carboxiliases/metabolismo , Domínio Catalítico/genética , Estabilidade Enzimática/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glutamato Descarboxilase/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Microbiologia Industrial , Cinética , Alinhamento de Sequência , Especificidade por Substrato , Fatores de Tempo , beta-Alanina/biossíntese
11.
Biophys J ; 115(6): 988-995, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30177440

RESUMO

Flavin mononucleotide (FMN) and flavin-adenine dinucleotide (FAD) are essential flavoprotein cofactors. A riboflavin kinase (RFK) activity catalyzes riboflavin phosphorylation to FMN, which can then be transformed into FAD by an FMN:adenylyltransferase (FMNAT) activity. Two enzymes are responsible for each one of these activities in eukaryotes, whereas prokaryotes have a single bifunctional enzyme, FAD synthase (FADS). FADS folds in two independent modules: the C-terminal with RFK activity and the N-terminal with FMNAT activity. Differences in structure and chemistry for the FMNAT catalysis among prokaryotic and eukaryotic enzymes pointed to the FMNAT activity of prokaryotic FADS as a potential antimicrobial target, making the structural model of the bacterial FMNAT module in complex with substrates relevant to understand the FADS catalytic mechanism and to the discovery of antimicrobial drugs. However, such a crystallographic complex remains elusive. Here, we have used molecular docking and molecular dynamics simulations to generate energetically stable interactions of the FMNAT module of FADS from Corynebacterium ammoniagenes with ATP/Mg2+ and FMN in both the monomeric and dimer-of-trimers assemblies reported for this protein. For the monomer, we have identified the residues that accommodate the reactive phosphates in a conformation compatible with catalysis. Interestingly, for the dimer-of-trimers conformation, we have found that the RFK module negatively influences FMN binding at the interacting FMNAT module. These results agree with calorimetric data of purified samples containing nearly 100% monomer or nearly 100% dimer-of-trimers, indicating that FMN binds to the monomer but not to the dimer-of-trimers. Such observations support regulation of flavin homeostasis by quaternary C. ammoniagenes FADS assemblies.


Assuntos
Biocatálise , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Multimerização Proteica , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Coenzimas/metabolismo , Corynebacterium/enzimologia , Mononucleotídeo de Flavina/metabolismo , Simulação de Acoplamento Molecular , Estrutura Quaternária de Proteína
12.
J Bacteriol ; 200(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29440253

RESUMO

The actinobacterium Corynebacterium matruchotii has been implicated in nucleation of oral microbial consortia leading to biofilm formation. Due to the lack of genetic tools, little is known about basic cellular processes, including protein secretion and folding, in this organism. We report here a survey of the C. matruchotii genome, which encodes a large number of exported proteins containing paired cysteine residues, and identified an oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA (MdbACd). Crystallization studies uncovered that the 1.2-Å resolution structure of C. matruchotii MdbA (MdbACm) possesses two conserved features found in actinobacterial MdbA enzymes, a thioredoxin-like fold and an extended α-helical domain. By reconstituting the disulfide bond-forming machine in vitro, we demonstrated that MdbACm catalyzes disulfide bond formation within the actinobacterial pilin FimA. A new gene deletion method supported that mdbA is essential in C. matruchotii Remarkably, heterologous expression of MdbACm in the C. diphtheriae ΔmdbA mutant rescued its known defects in cell growth and morphology, toxin production, and pilus assembly, and this thiol-disulfide oxidoreductase activity required the catalytic motif CXXC. Altogether, the results suggest that MdbACm is a major thiol-disulfide oxidoreductase, which likely mediates posttranslocational protein folding in C. matruchotii by a mechanism that is conserved in ActinobacteriaIMPORTANCE The actinobacterium Corynebacterium matruchotii has been implicated in the development of oral biofilms or dental plaque; however, little is known about the basic cellular processes in this organism. We report here a high-resolution structure of a C. matruchotii oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA. By biochemical analysis, we demonstrated that C. matruchotii MdbA catalyzes disulfide bond formation in vitro Furthermore, a new gene deletion method revealed that deletion of mdbA is lethal in C. matruchotii Remarkably, C. matruchotii MdbA can replace C. diphtheriae MdbA to maintain normal cell growth and morphology, toxin production, and pilus assembly. Overall, our studies support the hypothesis that C. matruchotii utilizes MdbA as a major oxidoreductase to catalyze oxidative protein folding.


Assuntos
Proteínas de Bactérias/química , Corynebacterium/enzimologia , Corynebacterium/genética , Proteína Dissulfeto Redutase (Glutationa)/química , Proteínas de Bactérias/genética , Biofilmes , Catálise , Corynebacterium diphtheriae/enzimologia , Corynebacterium diphtheriae/genética , Dissulfetos/química , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Deleção de Genes , Genoma Bacteriano , Modelos Moleculares , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Proteína Dissulfeto Redutase (Glutationa)/genética
13.
J Biol Chem ; 292(23): 9652-9665, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28420730

RESUMO

The bifunctional flavoenzyme proline utilization A (PutA) catalyzes the two-step oxidation of proline to glutamate using separate proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase active sites. Because PutAs catalyze sequential reactions, they are good systems for studying how metabolic enzymes communicate via substrate channeling. Although mechanistically similar, PutAs vary widely in domain architecture, oligomeric state, and quaternary structure, and these variations represent different structural solutions to the problem of sequestering a reactive metabolite. Here, we studied PutA from Corynebacterium freiburgense (CfPutA), which belongs to the uncharacterized 3B class of PutAs. A 2.7 Šresolution crystal structure showed the canonical arrangement of PRODH, l-glutamate-γ-semialdehyde dehydrogenase, and C-terminal domains, including an extended interdomain tunnel associated with substrate channeling. The structure unexpectedly revealed a novel open conformation of the PRODH active site, which is interpreted to represent the non-activated conformation, an elusive form of PutA that exhibits suboptimal channeling. Nevertheless, CfPutA exhibited normal substrate-channeling activity, indicating that it isomerizes into the active state under assay conditions. Sedimentation-velocity experiments provided insight into the isomerization process, showing that CfPutA dimerizes in the presence of a proline analog and NAD+ These results are consistent with the morpheein model of enzyme hysteresis, in which substrate binding induces conformational changes that promote assembly of a high-activity oligomer. Finally, we used domain deletion analysis to investigate the function of the C-terminal domain. Although this domain contains neither catalytic residues nor substrate sites, its removal impaired both catalytic activities, suggesting that it may be essential for active-site integrity.


Assuntos
Proteínas de Bactérias/química , Corynebacterium/enzimologia , Proteínas de Membrana/química , NAD/química , Multimerização Proteica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Corynebacterium/genética , Cristalografia por Raios X , Ácido Glutâmico/química , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , NAD/genética , NAD/metabolismo , Oxirredução , Prolina/química , Prolina/genética , Prolina/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade
14.
J Enzyme Inhib Med Chem ; 33(1): 241-254, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29258359

RESUMO

The increase of bacterial strains resistant to most of the available antibiotics shows a need to explore novel antibacterial targets to discover antimicrobial drugs. Bifunctional bacterial FAD synthetases (FADSs) synthesise the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These cofactors act in vital processes as part of flavoproteins, making FADS an essential enzyme. Bacterial FADSs are potential antibacterial targets because of differences to mammalian enzymes, particularly at the FAD producing site. We have optimised an activity-based high throughput screening assay targeting Corynebacterium ammoniagenes FADS (CaFADS) that identifies inhibitors of its different activities. We selected the three best high-performing inhibitors of the FMN:adenylyltransferase activity (FMNAT) and studied their inhibition mechanisms and binding properties. The specificity of the CaFADS hits was evaluated by studying also their effect on the Streptococcus pneumoniae FADS activities, envisaging differences that can be used to discover species-specific antibacterial drugs. The antimicrobial effect of these compounds was also evaluated on C. ammoniagenes, S. pneumoniae, and Mycobacterium tuberculosis cultures, finding hits with favourable antimicrobial properties.


Assuntos
Antibacterianos/farmacologia , Corynebacterium/enzimologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Nucleotidiltransferases/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Corynebacterium/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Streptococcus pneumoniae/efeitos dos fármacos , Relação Estrutura-Atividade
15.
Molecules ; 23(12)2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30572676

RESUMO

In this study, a novel monomer aspartokinase (AK) from Corynebacterium pekinense was identified, and its monomer model was constructed. Site 380 was identified by homologous sequencing and monomer model comparison as the key site which was conserved and located around the binding site of the inhibitor Lys. Furthermore, the mutant A380I with enzyme activity 11.32-fold higher than wild type AK (WT-AK), was obtained by site-directed mutagenesis and high throughput screening. In the mutant A380I, the optimal temperature was raised from 26 °C (WT-AK) to 28 °C, the optimal pH remained unchanged at 8.0, and the half-life was prolonged from 4.5 h (WT-AK) to 6.0 h, indicating enhanced thermal stability. The inhibition of A380I was weakened at various inhibitor concentrations and even activated at certain inhibitor concentrations (10 mM of Lys, 5 mM or 10 mM of Lys + Thr, 10 mM of Lys + Met, 5 mM of Lys + Thr + Met). Molecular dynamics simulation results indicated that the occupancy rate of hydrogen bond between A380I and ATP was enhanced, the effect of Lys (inhibitor) on the protein was weakened, and the angle between Ser281-Tyre358 and Asp359-Gly427 was increased after mutation, leading to an open conformation (R-state) that favored the binding of substrate.


Assuntos
Aspartato Quinase/metabolismo , Corynebacterium/enzimologia , Aspartato Quinase/genética , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Conformação Proteica , Temperatura
16.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt B): 3581-3592, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27345499

RESUMO

Mycobacterium and Corynebacterium are important genera of the Corynebacteriales order, the members of which are characterized by an atypical diderm cell envelope. Indeed the cytoplasmic membrane of these bacteria is surrounded by a thick mycolic acid-arabinogalactan-peptidoglycan (mAGP) covalent polymer. The mycolic acid-containing part of this complex associates with other lipids (mainly trehalose monomycolate (TMM) and trehalose dimycolate (TDM)) to form an outer membrane. The metabolism of mycolates in the cell envelope is governed by esterases called mycoloyltransferases that catalyze the transfer of mycoloyl chains from TMM to another TMM molecule or to other acceptors such as the terminal arabinoses of arabinogalactan or specific polypeptides. In this review we present an overview of this family of Corynebacteriales enzymes, starting with their expression, localization, structure and activity to finally discuss their putative functions in the cell. In addition, we show that Corynebacteriales possess multiple mycoloyltransferases encoding genes in their genome. The reason for this multiplicity is not known, as their function in mycolates biogenesis appear to be only partially redundant. It is thus possible that, in some species living in specific environments, some mycoloyltransferases have evolved to gain some new functions. In any case, the few characterized mycoloyltransferases are very important for the bacterial physiology and are also involved in adaptation in the host where they constitute major secreted antigens. Although not discussed in this review, all these functions make them interesting targets for the discovery of new antibiotics and promising vaccines candidates. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.


Assuntos
Aciltransferases/metabolismo , Membrana Celular/enzimologia , Corynebacterium/enzimologia , Família Multigênica , Ácidos Micólicos/metabolismo , Aciltransferases/química , Aciltransferases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Corynebacterium/genética
17.
Appl Microbiol Biotechnol ; 101(4): 1409-1417, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27738720

RESUMO

Cytidine diphosphate choline (CDP-choline) has been applied for treating acute craniocerebral injury and allowing recovery of consciousness after brain surgery. In this study, an acetate kinase (ACK)/acetyl phosphate system was used to supply ATP and combined with Escherichia coli-overexpressed CMP kinase (CMK), NDP kinase (NDK), choline phosphate cytidylyltransferase (CCT), and choline kinase (CKI) to produce CDP-choline from CMP and choline chloride. Within 1 h, 49 mM CDP-choline was produced, for a molar yield of 89.9 and 68.4 % based on CMP and choline chloride, respectively; the utilization efficiency of energy (UEE) was 79.5 %. Acetyl phosphate, sodium acetate, and CTP inhibited the reaction when the concentration exceeded 18.5, 600, and 30 mM, respectively. This inhibition could be overcome by controlling the rate of acetyl phosphate, CMP addition or using KOH instead of NaOH to regulate the pH in fed-batch transformation. After 24 h, the maximum titer was 124.1 ± 2.7 mM, the productivity was 5.1 ± 0.1 mM l-1 h-1, the molar yield to CMP and choline chloride were 83.8 and 63.7 %, respectively, and the UEE was 58.2 %. This high yield and productivity of CDP-choline through biocatalysis suggest future application at the industrial scale.


Assuntos
Colina-Fosfato Citidililtransferase/metabolismo , Corynebacterium/enzimologia , Corynebacterium/metabolismo , Citidina Difosfato Colina/metabolismo , Trifosfato de Adenosina/metabolismo , Biocatálise
18.
Appl Microbiol Biotechnol ; 101(12): 5019-5032, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28409383

RESUMO

Xylooligosaccharides (XOSs) and arabinoxylooligosaccharides (AXOSs) are major oligosaccharides derived from arabinoxylan. In our previous report, Corynebacterium glutamicum was engineered to utilize XOSs by introducing Corynebacterium alkanolyticum xyloside transporter and ß-xylosidase. However, this strain was unable to consume AXOSs due to the absence of α-L-arabinofuranosidase activity. In this study, to confer AXOS utilization ability on C. glutamicum, two putative arabinofuranosidase genes (abf51A and abf51B) were isolated from C. alkanolyticum by the combination of degenerate PCR and genome walking methods. Recombinant Abf51A and Abf51B heterologously expressed in Escherichia coli showed arabinofuranosidase activities toward 4-nitrophenyl-α-L-arabinofuranoside with k cat values of 150 and 63, respectively, with optimum at pH 6.0 to 6.5. However, Abf51A showed only a slight activity toward AXOSs and was more susceptible to product inhibition by arabinose and xylose than Abf51B. Introduction of abf51B gene into the C. glutamicum XOS-utilizing strain enabled it to utilize AXOSs as well as XOSs. The xylI gene encoding a putative xylanase was found upstream of the C. alkanolyticum xyloside transporter genes. A signal peptide was predicted at the N-terminus of the xylI-encoding polypeptide, which indicated XylI was a secreted protein. Recombinant mature XylI protein heterologously expressed in E. coli showed a xylanase activity toward xylans from various plant sources with optimum at pH 6.5, and C. glutamicum recombinant strain expressing native XylI released xylose, xylobiose, xylotriose, and arabino-xylobiose from arabinoxylan. Finally, introduction of the xylI gene into the C. glutamicum AXOS-utilizing strain enabled it to directly utilize arabinoxylan.


Assuntos
Corynebacterium glutamicum/metabolismo , Corynebacterium/enzimologia , Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/metabolismo , Xilanos/metabolismo , Arabinose/análogos & derivados , Arabinose/metabolismo , Corynebacterium/genética , Corynebacterium glutamicum/genética , Dissacarídeos/metabolismo , Endo-1,4-beta-Xilanases/genética , Escherichia coli/genética , Glucuronatos/metabolismo , Glicosídeo Hidrolases/genética , Hidrólise , Oligossacarídeos/metabolismo , Proteínas Recombinantes/metabolismo , Trissacarídeos/metabolismo , Xilose/metabolismo
19.
Biochim Biophys Acta ; 1854(8): 897-906, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25801930

RESUMO

Prokaryotic FAD synthetases (FADSs) are bifunctional enzymes composed of two modules, the C-terminal module with ATP:riboflavin kinase (RFK) activity, and the N-terminus with ATP:FMN adenylyltransferase (FMNAT) activity. The FADS from Corynebacterium ammoniagenes, CaFADS, forms transient oligomers during catalysis. These oligomers are stabilized by several interactions between the RFK and FMNAT sites from neighboring protomers, which otherwise are separated in the monomeric enzyme. Among these inter-protomer interactions, the salt bridge between E268 at the RFK site and R66 at the FMNAT-module is particularly relevant, as E268 is the catalytic base of the kinase reaction. Here we have introduced point mutations at R66 to analyze the impact of the salt-bridge on ligand binding and catalysis. Interestingly, these mutations have only mild effects on ligand binding and kinetic properties of the FMNAT-module (where R66 is located), but considerably impair the RFK activity turnover. Substitutions of R66 also modulate the ratio between monomeric and oligomeric species and modify the quaternary arrangement observed by single-molecule methods. Therefore, our data further support the cross-talk between the RFK- and FMNAT-modules of neighboring protomers in the CaFADS enzyme, and establish the participation of R66 in the modulation of the geometry of the RFK active site during catalysis.


Assuntos
Corynebacterium/enzimologia , Nucleotidiltransferases/química , Substituição de Aminoácidos , Arginina/química , Arginina/genética , Arginina/metabolismo , Domínio Catalítico , Corynebacterium/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Mutação Puntual , Estrutura Quaternária de Proteína
20.
Proteins ; 83(12): 2230-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26422370

RESUMO

Halohydrin hydrogen-halide-lyase (H-Lyase) is a bacterial enzyme that is involved in the degradation of halohydrins. This enzyme catalyzes the intramolecular nucleophilic displacement of a halogen by a vicinal hydroxyl group in halohydrins to produce the corresponding epoxides. The epoxide products are subsequently hydrolyzed by an epoxide hydrolase, yielding the corresponding 1, 2-diol. Until now, six different H-Lyases have been studied. These H-Lyases are grouped into three subtypes (A, B, and C) based on amino acid sequence similarities and exhibit different enantioselectivity. Corynebacterium sp. strain N-1074 has two different isozymes of H-Lyase, HheA (A-type) and HheB (B-type). We have determined their crystal structures to elucidate the differences in enantioselectivity among them. All three groups share a similar structure, including catalytic sites. The lack of enantioselectivity of HheA seems to be due to the relatively wide size of the substrate tunnel compared to that of other H-Lyases. Among the B-type H-Lyases, HheB shows relatively high enantioselectivity compared to that of HheBGP1 . This difference seems to be due to amino acid replacements at the active site tunnel. The binding mode of 1, 3-dicyano-2-propanol at the catalytic site in the crystal structure of the HheB-DiCN complex suggests that the product should be (R)-epichlorohydrin, which agrees with the enantioselectivity of HheB. Comparison with the structure of HheC provides a clue for the difference in their enantioselectivity.


Assuntos
Corynebacterium/enzimologia , Liases/química , Liases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Epicloroidrina/metabolismo , Liases/genética , Modelos Moleculares , Nitrilas/química , Nitrilas/metabolismo , Propanóis/química , Propanóis/metabolismo , Conformação Proteica , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa