Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52.692
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(1): 4-8, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995517

RESUMO

The NIH BRAIN Initiative is entering a new phase. Three large new projects-a comprehensive human brain cell atlas, a whole mammalian brain microconnectivity map, and tools for precision access to brain cell types-promise to transform neuroscience research and the treatment of human brain disorders.


Assuntos
Encéfalo/metabolismo , Conectoma/métodos , Vias Neurais/metabolismo , Neurônios/metabolismo , Neurociências/métodos , Animais , Encefalopatias/metabolismo , Humanos , National Institutes of Health (U.S.) , Estados Unidos
2.
Cell ; 184(11): 3056-3074.e21, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33932339

RESUMO

The choroid plexus (ChP) in each brain ventricle produces cerebrospinal fluid (CSF) and forms the blood-CSF barrier. Here, we construct a single-cell and spatial atlas of each ChP in the developing, adult, and aged mouse brain. We delineate diverse cell types, subtypes, cell states, and expression programs in epithelial and mesenchymal cells across ages and ventricles. In the developing ChP, we predict a common progenitor pool for epithelial and neuronal cells, validated by lineage tracing. Epithelial and fibroblast cells show regionalized expression by ventricle, starting at embryonic stages and persisting with age, with a dramatic transcriptional shift with maturation, and a smaller shift in each aged cell type. With aging, epithelial cells upregulate host-defense programs, and resident macrophages upregulate interleukin-1ß (IL-1ß) signaling genes. Our atlas reveals cellular diversity, architecture and signaling across ventricles during development, maturation, and aging of the ChP-brain barrier.


Assuntos
Plexo Corióideo/embriologia , Plexo Corióideo/metabolismo , Fatores Etários , Envelhecimento/fisiologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiologia , Encefalopatias/genética , Encefalopatias/fisiopatologia , Diferenciação Celular/genética , Linhagem da Célula/genética , Plexo Corióideo/fisiologia , Células Epiteliais/metabolismo , Feminino , Masculino , Camundongos/embriologia , Camundongos Endogâmicos C57BL , Transdução de Sinais , Análise de Célula Única
3.
Cell ; 182(2): 267-269, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32707092

RESUMO

Brain disorders are at the leading edge of global disease burden worldwide. Effective therapies are lagging behind because most drugs cannot reach their targets in the brain because of the blood-brain barrier (BBB). The new development of a BBB transport vehicle may bring us a step closer to solve this problem.


Assuntos
Barreira Hematoencefálica/metabolismo , Encefalopatias/patologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Barreira Hematoencefálica/efeitos dos fármacos , Encefalopatias/metabolismo , Portadores de Fármacos/química , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/farmacologia , Receptores da Transferrina/imunologia , Receptores da Transferrina/metabolismo , Transcitose
4.
Cell ; 183(1): 16-27.e1, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882182

RESUMO

Neurological complications have emerged as a significant cause of morbidity and mortality in the ongoing COVID-19 pandemic. Beside respiratory insufficiency, many hospitalized patients exhibit neurological manifestations ranging from headache and loss of smell, to confusion and disabling strokes. COVID-19 is also anticipated to take a toll on the nervous system in the long term. Here, we will provide a critical appraisal of the potential for neurotropism and mechanisms of neuropathogenesis of SARS-CoV-2 as they relate to the acute and chronic neurological consequences of the infection. Finally, we will examine potential avenues for future research and therapeutic development.


Assuntos
Encefalopatias/etiologia , Infecções por Coronavirus/complicações , Transtornos do Olfato/etiologia , Pneumonia Viral/complicações , Acidente Vascular Cerebral/etiologia , Animais , Encefalopatias/epidemiologia , COVID-19 , Reanimação Cardiopulmonar/efeitos adversos , Infecções por Coronavirus/terapia , Humanos , Transtornos do Olfato/epidemiologia , Pandemias , Pneumonia Viral/terapia , Acidente Vascular Cerebral/epidemiologia
5.
Cell ; 166(5): 1247-1256.e4, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27565347

RESUMO

Zika virus (ZIKV) can be transmitted sexually between humans. However, it is unknown whether ZIKV replicates in the vagina and impacts the unborn fetus. Here, we establish a mouse model of vaginal ZIKV infection and demonstrate that, unlike other routes, ZIKV replicates within the genital mucosa even in wild-type (WT) mice. Mice lacking RNA sensors or transcription factors IRF3 and IRF7 resulted in higher levels of local viral replication. Furthermore, mice lacking the type I interferon (IFN) receptor (IFNAR) became viremic and died of infection after a high-dose vaginal ZIKV challenge. Notably, vaginal infection of pregnant dams during early pregnancy led to fetal growth restriction and infection of the fetal brain in WT mice. This was exacerbated in mice deficient in IFN pathways, leading to abortion. Our study highlights the vaginal tract as a highly susceptible site of ZIKV replication and illustrates the dire disease consequences during pregnancy.


Assuntos
Encefalopatias/virologia , Encéfalo/virologia , Retardo do Crescimento Fetal/virologia , Complicações Infecciosas na Gravidez/virologia , Vagina/virologia , Replicação Viral , Infecção por Zika virus/transmissão , Zika virus/fisiologia , Aborto Habitual/virologia , Animais , Encefalopatias/imunologia , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/imunologia , Fator Regulador 3 de Interferon/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Receptor de Interferon alfa e beta/genética
6.
Cell ; 158(6): 1446-1446.e1, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25215498

RESUMO

FMRP, or fragile X mental retardation protein is an RNA-binding protein. Mutations in the FMRP protein have been associated with neurological disease as have a number of its mRNA-binding targets. This SnapShot presents 40 bona fide FMRP targets for which mRNA binding and protein regulation have been robustly reported in mammals along with the diseases with which they have been associated.


Assuntos
Encefalopatias/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Transtornos Mentais/genética , RNA Mensageiro/metabolismo , Animais , Encefalopatias/metabolismo , Humanos , Transtornos Mentais/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
7.
Physiol Rev ; 101(1): 93-145, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32326824

RESUMO

Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.


Assuntos
Encefalopatias/fisiopatologia , Encéfalo/fisiologia , Conexinas/fisiologia , Neuroglia/fisiologia , Animais , Encefalopatias/tratamento farmacológico , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/fisiologia , Humanos
8.
Physiol Rev ; 101(3): 1309-1370, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000986

RESUMO

Posttranscriptional gene expression including splicing, RNA transport, translation, and RNA decay provides an important regulatory layer in many if not all molecular pathways. Research in the last decades has positioned RNA-binding proteins (RBPs) right in the center of posttranscriptional gene regulation. Here, we propose interdependent networks of RBPs to regulate complex pathways within the central nervous system (CNS). These are involved in multiple aspects of neuronal development and functioning, including higher cognition. Therefore, it is not sufficient to unravel the individual contribution of a single RBP and its consequences but rather to study and understand the tight interplay between different RBPs. In this review, we summarize recent findings in the field of RBP biology and discuss the complex interplay between different RBPs. Second, we emphasize the underlying dynamics within an RBP network and how this might regulate key processes such as neurogenesis, synaptic transmission, and synaptic plasticity. Importantly, we envision that dysfunction of specific RBPs could lead to perturbation within the RBP network. This would have direct and indirect (compensatory) effects in mRNA binding and translational control leading to global changes in cellular expression programs in general and in synaptic plasticity in particular. Therefore, we focus on RBP dysfunction and how this might cause neuropsychiatric and neurodegenerative disorders. Based on recent findings, we propose that alterations in the entire regulatory RBP network might account for phenotypic dysfunctions observed in complex diseases including neurodegeneration, epilepsy, and autism spectrum disorders.


Assuntos
Encefalopatias/metabolismo , Encéfalo/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Humanos
9.
Physiol Rev ; 101(1): 353-415, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816652

RESUMO

The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.


Assuntos
Vias Neurais/fisiologia , Sensação/fisiologia , Córtex Somatossensorial/fisiologia , Vibrissas/fisiologia , Animais , Encefalopatias/fisiopatologia , Interfaces Cérebro-Computador , Humanos , Camundongos , Transdução de Sinais/fisiologia , Vibrissas/inervação
10.
Nat Rev Neurosci ; 24(3): 134-152, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36653531

RESUMO

The midbrain dopamine (mDA) system is composed of molecularly and functionally distinct neuron subtypes that mediate specific behaviours and are linked to various brain diseases. Considerable progress has been made in identifying mDA neuron subtypes, and recent work has begun to unveil how these neuronal subtypes develop and organize into functional brain structures. This progress is important for further understanding the disparate physiological functions of mDA neurons and their selective vulnerability in disease, and will ultimately accelerate therapy development. This Review discusses recent advances in our understanding of molecularly defined mDA neuron subtypes and their circuits, ranging from early developmental events, such as neuron migration and axon guidance, to their wiring and function, and future implications for therapeutic strategies.


Assuntos
Encefalopatias , Neurônios Dopaminérgicos , Humanos , Neurônios Dopaminérgicos/fisiologia , Mesencéfalo , Encéfalo , Dopamina
11.
Nature ; 610(7933): 768-774, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36261532

RESUMO

Haem is an iron-containing tetrapyrrole that is critical for a variety of cellular and physiological processes1-3. Haem binding proteins are present in almost all cellular compartments, but the molecular mechanisms that regulate the transport and use of haem within the cell remain poorly understood2,3. Here we show that haem-responsive gene 9 (HRG-9) (also known as transport and Golgi organization 2 (TANGO2)) is an evolutionarily conserved haem chaperone with a crucial role in trafficking haem out of haem storage or synthesis sites in eukaryotic cells. Loss of Caenorhabditis elegans hrg-9 and its paralogue hrg-10 results in the accumulation of haem in lysosome-related organelles, the haem storage site in worms. Similarly, deletion of the hrg-9 homologue TANGO2 in yeast and mammalian cells induces haem overload in mitochondria, the site of haem synthesis. We demonstrate that TANGO2 binds haem and transfers it from cellular membranes to apo-haemoproteins. Notably, homozygous tango2-/- zebrafish larvae develop pleiotropic symptoms including encephalopathy, cardiac arrhythmia and myopathy, and die during early development. These defects partially resemble the symptoms of human TANGO2-related metabolic encephalopathy and arrhythmias, a hereditary disease caused by mutations in TANGO24-8. Thus, the identification of HRG-9 as an intracellular haem chaperone provides a biological basis for exploring the aetiology and treatment of TANGO2-related disorders.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Heme , Animais , Humanos , Arritmias Cardíacas/metabolismo , Encefalopatias/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Heme/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
12.
Am J Hum Genet ; 111(1): 48-69, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38118447

RESUMO

Brain imaging and genomics are critical tools enabling characterization of the genetic basis of brain disorders. However, imaging large cohorts is expensive and may be unavailable for legacy datasets used for genome-wide association studies (GWASs). Using an integrated feature selection/aggregation model, we developed an image-mediated association study (IMAS), which utilizes borrowed imaging/genomics data to conduct association mapping in legacy GWAS cohorts. By leveraging the UK Biobank image-derived phenotypes (IDPs), the IMAS discovered genetic bases underlying four neuropsychiatric disorders and verified them by analyzing annotations, pathways, and expression quantitative trait loci (eQTLs). A cerebellar-mediated mechanism was identified to be common to the four disorders. Simulations show that, if the goal is identifying genetic risk, our IMAS is more powerful than a hypothetical protocol in which the imaging results were available in the GWAS dataset. This implies the feasibility of reanalyzing legacy GWAS datasets without conducting additional imaging, yielding cost savings for integrated analysis of genetics and imaging.


Assuntos
Encefalopatias , Estudo de Associação Genômica Ampla , Humanos , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença , Locos de Características Quantitativas/genética , Fenótipo , Encefalopatias/genética , Polimorfismo de Nucleotídeo Único/genética
13.
Nat Rev Neurosci ; 23(6): 361-375, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35444305

RESUMO

Mapping human brain function is a long-standing goal of neuroscience that promises to inform the development of new treatments for brain disorders. Early maps of human brain function were based on locations of brain damage or brain stimulation that caused a functional change. Over time, this approach was largely replaced by technologies such as functional neuroimaging, which identify brain regions in which activity is correlated with behaviours or symptoms. Despite their advantages, these technologies reveal correlations, not causation. This creates challenges for interpreting the data generated from these tools and using them to develop treatments for brain disorders. A return to causal mapping of human brain function based on brain lesions and brain stimulation is underway. New approaches can combine these causal sources of information with modern neuroimaging and electrophysiology techniques to gain new insights into the functions of specific brain areas. In this Review, we provide a definition of causality for translational research, propose a continuum along which to assess the relative strength of causal information from human brain mapping studies and discuss recent advances in causal brain mapping and their relevance for developing treatments.


Assuntos
Encefalopatias , Neurociências , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Humanos , Neuroimagem/métodos
14.
Proc Natl Acad Sci U S A ; 121(5): e2309811121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252832

RESUMO

Nanomedicine has emerged as a revolutionary strategy of drug delivery. However, fundamentals of the nano-neuro interaction are elusive. In particular, whether nanocarriers can cross the blood-brain barrier (BBB) and release the drug cargo inside the brain, a basic process depicted in numerous books and reviews, remains controversial. Here, we develop an optical method, based on stimulated Raman scattering, for imaging nanocarriers in tissues. Our method achieves a suite of capabilities-single-particle sensitivity, chemical specificity, and particle counting capability. With this method, we visualize individual intact nanocarriers crossing the BBB of mouse brains and quantify the absolute number by particle counting. The fate of nanocarriers after crossing the BBB shows remarkable heterogeneity across multiple scales. With a mouse model of aging, we find that blood-brain transport of nanocarriers decreases with age substantially. This technology would facilitate development of effective therapeutics for brain diseases and clinical translation of nanocarrier-based treatment in general.


Assuntos
Encefalopatias , Nanomedicina , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Barreira Hematoencefálica/diagnóstico por imagem , Envelhecimento
15.
Proc Natl Acad Sci U S A ; 121(12): e2315707121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489388

RESUMO

KCTD10 belongs to the KCTD (potassiumchannel tetramerization domain) family, many members of which are associated with neuropsychiatric disorders. However, the biological function underlying the association with brain disorders remains to be explored. Here, we reveal that Kctd10 is highly expressed in neuronal progenitors and layer V neurons throughout brain development. Kctd10 deficiency triggers abnormal proliferation and differentiation of neuronal progenitors, reduced deep-layer (especially layer V) neurons, increased upper-layer neurons, and lowered brain size. Mechanistically, we screened and identified a unique KCTD10-interacting protein, KCTD13, associated with neurodevelopmental disorders. KCTD10 mediated the ubiquitination-dependent degradation of KCTD13 and KCTD10 ablation resulted in a considerable increase of KCTD13 expression in the developing cortex. KCTD13 overexpression in neuronal progenitors led to reduced proliferation and abnormal cell distribution, mirroring KCTD10 deficiency. Notably, mice with brain-specific Kctd10 knockout exhibited obvious motor deficits. This study uncovers the physiological function of KCTD10 and provides unique insights into the pathogenesis of neurodevelopmental disorders.


Assuntos
Encefalopatias , Transtornos do Neurodesenvolvimento , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Camundongos , Proteínas/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Transtornos do Neurodesenvolvimento/genética , Encefalopatias/genética , Neurogênese/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo
16.
Physiol Rev ; 99(4): 1877-2013, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31460832

RESUMO

The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson's disease, and Alzheimer's disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.


Assuntos
Bactérias/metabolismo , Encefalopatias/microbiologia , Encéfalo/microbiologia , Microbioma Gastrointestinal , Intestinos/microbiologia , Fatores Etários , Envelhecimento , Animais , Bactérias/imunologia , Bactérias/patogenicidade , Comportamento , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Encefalopatias/metabolismo , Encefalopatias/fisiopatologia , Encefalopatias/psicologia , Disbiose , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/microbiologia , Sistema Nervoso Entérico/fisiopatologia , Interações Hospedeiro-Patógeno , Humanos , Intestinos/imunologia , Neuroimunomodulação , Plasticidade Neuronal , Fatores de Risco
17.
Hum Mol Genet ; 33(15): 1328-1338, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38692286

RESUMO

Syntaxin-binding protein 1 (STXBP1) is a presynaptic protein that plays important roles in synaptic vesicle docking and fusion. STXBP1 haploinsufficiency causes STXBP1 encephalopathy (STXBP1-E), which encompasses neurological disturbances including epilepsy, neurodevelopmental disorders, and movement disorders. Most patients with STXBP1-E present with regression and movement disorders in adulthood, highlighting the importance of a deeper understanding of the neurodegenerative aspects of STXBP1-E. An in vitro study proposed an interesting new role of STXBP1 as a molecular chaperone for α-Synuclein (αSyn), a key molecule in the pathogenesis of neurodegenerative disorders. However, no studies have shown αSyn pathology in model organisms or patients with STXBP1-E. In this study, we used Drosophila models to examine the effects of STXBP1 haploinsufficiency on αSyn-induced neurotoxicity in vivo. We demonstrated that haploinsufficiency of Ras opposite (Rop), the Drosophila ortholog of STXBP1, exacerbates compound eye degeneration, locomotor dysfunction, and dopaminergic neurodegeneration in αSyn-expressing flies. This phenotypic aggravation was associated with a significant increase in detergent-insoluble αSyn levels in the head. Furthermore, we tested whether trehalose, which has neuroprotective effects in various models of neurodegenerative disorders, mitigates αSyn-induced neurotoxicity exacerbated by Rop haploinsufficiency. In flies expressing αSyn and carrying a heterozygous Rop null variant, trehalose supplementation effectively alleviates neuronal phenotypes, accompanied by a decrease in detergent-insoluble αSyn in the head. In conclusion, this study revealed that Rop haploinsufficiency exacerbates αSyn-induced neurotoxicity by altering the αSyn aggregation propensity. This study not only contributes to understanding the mechanisms of neurodegeneration in STXBP1-E patients, but also provides new insights into the pathogenesis of α-synucleinopathies.


Assuntos
Modelos Animais de Doenças , Proteínas de Drosophila , Drosophila melanogaster , Haploinsuficiência , Proteínas Munc18 , alfa-Sinucleína , Animais , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Haploinsuficiência/genética , Drosophila melanogaster/genética , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Sinucleinopatias/genética , Sinucleinopatias/patologia , Sinucleinopatias/metabolismo , Trealose/metabolismo , Encefalopatias/genética , Encefalopatias/patologia , Encefalopatias/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
18.
Am J Hum Genet ; 110(8): 1356-1376, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37421948

RESUMO

By converting physical forces into electrical signals or triggering intracellular cascades, stretch-activated ion channels allow the cell to respond to osmotic and mechanical stress. Knowledge of the pathophysiological mechanisms underlying associations of stretch-activated ion channels with human disease is limited. Here, we describe 17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment associated with progressive neurodegenerative brain changes carrying ten distinct heterozygous variants of TMEM63B, encoding for a highly conserved stretch-activated ion channel. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense, including the recurrent p.Val44Met in 7/17 individuals, or in-frame, all affecting conserved residues located in transmembrane regions of the protein. In 12 individuals, hematological abnormalities co-occurred, such as macrocytosis and hemolysis, requiring blood transfusions in some. We modeled six variants (p.Val44Met, p.Arg433His, p.Thr481Asn, p.Gly580Ser, p.Arg660Thr, and p.Phe697Leu), each affecting a distinct transmembrane domain of the channel, in transfected Neuro2a cells and demonstrated inward leak cation currents across the mutated channel even in isotonic conditions, while the response to hypo-osmotic challenge was impaired, as were the Ca2+ transients generated under hypo-osmotic stimulation. Ectopic expression of the p.Val44Met and p.Gly580Cys variants in Drosophila resulted in early death. TMEM63B-associated DEE represents a recognizable clinicopathological entity in which altered cation conductivity results in a severe neurological phenotype with progressive brain damage and early-onset epilepsy associated with hematological abnormalities in most individuals.


Assuntos
Encefalopatias , Deficiência Intelectual , Humanos , Encefalopatias/genética , Canais Iônicos/genética , Encéfalo , Deficiência Intelectual/genética , Fenótipo
19.
Am J Hum Genet ; 110(4): 681-690, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36996813

RESUMO

The blood-brain barrier (BBB) is an essential gatekeeper for the central nervous system and incidence of neurodevelopmental disorders (NDDs) is higher in infants with a history of intracerebral hemorrhage (ICH). We discovered a rare disease trait in thirteen individuals, including four fetuses, from eight unrelated families associated with homozygous loss-of-function variant alleles of ESAM which encodes an endothelial cell adhesion molecule. The c.115del (p.Arg39Glyfs∗33) variant, identified in six individuals from four independent families of Southeastern Anatolia, severely impaired the in vitro tubulogenic process of endothelial colony-forming cells, recapitulating previous evidence in null mice, and caused lack of ESAM expression in the capillary endothelial cells of damaged brain. Affected individuals with bi-allelic ESAM variants showed profound global developmental delay/unspecified intellectual disability, epilepsy, absent or severely delayed speech, varying degrees of spasticity, ventriculomegaly, and ICH/cerebral calcifications, the latter being also observed in the fetuses. Phenotypic traits observed in individuals with bi-allelic ESAM variants overlap very closely with other known conditions characterized by endothelial dysfunction due to mutation of genes encoding tight junction molecules. Our findings emphasize the role of brain endothelial dysfunction in NDDs and contribute to the expansion of an emerging group of diseases that we propose to rename as "tightjunctionopathies."


Assuntos
Encefalopatias , Moléculas de Adesão Celular , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Alelos , Encefalopatias/genética , Moléculas de Adesão Celular/genética , Células Endoteliais/metabolismo , Hemorragias Intracranianas/genética , Malformações do Sistema Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Junções Íntimas/genética , Humanos
20.
Annu Rev Neurosci ; 41: 299-322, 2018 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-29709205

RESUMO

Long-lasting changes of brain function in response to experience rely on diverse forms of activity-dependent synaptic plasticity. Chief among them are long-term potentiation and long-term depression of neurotransmitter release, which are widely expressed by excitatory and inhibitory synapses throughout the central nervous system and can dynamically regulate information flow in neural circuits. This review article explores recent advances in presynaptic long-term plasticity mechanisms and contributions to circuit function. Growing evidence indicates that presynaptic plasticity may involve structural changes, presynaptic protein synthesis, and transsynaptic signaling. Presynaptic long-term plasticity can alter the short-term dynamics of neurotransmitter release, thereby contributing to circuit computations such as novelty detection, modifications of the excitatory/inhibitory balance, and sensory adaptation. In addition, presynaptic long-term plasticity underlies forms of learning and its dysregulation participates in several neuropsychiatric conditions, including schizophrenia, autism, intellectual disabilities, neurodegenerative diseases, and drug abuse.


Assuntos
Encefalopatias/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Plasticidade Neuronal/fisiologia , Neurotransmissores/metabolismo , Animais , Humanos , Aprendizagem , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa