Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146.802
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 161(5): 999-1011, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26000480

RESUMO

Despite all modern advances in medicine, an effective drug treatment of obesity has not been found yet. Discovery of leptin two decades ago created hopes for treatment of obesity. However, development of leptin resistance has been a big obstacle, mitigating a leptin-centric treatment of obesity. Here, by using in silico drug-screening methods, we discovered that Celastrol, a pentacyclic triterpene extracted from the roots of Tripterygium Wilfordi (thunder god vine) plant, is a powerful anti-obesity agent. Celastrol suppresses food intake, blocks reduction of energy expenditure, and leads to up to 45% weight loss in hyperleptinemic diet-induced obese (DIO) mice by increasing leptin sensitivity, but it is ineffective in leptin-deficient (ob/ob) and leptin receptor-deficient (db/db) mouse models. These results indicate that Celastrol is a leptin sensitizer and a promising agent for the pharmacological treatment of obesity.


Assuntos
Fármacos Antiobesidade/administração & dosagem , Obesidade/tratamento farmacológico , Animais , Fármacos Antiobesidade/metabolismo , Metabolismo Energético , Perfilação da Expressão Gênica , Glucose/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos , Triterpenos Pentacíclicos , Extratos Vegetais/administração & dosagem , Tripterygium/química , Triterpenos/administração & dosagem
2.
Mol Cell ; 82(5): 889-890, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245455

RESUMO

Krastev et al. (2022) identify a cellular mechanism that counteracts cytotoxic trapping of PARP1 induced by clinical PARP inhibitors. SUMO-targeted ubiquitylation of trapped PARP1 is shown to trigger the enzymes' extraction from chromatin by the p97 ATPase.


Assuntos
Cromatina , Inibidores de Poli(ADP-Ribose) Polimerases , Cromatina/genética , Extratos Vegetais , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ubiquitinação/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 120(25): e2218096120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37311000

RESUMO

How did humans evolve from individualistic to collective foraging with sex differences in production and widespread sharing of plant and animal foods? While current evolutionary scenarios focus on meat, cooking, or grandparental subsidies, considerations of the economics of foraging for extracted plant foods (e.g., roots, tubers), inferred to be important for early hominins (∼6 to 2.5 mya), suggest that early hominins shared such foods with offspring and others. Here, we present a conceptual and mathematical model of early hominin food production and sharing, prior to the emergence of frequent hunting, cooking, and increased lifespan. We hypothesize that extracted plant foods were vulnerable to theft, and that male mate guarding protected females from food theft. We identify conditions favoring extractive foraging and food sharing across mating systems (i.e., monogamy, polygyny, promiscuity), and we assess which system maximizes female fitness with changes in the profitability of extractive foraging. Females extract foods and share them with males only when: i) extracting rather than collecting plant foods pays off energetically; and ii) males guard females. Males extract foods when they are sufficiently high in value, but share with females only under promiscuous mating and/or no mate guarding. These results suggest that if early hominins had mating systems with pair-bonds (monogamous or polygynous), then food sharing by adult females with unrelated adult males occurred before hunting, cooking, and extensive grandparenting. Such cooperation may have enabled early hominins to expand into more open, seasonal habitats, and provided a foundation for the subsequent evolution of human life histories.


Assuntos
Ração Animal , Carne , Feminino , Masculino , Adulto , Animais , Humanos , Comunicação Celular , Culinária , Extratos Vegetais
4.
Genes Cells ; 29(2): 111-130, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38069450

RESUMO

Blackcurrant (Ribes nigrum L.) is a classical fruit that has long been used to make juice, jam, and liqueur. Blackcurrant extract is known to relieve cells from DNA damage caused by hydrogen peroxide (H2 O2 ), methyl methane sulfonate (MMS), and ultraviolet (UV) radiation. We found that blackcurrant extract (BCE) stabilizes the ribosomal RNA gene cluster (rDNA), one of the most unstable regions in the genome, through repression of noncoding transcription in the intergenic spacer (IGS) which extended the lifespan in budding yeast. Reduced formation of extrachromosomal circles (ERCs) after exposure to fractionated BCE suggested that acidity of the growth medium impacted rDNA stability. Indeed, alteration of the acidity of the growth medium to pH ~4.5 by adding HCl increased rDNA stability and extended the lifespan. We identified RPD3 as the gene responsible for this change, which was mediated by the RPD3L histone deacetylase complex. In mammals, as inflammation sites in a tissue are acidic, DNA maintenance may be similarly regulated to prevent genome instability from causing cancer.


Assuntos
Longevidade , Transcrição Gênica , Animais , Genes de RNAr , DNA Ribossômico/genética , Extratos Vegetais , Mamíferos
5.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37798251

RESUMO

Natural products have successfully treated several diseases using a multi-component, multi-target mechanism. However, a precise mechanism of action (MOA) has not been identified. Systems pharmacology methods have been used to overcome these challenges. However, there is a limitation as those similar mechanisms of similar components cannot be identified. In this study, comparisons of physicochemical descriptors, molecular docking analysis and RNA-seq analysis were performed to compare the MOA of similar compounds and to confirm the changes observed when similar compounds were mixed and used. Various analyses have confirmed that compounds with similar structures share similar MOA. We propose an advanced method for in silico experiments in herbal medicine research based on the results. Our study has three novel findings. First, an advanced network pharmacology research method was suggested by partially presenting a solution to the difficulty in identifying multi-component mechanisms. Second, a new natural product analysis method was proposed using large-scale molecular docking analysis. Finally, various biological data and analysis methods were used, such as in silico system pharmacology, docking analysis and drug response RNA-seq. The results of this study are meaningful in that they suggest an analysis strategy that can improve existing systems pharmacology research analysis methods by showing that natural product-derived compounds with the same scaffold have the same mechanism.


Assuntos
Produtos Biológicos , Medicamentos de Ervas Chinesas , Plantas Medicinais , Simulação de Acoplamento Molecular , Transcriptoma , Produtos Biológicos/farmacologia , Extratos Vegetais , Medicina Tradicional Chinesa
6.
FASEB J ; 38(13): e23727, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877845

RESUMO

Oxidative stress is proposed as a regulatory element in various neurological disorders, which is involved in the progress of several neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Antioxidant drugs are widely used to alleviate neurodegenerative disorders. Astragalus membranaceus (Huangqi, AM) is a commonly used medicinal herb with a wide range of pharmacological effects. Here, the protective effect and mechanism of AM extract (AME) and its bioactive compounds against neurodegenerative disorders via alleviating oxidative stress were detected using adult Drosophila melanogaster. The drug safety was measured by development analysis; oxidative stress resistance ability was detected by survival rate under H2O2 environment; ROS level was detected by DHE staining and gstD1-GFP fluoresence assay; antioxidative abilitiy was represent by measuring antioxidant enzyme activity, antioxidative-related gene expression, and ATP and MFN2 levels. The neuroprotective effect was evaluated by lifespan and locomotion analysis in Aß42 transgenic and Pink1B9 mutants. AME dramatically increased the survival rates, improved the CAT activity, restored the decreased mRNA expressions of Sod1, Cat, and CncC under H2O2 stimulation, and ameliorated the neurobehavioral defects of the AD and PD. Thirteen small molecules in AM had antioxidant function, in which vanillic acid and daidzein had the most potent antioxidant effect. Vanillic acid and daidzein could increase the activities of SOD and CAT, GSH level, and the expressions of antioxidant genes. Vanillic acid could improve the levels of ATP and MFN2, and mRNA expressions of ND42 and SDHC to rescue mitochondrial dysfunction. Furthermore, vanillic acid ameliorated neurobehavioral defects of PD. Daidzein ameliorated neurobehavioral defect of Aß-induced AD mode. Taken together, AM plays a protective role in oxidative damage, thereby as a potential natural drug to treat neurodegenerative disorders.


Assuntos
Antioxidantes , Astragalus propinquus , Drosophila melanogaster , Doenças Neurodegenerativas , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Astragalus propinquus/química , Drosophila melanogaster/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Extratos Vegetais/farmacologia , Animais Geneticamente Modificados , Medicamentos de Ervas Chinesas/farmacologia , Peróxido de Hidrogênio , Peptídeos beta-Amiloides/metabolismo
7.
Methods ; 221: 73-81, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38123109

RESUMO

Research indicates that miRNAs present in herbal medicines are crucial for identifying disease markers, advancing gene therapy, facilitating drug delivery, and so on. These miRNAs maintain stability in the extracellular environment, making them viable tools for disease diagnosis. They can withstand the digestive processes in the gastrointestinal tract, positioning them as potential carriers for specific oral drug delivery. By engineering plants to generate effective, non-toxic miRNA interference sequences, it's possible to broaden their applicability, including the treatment of diseases such as hepatitis C. Consequently, delving into the miRNA-disease associations (MDAs) within herbal medicines holds immense promise for diagnosing and addressing miRNA-related diseases. In our research, we propose the SGAE-MDA model, which harnesses the strengths of a graph autoencoder (GAE) combined with a semi-supervised approach to uncover potential MDAs in herbal medicines more effectively. Leveraging the GAE framework, the SGAE-MDA model exactly integrates the inherent feature vectors of miRNAs and disease nodes with the regulatory data in the miRNA-disease network. Additionally, the proposed semi-supervised learning approach randomly hides the partial structure of the miRNA-disease network, subsequently reconstructing them within the GAE framework. This technique effectively minimizes network noise interference. Through comparison against other leading deep learning models, the results consistently highlighted the superior performance of the proposed SGAE-MDA model. Our code and dataset can be available at: https://github.com/22n9n23/SGAE-MDA.


Assuntos
MicroRNAs , MicroRNAs/genética , Algoritmos , Biologia Computacional/métodos , Aprendizado de Máquina Supervisionado , Extratos Vegetais
9.
PLoS Genet ; 18(2): e1010017, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108269

RESUMO

Slash pine (Pinus elliottii Engelm.) is an important timber and resin species in the United States, China, Brazil and other countries. Understanding the genetic basis of these traits will accelerate its breeding progress. We carried out a genome-wide association study (GWAS), transcriptome-wide association study (TWAS) and weighted gene co-expression network analysis (WGCNA) for growth, wood quality, and oleoresin traits using 240 unrelated individuals from a Chinese slash pine breeding population. We developed high quality 53,229 single nucleotide polymorphisms (SNPs). Our analysis reveals three main results: (1) the Chinese breeding population can be divided into three genetic groups with a mean inbreeding coefficient of 0.137; (2) 32 SNPs significantly were associated with growth and oleoresin traits, accounting for the phenotypic variance ranging from 12.3% to 21.8% and from 10.6% to 16.7%, respectively; and (3) six genes encoding PeTLP, PeAP2/ERF, PePUP9, PeSLP, PeHSP, and PeOCT1 proteins were identified and validated by quantitative real time polymerase chain reaction for their association with growth and oleoresin traits. These results could be useful for tree breeding and functional studies in advanced slash pine breeding program.


Assuntos
Pinus/crescimento & desenvolvimento , Pinus/genética , Extratos Vegetais/genética , Brasil , China , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética , Madeira/genética , Madeira/crescimento & desenvolvimento
10.
Genomics ; 116(1): 110751, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052259

RESUMO

Ageing is an evolutionarily conserved and irreversible biological process in different species. Numerous studies have reported that taking medicine is an effective approach to slow ageing. Lemon extract (LE) is a natural extract of lemon fruit that contains a variety of bioactive phytochemicals. Various forms of LE have been shown to play a role in anti-ageing and improving ageing-related diseases. However, studies on the molecular mechanism of LE in Drosophila ageing have not been reported. In this study, we found that 0.05 g/L LE could significantly extend Drosophila lifespan and greatly improve antioxidative and anti-heat stress abilities. Furthermore, transcriptome and metabolome analyses of 10 d flies between the LE-fed and control groups suggested that the differentially expressed gene ppo1 (Prophenoloxidase 1) and metabolite L-DOPA (Levodopa) were co-enriched in the tyrosine metabolism pathway. Overall, our results indicate that affecting metabolism was the main reason for LE extending Drosophila lifespan.


Assuntos
Drosophila , Longevidade , Animais , Drosophila/genética , Longevidade/genética , Drosophila melanogaster/genética , Transcriptoma , Perfilação da Expressão Gênica , Extratos Vegetais/farmacologia
11.
Med Res Rev ; 44(2): 457-496, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37589457

RESUMO

Neem (Azadirachta indica A. Juss.), a versatile evergreen tree recognized for its ethnopharmacological value, is a rich source of limonoids of the triterpenoid class, endowed with potent medicinal properties. Extracts of neem have been documented to display anticancer effects in diverse malignant cell lines as well as in preclinical animal models that has largely been attributed to the constituent limonoids. Of late, neem limonoids have become the cynosure of research attention as potential candidate agents for cancer prevention and therapy. Among the various limonoids found in neem, azadirachtin, epoxyazadiradione, gedunin, and nimbolide, have been extensively investigated for anticancer activity. Azadirachtin, a potent biodegradable pesticide, exhibits profound antiproliferative effects by preventing mitotic spindle formation and cell division. The antiproliferative activity of gedunin has been demonstrated to be mediated primarily via inhibition of heat shock protein90 and its client proteins. Epoxyazadiradione inhibits pro-inflammatory and kinase-driven signaling pathways to block tumorigenesis. Nimbolide, the most potent cytotoxic neem limonoid, inhibits the growth of cancer cells by regulating the phosphorylation of keystone kinases that drive oncogenic signaling besides modulating the epigenome. There is overwhelming evidence to indicate that neem limonoids exert anticancer effects by preventing the acquisition of hallmark traits of cancer, such as cell proliferation, apoptosis evasion, inflammation, invasion, angiogenesis, and drug resistance. Neem limonoids are value additions to the armamentarium of natural compounds that target aberrant oncogenic signaling to inhibit cancer development and progression.


Assuntos
Antineoplásicos , Azadirachta , Limoninas , Animais , Humanos , Limoninas/farmacologia , Antineoplásicos/farmacologia , Extratos Vegetais
12.
J Struct Biol ; 216(1): 108057, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38182035

RESUMO

Ctfplotter in the IMOD software package is a flexible program for determination of CTF parameters in tilt series images. It uses a novel approach to find astigmatism by measuring defocus in one-dimensional power spectra rotationally averaged over a series of restricted angular ranges. Comparisons with Ctffind, Gctf, and Warp show that Ctfplotter's estimated astigmatism is generally more reliable than that found by these programs that fit CTF parameters to two-dimensional power spectra, especially at higher tilt angles. In addition to that intrinsic advantage, Ctfplotter can reduce the variability in astigmatism estimates further by summing results over multiple tilt angles (typically 5), while still finding defocus for each individual image. Its fitting strategy also produces better phase estimates. The program now includes features for tuning the sampling of the power spectrum so that it is well-represented for analysis, and for determining an appropriate fitting range that can vary with tilt angle. It can thus be used automatically in a variety of situations, not just for fitting tilt series, and has been integrated into the SerialEM acquisition software for real-time determination of focus and astigmatism.


Assuntos
Algoritmos , Astigmatismo , Extratos Vegetais , Humanos , Astigmatismo/diagnóstico , Software , Processamento de Imagem Assistida por Computador/métodos , Microscopia Crioeletrônica/métodos
13.
Mol Pharmacol ; 105(5): 328-347, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38458772

RESUMO

Plant extracts have played a significant role in traditional medicine for centuries, contributing to improved health and the treatment of various human illnesses. G protein-coupled receptors (GPCRs) are crucial in numerous physiologic functions, and there is growing evidence suggesting their involvement in the therapeutic effects of many plant extracts. In recent years, scientists have identified an expanding number of isolated molecules responsible for the biologic activity of these extracts, with many believed to act on GPCRs. This article critically reviews the evidence supporting the modulation of GPCR function by these plant-derived molecules through direct binding. Structural information is now available for some of these molecules, allowing for a comparison of their binding mode with that of endogenous GPCR ligands. The final section explores future trends and challenges, focusing on the identification of new plant-derived molecules with both orthosteric and allosteric binding modes, as well as innovative strategies for designing GPCR ligands inspired by these plant-derived compounds. In conclusion, plant-derived molecules are anticipated to play an increasingly vital role as therapeutic drugs and serve as templates for drug design. SIGNIFICANCE STATEMENT: This minireview summarizes the most pertinent publications on isolated plant-derived molecules interacting with G protein-coupled receptors (GPCRs) and comments on available structural information on GPCR/plant-derived ligand pairs. Future challenges and trends for the isolation and characterization of plant-derived molecules and drug design are discussed.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Ligantes , Desenho de Fármacos , Extratos Vegetais , Regulação Alostérica
14.
J Cell Mol Med ; 28(8): e18302, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652115

RESUMO

The evolving landscape of personalized medicine necessitates a shift from traditional therapeutic interventions towards precision-driven approaches. Embracing this paradigm, our research probes the therapeutic efficacy of the aqueous crude extract (ACE) of Calocybe indica in cervical cancer treatment, merging botanical insights with advanced molecular research. We observed that ACE exerts significant influences on nuclear morphology and cell cycle modulation, further inducing early apoptosis and showcasing prebiotic attributes. Characterization of ACE have identified several phytochemicals including significant presence of octadeconoic acid. Simultaneously, utilizing advanced Molecular Dynamics (MD) simulations, we deciphered the intricate molecular interactions between Vascular Endothelial Growth Factor (VEGF) and Octadecanoic acid to establish C.indica's role as an anticancer agent. Our study delineates Octadecanoic acid's potential as a robust binding partner for VEGF, with comprehensive analyses from RMSD and RMSF profiles highlighting the stability and adaptability of the protein-ligand interactions. Further in-depth thermodynamic explorations via MM-GBSA calculations reveal the binding landscape of the VEGF-Octadecanoic acid complex. Emerging therapeutic innovations, encompassing proteolysis-targeting chimeras (PROTACs) and avant-garde nanocarriers, are discussed in the context of their synergy with compounds like Calocybe indica P&C. This convergence underscores the profound therapeutic potential awaiting clinical exploration. This study offers a holistic perspective on the promising therapeutic avenues facilitated by C. indica against cervical cancer, intricately woven with advanced molecular interactions and the prospective integration of precision therapeutics in modern oncology.


Assuntos
Simulação de Dinâmica Molecular , Extratos Vegetais , Neoplasias do Colo do Útero , Fator A de Crescimento do Endotélio Vascular , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Feminino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Medicina de Precisão/métodos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ligação Proteica , Simulação de Acoplamento Molecular
15.
J Cell Mol Med ; 28(8): e18303, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613362

RESUMO

Curcuma longa, best known for its culinary application as the main constituent of curry powder, has shown potential impact on the reproductive system. This study aimed to investigate the efficacy of Curcuma longa extract (CLE) on Kidney-Yang deficiency mice induced by hydrocortisone and the possible roles in testosterone secretion in Leydig cells. We evaluated male sexual behaviour, reproductive organ weight, testosterone levels, and histological tissue changes in hydrocortisone-induced mice. CLE effectively reversed hydrocortisone-induced Kidney-Yang deficiency syndrome by improving sexual behaviour, testis and epididymis weight, testosterone levels and reducing pathological damage. Our in vitro study further indicated that CLE stimulated testosterone production via upregulating the mRNA and protein expression of steroidogenic enzymes in Leydig cells. It significantly improved H89-inhibited protein expression of StAR and cAMP-response element-binding (CREB), as well as melatonin-suppressed StAR protein expression. The data obtained from this study suggest that CLE could alleviate Kidney-Yang deficiency symptoms and stimulate testosterone production by upregulating the steroidogenic pathway. This research identifies CLE as a potential nutraceutical option for addressing testosterone deficiency diseases.


Assuntos
Glomerulonefrite , Extratos Vegetais , Testosterona , Masculino , Animais , Camundongos , Células Intersticiais do Testículo , Curcuma , Hidrocortisona , Deficiência da Energia Yang
16.
J Cell Mol Med ; 28(6): e18050, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38400579

RESUMO

Current treatment options available for prostate cancer (PCa) patients have many adverse side effects and hence, new alternative therapies need to be explored. Anticancer potential of various phytochemicals derived from Calotropis procera has been studied in many cancers but no study has investigated the effect of leaf extract of C. procera on PCa cells. Hence, we investigated the effect of C. procera leaf extract (CPE) on cellular properties of androgen-independent PC-3 and androgen-sensitive 22Rv1 cells. A hydroalcoholic extract of C. procera was prepared and MTT assay was performed to study the effect of CPE on viability of PCa cells. The effect of CPE on cell division ability, migration capability and reactive oxygen species (ROS) production was studied using colony formation assay, wound-healing assay and 2',7'-dichlorodihydrofluorescein diacetate assay, respectively. Caspase activity assay and LDH assay were performed to study the involvement of apoptosis and necrosis in CPE-mediated cell death. Protein levels of cell cycle, antioxidant, autophagy and apoptosis markers were measured by western blot. The composition of CPE was identified using untargeted LC-MS analysis. Results showed that CPE decreased the viability of both the PCa cells, PC-3 and 22Rv1, in a dose- and time-dependent manner. Also, CPE significantly inhibited the colony-forming ability, migration and endogenous ROS production in both the cell lines. Furthermore, CPE significantly decreased NF-κB protein levels and increased the protein levels of the cell cycle inhibitor p27. A significant increase in expression of autophagy markers was observed in CPE-treated PC-3 cells while autophagy markers were downregulated in 22Rv1 cells after CPE exposure. Hence, it can be concluded that CPE inhibits PCa cell viability possibly by regulating the autophagy pathway and/or altering the ROS levels. Thus, CPE can be explored as a possible alternative therapeutic agent for PCa.


Assuntos
Calotropis , Porcelana Dentária , Ligas Metalo-Cerâmicas , Neoplasias da Próstata , Titânio , Masculino , Humanos , Linhagem Celular Tumoral , Calotropis/química , Calotropis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Androgênios/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Apoptose , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Autofagia , Proliferação de Células
17.
J Cell Mol Med ; 28(9): e18319, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742846

RESUMO

Knee osteoarthritis (KOA), a major health and economic problem facing older adults worldwide, is a degenerative joint disease. Glycyrrhiza uralensis Fisch. (GC) plays an integral role in many classic Chinese medicine prescriptions for treating knee osteoarthritis. Still, the role of GC in treating KOA is unclear. To explore the pharmacological mechanism of GC against KOA, UPLC-Q-TOF/MS was conducted to detect the main compounds in GC. The therapeutic effect of GC on DMM-induced osteoarthritic mice was assessed by histomorphology, µCT, behavioural tests, and immunohistochemical staining. Network pharmacology and molecular docking were used to predict the potential targets of GC against KOA. The predicted results were verified by immunohistochemical staining Animal experiments showed that GC had a protective effect on DMM-induced KOA, mainly in the improvement of movement disorders, subchondral bone sclerosis and cartilage damage. A variety of flavonoids and triterpenoids were detected in GC via UPLC-Q-TOF/MS, such as Naringenin. Seven core targets (JUN, MAPK3, MAPK1, AKT1, TP53, RELA and STAT3) and three main pathways (IL-17, NF-κB and TNF signalling pathways) were discovered through network pharmacology analysis that closely related to inflammatory response. Interestingly, molecular docking results showed that the active ingredient Naringenin had a good binding effect on anti-inflammatory-related proteins. In the verification experiment, after the intervention of GC, the expression levels of pp65 and F4/80 inflammatory indicators in the knee joint of KOA model mice were significantly downregulated. GC could improve the inflammatory environment in DMM-induced osteoarthritic mice thus alleviating the physiological structure and dysfunction of the knee joint. GC might play an important role in the treatment of knee osteoarthritis.


Assuntos
Glycyrrhiza uralensis , Simulação de Acoplamento Molecular , Farmacologia em Rede , Osteoartrite do Joelho , Animais , Glycyrrhiza uralensis/química , Camundongos , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Masculino , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Camundongos Endogâmicos C57BL
18.
J Cell Mol Med ; 28(8): e18356, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38668995

RESUMO

Trichospira verticillata is an annual herb that belongs to the family Asteraceae. Trichospira verticillata extract (TVE) elicits anti-plasmodial activity; however, there has been no detailed report about its anti-inflammatory effects and molecular mechanisms. In addition, herbal plants exhibit anti-inflammatory effects by suppressing the NLRP3 inflammasome. Therefore, the primary goal of this study was to examine the effects of TVE on NLRP3 inflammasome activation by measuring interleukin-1ß (IL-1ß) secretion. We treated lipopolysaccharides (LPS)-primed J774A.1 and THP-1 cells with TVE, which attenuated NLRP3 inflammasome activation. Notably, TVE did not affect nuclear factor-kappa B (NF-κB) signalling or intracellular reactive oxygen species (ROS) production and potassium efflux, suggesting that it inactivates the NLRP3 inflammasome via other mechanisms. Moreover, TVE suppressed the formation of apoptosis-associated speck-like protein (ASC) speck and oligomerization. Immunoprecipitation data revealed that TVE reduced the binding of NLRP3 to NIMA-related kinase 7 (NEK7), resulting in reduced ASC oligomerization and speck formation. Moreover, TVE alleviated neutrophilic asthma (NA) symptoms in mice. This study demonstrates that TVE modulates the binding of NLPR3 to NEK7, thereby reporting novel insights into the mechanism by which TVE inhibits NLRP3 inflammasome. These findings suggest TVE as a potential therapeutic of NLRP3 inflammasome-mediated diseases, particularly NA.


Assuntos
Anti-Inflamatórios , Asma , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neutrófilos , Espécies Reativas de Oxigênio , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Inflamassomos/metabolismo , Asma/metabolismo , Asma/tratamento farmacológico , Asma/imunologia , Asma/patologia , Camundongos , Anti-Inflamatórios/farmacologia , Humanos , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos , Quinases Relacionadas a NIMA/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Extratos Vegetais/farmacologia , Células THP-1
19.
Infect Immun ; 92(5): e0008024, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534100

RESUMO

Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here, we tested a panel of four well-studied phenolic compounds-caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate-for the effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses and likely contribute to the development of chronic and recurrent infections. In cell culture-based assays, only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.IMPORTANCEUrinary tract infections (UTIs) are exceptionally common and increasingly difficult to treat due to the ongoing rise and spread of antibiotic-resistant pathogens. Furthermore, the primary cause of UTIs, uropathogenic Escherichia coli (UPEC), can avoid antibiotic exposure and many host defenses by invading the epithelial cells that line the bladder surface. Here, we identified two plant-derived phenolic compounds that disrupt activation of the host machinery needed for UPEC entry into bladder cells. One of these compounds, resveratrol, effectively inhibited UPEC invasion of the bladder mucosa in a mouse UTI model, and both phenolic compounds significantly reduced host cell entry by other invasive pathogens. These findings suggest that select phenolic compounds could be used to supplement existing antibacterial therapeutics by denying uropathogens shelter within host cells and tissues and help explain some of the benefits attributed to traditional plant-based medicines.


Assuntos
Infecções por Escherichia coli , Quinase 1 de Adesão Focal , Fenóis , Extratos Vegetais , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Feminino , Humanos , Camundongos , Aderência Bacteriana/efeitos dos fármacos , Ácidos Cafeicos/farmacologia , Catequina/farmacologia , Catequina/análogos & derivados , Linhagem Celular , Células Epiteliais/microbiologia , Células Epiteliais/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/antagonistas & inibidores , Fenóis/farmacologia , Álcool Feniletílico/análogos & derivados , Extratos Vegetais/farmacologia , Resveratrol/farmacologia , Bexiga Urinária/microbiologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/patologia , Infecções Urinárias/microbiologia , Infecções Urinárias/tratamento farmacológico , Escherichia coli Uropatogênica/efeitos dos fármacos
20.
Plant Mol Biol ; 114(2): 23, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453737

RESUMO

Benzylisoquinoline alkaloids (BIAs) represent a significant class of secondary metabolites with crucial roles in plant physiology and substantial potential for clinical applications. CYP82 genes are involved in the formation and modification of various BIA skeletons, contributing to the structural diversity of compounds. In this study, Corydalis yanhusuo, a traditional Chinese medicine rich in BIAs, was investigated to identify the catalytic function of CYP82s during BIA formation. Specifically, 20 CyCYP82-encoding genes were cloned, and their functions were identified in vitro. Ten of these CyCYP82s were observed to catalyze hydroxylation, leading to the formation of protopine and benzophenanthridine scaffolds. Furthermore, the correlation between BIA accumulation and the expression of CyCYP82s in different tissues of C. yanhusuo was assessed their. The identification and characterization of CyCYP82s provide novel genetic elements that can advance the synthetic biology of BIA compounds such as protopine and benzophenanthridine, and offer insights into the biosynthesis of BIAs with diverse structures in C. yanhusuo.


Assuntos
Alcaloides , Benzilisoquinolinas , Corydalis , Benzofenantridinas , Corydalis/genética , Corydalis/química , Corydalis/metabolismo , Alcaloides/metabolismo , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa