Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
EMBO J ; 43(9): 1722-1739, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580775

RESUMO

Understanding the regulatory mechanisms facilitating hematopoietic stem cell (HSC) specification during embryogenesis is important for the generation of HSCs in vitro. Megakaryocyte emerged from the yolk sac and produce platelets, which are involved in multiple biological processes, such as preventing hemorrhage. However, whether megakaryocytes regulate HSC development in the embryonic aorta-gonad-mesonephros (AGM) region is unclear. Here, we use platelet factor 4 (PF4)-Cre;Rosa-tdTomato+ cells to report presence of megakaryocytes in the HSC developmental niche. Further, we use the PF4-Cre;Rosa-DTA (DTA) depletion model to reveal that megakaryocytes control HSC specification in the mouse embryos. Megakaryocyte deficiency blocks the generation and maturation of pre-HSCs and alters HSC activity at the AGM. Furthermore, megakaryocytes promote endothelial-to-hematopoietic transition in a OP9-DL1 coculture system. Single-cell RNA-sequencing identifies megakaryocytes positive for the cell surface marker CD226 as the subpopulation with highest potential in promoting the hemogenic fate of endothelial cells by secreting TNFSF14. In line, TNFSF14 treatment rescues hematopoietic cell function in megakaryocyte-depleted cocultures. Taken together, megakaryocytes promote production and maturation of pre-HSCs, acting as a critical microenvironmental control factor during embryonic hematopoiesis.


Assuntos
Células-Tronco Hematopoéticas , Megacariócitos , Animais , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Hematopoese/fisiologia , Mesonefro/embriologia , Mesonefro/metabolismo , Mesonefro/citologia , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Técnicas de Cocultura
2.
Cell ; 155(1): 215-27, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24074870

RESUMO

Hematopoietic stem cells (HSCs) develop from a specialized subpopulation of endothelial cells known as hemogenic endothelium (HE). Although the HE origin of HSCs is now well established in different species, the signaling pathways that control this transition remain poorly understood. Here, we show that activation of retinoic acid (RA) signaling in aorta-gonad-mesonephros-derived HE ex vivo dramatically enhanced its HSC potential, whereas conditional inactivation of the RA metabolizing enzyme retinal dehydrogenase 2 in VE-cadherin expressing endothelial cells in vivo abrogated HSC development. Wnt signaling completely blocked the HSC inductive effects of RA modulators, whereas inhibition of the pathway promoted the development of HSCs in the absence of RA signaling. Collectively, these findings position RA and Wnt signaling as key regulators of HSC development and in doing so provide molecular insights that will aid in developing strategies for their generation from pluripotent stem cells.


Assuntos
Células-Tronco Hematopoéticas/citologia , Tretinoína/metabolismo , Aldeído Oxirredutases/metabolismo , Animais , Aorta/citologia , Aorta/embriologia , Regulação para Baixo , Embrião de Mamíferos , Gônadas/citologia , Gônadas/embriologia , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/citologia , Camundongos , Receptores do Ácido Retinoico/metabolismo , Via de Sinalização Wnt
3.
Cell ; 155(5): 1104-18, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24238962

RESUMO

Cellular senescence disables proliferation in damaged cells, and it is relevant for cancer and aging. Here, we show that senescence occurs during mammalian embryonic development at multiple locations, including the mesonephros and the endolymphatic sac of the inner ear, which we have analyzed in detail. Mechanistically, senescence in both structures is strictly dependent on p21, but independent of DNA damage, p53, or other cell-cycle inhibitors, and it is regulated by the TGF-ß/SMAD and PI3K/FOXO pathways. Developmentally programmed senescence is followed by macrophage infiltration, clearance of senescent cells, and tissue remodeling. Loss of senescence due to the absence of p21 is partially compensated by apoptosis but still results in detectable developmental abnormalities. Importantly, the mesonephros and endolymphatic sac of human embryos also show evidence of senescence. We conclude that the role of developmentally programmed senescence is to promote tissue remodeling and propose that this is the evolutionary origin of damage-induced senescence.


Assuntos
Senescência Celular , Desenvolvimento Embrionário , Saco Endolinfático/embriologia , Mesonefro/embriologia , Animais , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Saco Endolinfático/citologia , Feminino , Humanos , Rim/embriologia , Masculino , Mesonefro/citologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo
4.
Blood ; 139(3): 343-356, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34517413

RESUMO

In vitro generation and expansion of hematopoietic stem cells (HSCs) holds great promise for the treatment of any ailment that relies on bone marrow or blood transplantation. To achieve this, it is essential to resolve the molecular and cellular pathways that govern HSC formation in the embryo. HSCs first emerge in the aorta-gonad-mesonephros (AGM) region, where a rare subset of endothelial cells, hemogenic endothelium (HE), undergoes an endothelial-to-hematopoietic transition (EHT). Here, we present full-length single-cell RNA sequencing (scRNA-seq) of the EHT process with a focus on HE and dorsal aorta niche cells. By using Runx1b and Gfi1/1b transgenic reporter mouse models to isolate HE, we uncovered that the pre-HE to HE continuum is specifically marked by angiotensin-I converting enzyme (ACE) expression. We established that HE cells begin to enter the cell cycle near the time of EHT initiation when their morphology still resembles endothelial cells. We further demonstrated that RUNX1 AGM niche cells consist of vascular smooth muscle cells and PDGFRa+ mesenchymal cells and can functionally support hematopoiesis. Overall, our study provides new insights into HE differentiation toward HSC and the role of AGM RUNX1+ niche cells in this process. Our expansive scRNA-seq datasets represents a powerful resource to investigate these processes further.


Assuntos
Embrião de Mamíferos/embriologia , Hemangioblastos/citologia , Hematopoese , Células-Tronco Hematopoéticas/citologia , Animais , Diferenciação Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Hemangioblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/citologia , Mesonefro/embriologia , Mesonefro/metabolismo , Camundongos , Análise de Célula Única , Transcriptoma , Peixe-Zebra
5.
Nature ; 533(7604): 487-92, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225119

RESUMO

Haematopoietic stem cells (HSCs) are derived early from embryonic precursors, such as haemogenic endothelial cells and pre-haematopoietic stem cells (pre-HSCs), the molecular identity of which still remains elusive. Here we use potent surface markers to capture the nascent pre-HSCs at high purity, as rigorously validated by single-cell-initiated serial transplantation. Then we apply single-cell RNA sequencing to analyse endothelial cells, CD45(-) and CD45(+) pre-HSCs in the aorta-gonad-mesonephros region, and HSCs in fetal liver. Pre-HSCs show unique features in transcriptional machinery, arterial signature, metabolism state, signalling pathway, and transcription factor network. Functionally, activation of mechanistic targets of rapamycin (mTOR) is shown to be indispensable for the emergence of HSCs but not haematopoietic progenitors. Transcriptome data-based functional analysis reveals remarkable heterogeneity in cell-cycle status of pre-HSCs. Finally, the core molecular signature of pre-HSCs is identified. Collectively, our work paves the way for dissection of complex molecular mechanisms regulating stepwise generation of HSCs in vivo, informing future efforts to engineer HSCs for clinical applications.


Assuntos
Diferenciação Celular , Rastreamento de Células/métodos , Células-Tronco Hematopoéticas/citologia , Análise de Célula Única/métodos , Animais , Aorta/citologia , Biomarcadores/análise , Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem da Célula , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Receptor de Proteína C Endotelial , Feminino , Feto/citologia , Gônadas/citologia , Células-Tronco Hematopoéticas/metabolismo , Antígenos Comuns de Leucócito/análise , Antígenos Comuns de Leucócito/metabolismo , Fígado/citologia , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina , Mesonefro/citologia , Camundongos , Complexos Multiproteicos/metabolismo , Receptores de Superfície Celular/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Transcriptoma
6.
Biochem Biophys Res Commun ; 558: 161-167, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33930817

RESUMO

Current understanding of hematopoietic stem cell (HSC) development comes from mouse models is considered to be evolutionarily conserved in human. However, the cross-species comparison of the transcriptomic profiles of developmental HSCs at single-cell level is still lacking. Here, we performed integrative transcriptomic analysis of a series of key cell populations during HSC development in human and mouse, including HSC-primed hemogenic endothelial cells and pre-HSCs in mid-gestational aorta-gonad-mesonephros (AGM) region, and mature HSCs in fetal liver and adult bone marrow. We demonstrated the general similarity of transcriptomic characteristics between corresponding cell populations of the two species. Of note, one of the previously transcriptomically defined hematopoietic stem progenitor cell (HSPC) populations with certain arterial characteristics in AGM region of human embryos showed close transcriptomic similarity to pre-HSCs in mouse embryos. On the other hand, the other two HSPC populations in human AGM region displayed molecular similarity with fetal liver HSPCs, suggesting the maturation in AGM before HSCs colonizing the fetal liver in human, which was different to that in mouse. Finally, we re-clustered cells based on the integrated dataset and illustrated the evolutionarily conserved molecular signatures of major cell populations. Our results revealed transcriptomic conservation of critical cell populations and molecular characteristics during HSC development between human and mouse, providing a resource and theoretic basis for future studies on mammalian HSC development and regeneration by using mouse models.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Transcriptoma , Animais , Diferenciação Celular/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Hemangioblastos/citologia , Hemangioblastos/metabolismo , Hematopoese/genética , Humanos , Mesonefro/citologia , Mesonefro/metabolismo , Camundongos , Família Multigênica , Análise de Célula Única/métodos , Especificidade da Espécie
7.
IUBMB Life ; 72(1): 45-52, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634421

RESUMO

Runx1 is an important haematopoietic transcription factor as stressed by its involvement in a number of haematological malignancies. Furthermore, it is a key regulator of the emergence of the first haematopoietic stem cells (HSCs) during development. The transcription factor Gata3 has also been linked to haematological disease and was shown to promote HSC production in the embryo by inducing the secretion of important niche factors. Both proteins are expressed in several different cell types within the aorta-gonads-mesonephros (AGM) region, in which the first HSCs are generated; however, a direct interaction between these two key transcription factors in the context of embryonic HSC production has not formally been demonstrated. In this current study, we have detected co-localisation of Runx1 and Gata3 in rare sub-aortic mesenchymal cells in the AGM. Furthermore, the expression of Runx1 is reduced in Gata3 -/- embryos, which also display a shift in HSC emergence. Using an AGM-derived cell line as a model for the stromal microenvironment in the AGM and performing ChIP-Seq and ChIP-on-chip experiments, we demonstrate that Runx1, together with other key niche factors, is a direct target gene of Gata3. In addition, we can pinpoint Gata3 binding to the Runx1 locus at specific enhancer elements which are active in the microenvironment. These results reveal a direct interaction between Gata3 and Runx1 in the niche that supports embryonic HSCs and highlight a dual role for Runx1 in driving the transdifferentiation of haemogenic endothelial cells into HSCs as well as in the stromal cells that support this process.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Endotélio Vascular/citologia , Fator de Transcrição GATA3/metabolismo , Células-Tronco Hematopoéticas/citologia , Animais , Aorta/citologia , Aorta/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Embrião de Mamíferos/metabolismo , Endotélio Vascular/metabolismo , Feminino , Fator de Transcrição GATA3/genética , Gônadas/citologia , Gônadas/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/citologia , Mesonefro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
8.
Biomed Microdevices ; 22(2): 34, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32377802

RESUMO

A fundamental limitation in the derivation of hematopoietic stem and progenitor cells is the imprecise understanding of human developmental hematopoiesis. Herein we established a multilayer microfluidic Aorta-Gonad-Mesonephros (AGM)-on-a-chip to emulate developmental hematopoiesis from pluripotent stem cells. The device consists of two layers of microchannels separated by a semipermeable membrane, which allows the co-culture of human hemogenic endothelial (HE) cells and stromal cells in a physiological relevant spatial arrangement to replicate the structure of the AGM. HE cells derived from human induced pluripotent stem cells (hiPSCs) were cultured on a layer of mesenchymal stromal cells in the top channel while vascular endothelial cells were co-cultured on the bottom side of the membrane within the microfluidic device. We show that this AGM-on-a-chip efficiently derives endothelial-to-hematopoietic transition (EHT) from hiPSCs compared with regular suspension culture. The presence of mesenchymal stroma and endothelial cells renders functional HPCs in vitro. We propose that the AGM-on-a-chip could serve as a platform to dissect the cellular and molecular mechanisms of human developmental hematopoiesis.


Assuntos
Aorta/citologia , Biomimética/instrumentação , Gônadas/citologia , Hematopoese , Dispositivos Lab-On-A-Chip , Mesonefro/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia
9.
Biochem Soc Trans ; 47(2): 591-601, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30902922

RESUMO

The first definitive blood cells during embryogenesis are derived from endothelial cells in a highly conserved process known as endothelial-to-haematopoietic transition (EHT). This conversion involves activation of a haematopoietic transcriptional programme in a subset of endothelial cells in the major vasculature of the embryo, followed by major morphological changes that result in transitioning cells rounding up, breaking the tight junctions to neighbouring endothelial cells and adopting a haematopoietic fate. The whole process is co-ordinated by a complex interplay of key transcription factors and signalling pathways, with additional input from surrounding tissues. Diverse model systems, including mouse, chick and zebrafish embryos as well as differentiation of pluripotent cells in vitro, have contributed to the elucidation of the details of the EHT, which was greatly accelerated in recent years by sophisticated live imaging techniques and advances in transcriptional profiling, such as single-cell RNA-Seq. A detailed knowledge of these developmental events is required in order to be able to apply it to the generation of haematopoietic stem cells from pluripotent stem cells in vitro - an achievement which is of obvious clinical importance. The aim of this review is to summarise the latest findings and describe how these may have contributed towards achieving this goal.


Assuntos
Endotélio/citologia , Animais , Aorta/citologia , Aorta/metabolismo , Endotélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Gônadas/citologia , Gônadas/metabolismo , Hematopoese/genética , Hematopoese/fisiologia , Humanos , Mesonefro/citologia , Mesonefro/metabolismo
10.
Blood ; 129(4): 509-519, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-27940477

RESUMO

Macrophages are key components of the innate immune system and play pivotal roles in immune response, organ development, and tissue homeostasis. Studies in mice and zebrafish have shown that tissue-resident macrophages derived from different hematopoietic origins manifest distinct developmental kinetics and colonization potential, yet the genetic programs controlling the development of macrophages of different origins remain incompletely defined. In this study, we use zebrafish, where tissue-resident macrophages arise from the rostral blood island (RBI) and ventral wall of dorsal aorta (VDA), the zebrafish hematopoietic tissue equivalents to the mouse yolk sac and aorta-gonad-mesonephros for myelopoiesis, to address this issue. We show that RBI- and VDA-born macrophages are orchestrated by distinctive regulatory networks formed by the E-twenty-six (Ets) transcription factors Pu.1 and Spi-b, the zebrafish ortholog of mouse spleen focus forming virus proviral integration oncogene B (SPI-B), and the helix-turn-helix DNA-binding domain containing protein Irf8. Epistatic studies document that during RBI macrophage development, Pu.1 acts upstream of Spi-b, which, upon induction by Pu.1, partially compensates the function of Pu.1. In contrast, Pu.1 and Spi-b act in parallel and cooperatively to regulate the development of VDA-derived macrophages. Interestingly, these two distinct regulatory networks orchestrate the RBI- and VDA-born macrophage development largely by regulating a common downstream gene, Irf8. Our study indicates that macrophages derived from different origins are governed by distinct genetic networks formed by the same repertoire of myeloid-specific transcription factors.


Assuntos
Linhagem da Célula/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Macrófagos/imunologia , Proteínas Proto-Oncogênicas/imunologia , Transativadores/imunologia , Peixe-Zebra/imunologia , Sequência de Aminoácidos , Animais , Aorta/citologia , Aorta/crescimento & desenvolvimento , Aorta/imunologia , Diferenciação Celular , Linhagem da Célula/genética , Embrião não Mamífero , Humanos , Imunidade Inata , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Macrófagos/citologia , Mesonefro/citologia , Mesonefro/crescimento & desenvolvimento , Mesonefro/imunologia , Camundongos , Especificidade de Órgãos , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/imunologia , Transdução de Sinais , Transativadores/genética , Saco Vitelino/citologia , Saco Vitelino/crescimento & desenvolvimento , Saco Vitelino/imunologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
11.
Mol Hum Reprod ; 24(5): 233-243, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29528446

RESUMO

STUDY QUESTION: Which set of antibodies can be used to identify migratory and early post-migratory human primordial germ cells (hPGCs)? STUDY FINDING: We validated the specificity of 33 antibodies for 31 markers, including POU5F1, NANOG, PRDM1 and TFAP2C as specific markers of hPGCs at 4.5 weeks of development of Carnegie stage (CS12-13), whereas KIT and SOX17 also marked the intra-aortic hematopoietic stem cell cluster in the aorta-gonad-mesonephros (AGM). WHAT IS KNOWN ALREADY: The dynamics of gene expression during germ cell development in mice is well characterized and this knowledge has proved crucial to allow the development of protocols for the in vitro derivation of functional gametes. Although there is a great interest in generating human gametes in vitro, it is still unclear which markers are expressed during the early stages of hPGC development and many studies use markers described in mouse to benchmark differentiation of human PGC-like cells (hPGCLCs). Early post-implantation development differs significantly between mice and humans, and so some germ cells markers, including SOX2, SOX17, IFITM3 and ITGA6 may not identify mPGCs and hPGCs equally well. STUDY DESIGN, SIZE, DURATION: This immunofluorescence study investigated the expression of putative hPGC markers in the caudal part of a single human embryo at 4.5 weeks of development. PARTICIPANTS/MATERIALS, SETTING, METHODS: We have investigated by immunofluorescence the expression of a set of 33 antibodies for 31 markers, including pluripotency, germ cell, adhesion, migration, surface, mesenchymal and epigenetic markers on paraffin sections of the caudal part, including the AGM region, of a single human embryo (CS12-13). The human material used was anonymously donated with informed consent from elective abortions without medical indication. MAIN RESULTS AND THE ROLE OF CHANCE: We observed germ cell specific expression of NANOG, TFAP2C and PRDM1 in POU5F1+ hPGCs in the AGM. The epigenetic markers H3K27me3 and 5mC were sufficient to distinguish hPGCs from the surrounding somatic cells. Some mPGC-markers were not detected in hPGCs, but marked other tissues; whereas other markers, such as ALPL, SOX17, KIT, TUBB3, ITGA6 marked both POU5F1+ hPGCs and other cells in the AGM. We used a combination of multiple markers, immunostaining different cellular compartments when feasible, to decrease the chance of misidentifying hPGCs. LARGE SCALE DATA: Non-applicable. LIMITATIONS REASONS FOR CAUTION: Material to study early human development is unique and very rare thus restricting the sample size. We have used a combination of antibodies limited by the number of paraffin sections available. WIDER IMPLICATIONS OF THE FINDINGS: Most of our knowledge on early gametogenesis has been obtained from model organisms such as mice and is extrapolated to humans. However, since there is a dedicated effort to produce human artificial gametes in vitro, it is of great importance to determine the expression and specificity of human-specific germ cell markers. We provide a systematic analysis of the expression of 31 different markers in paraffin sections of a CS12-13 embryo. Our results will help to set up a toolbox of markers to evaluate protocols to induce hPGCLCs in vitro. STUDY FUNDING AND COMPETING INTEREST(S): M.G.F. was funded by Fundação para a Ciência e Tecnologia (FCT) [SFRH/BD/78689/2011] and S.M.C.S.L. was funded by the Interuniversity Attraction Poles (IAP, P7/07) and the European Research Council Consolidator (ERC-CoG-725722-OVOGROWTH). The authors declare no conflict of interest.


Assuntos
Aorta/citologia , Gametogênese/fisiologia , Células Germinativas/citologia , Gônadas/citologia , Mesonefro/citologia , Aorta/embriologia , Aorta/metabolismo , Biomarcadores/metabolismo , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células Germinativas/metabolismo , Gônadas/embriologia , Gônadas/metabolismo , Humanos , Mesonefro/embriologia , Mesonefro/metabolismo
12.
Cell Tissue Res ; 369(2): 341-352, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28374149

RESUMO

Rabbit anti-serum against a myeloid-cell-specific peroxidase (Mpo) of Xenopus laevis was generated to identify myeloid cells in adult and larval animals. Smears of blood samples from adult hematopoietic organs were co-stained with Mpo and with XL-2, a mouse monoclonal antibody against a leukocyte common antigen. Lymphocytes found in the thymus and spleen were XL-2+Mpo- and granulocytes found in peripheral blood cells and the spleen were XL-2+Mpo+, indicating that double-staining with these two antibodies allowed classification of the leukocyte lineages. Immunohistochemical analysis of larval organs showed that XL-2+Mpo- cells were scattered throughout the liver, whereas XL-2+Mpo+ cells were present mainly in the cortex region. Interestingly, a cluster of XL-2+Mpo+ cells was found in the region of the larval mesonephric rudiment. The ratio of XL-2+Mpo+ cells to XL-2+ cells in the mesonephric region was approximately 80%, which was much higher than that found in other hematopoietic organs. In order to elucidate the embryonic origin of the myeloid cells in the tadpole mesonephros, grafting experiments between X. laevis and X. borealis embryos were performed to trace the X. borealis cells as donor cells. Among the embryonic tissues examined, the tailbud tissue at the early neurula stage contributed greatly to the myeloid cluster in the mesonephric region at stage 48. Therefore, at least four independent origins of the myeloid cell population can be traced in the Xenopus embryo.


Assuntos
Embrião não Mamífero/citologia , Células Mieloides/citologia , Xenopus laevis/embriologia , Animais , Anticorpos Monoclonais/metabolismo , Granulócitos/citologia , Larva , Macrófagos/citologia , Mesonefro/citologia , Peroxidase/metabolismo , Natação
13.
Cytokine ; 95: 35-42, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28235674

RESUMO

In the midgestation mouse embryo, hematopoietic cell clusters containing hematopoietic stem/progenitor cells arise in the aorta-gonad-mesonephros (AGM) region. We have previously reported that forced expression of the Sox17 transcription factor in CD45lowc-Kithigh AGM cells, which are the hematopoietic cellular component of the cell clusters, and subsequent coculture with OP9 stromal cells in the presence of three cytokines, stem cell factor (SCF), interleukin-3 (IL-3), and thrombopoietin (TPO), led to the formation and the maintenance of cell clusters with cells at an undifferentiated state in vitro. In this study, we investigated the role of each cytokine in the formation of hematopoietic cell clusters. We cultured Sox17-transduced AGM cells with each of the 7 possible combinations of the three cytokines. The size and the number of Sox17-transduced cell clusters in the presence of TPO, either alone or in combination, were comparable to that observed with the complete set of the three cytokines. Expression of TPO receptor, c-Mpl was almost ubiquitously expressed and maintained in Sox17-transduced hematopoietic cell clusters. In addition, the expression level of c-Mpl was highest in the CD45lowc-Kithigh cells among the Sox17-transduced cell clusters. Moreover, c-Mpl protein was highly expressed in the intra-aortic hematopoietic cell clusters in comparison with endothelial cells of dorsal aorta. Finally, stimulation of the endothelial cells prepared from the AGM region by TPO induced the production of hematopoietic cells. These results suggest that TPO contributes to the formation and the maintenance of hematopoietic cell clusters in the AGM region.


Assuntos
Aorta/citologia , Gônadas/citologia , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/citologia , Trombopoetina/fisiologia , Animais , Aorta/embriologia , Aorta/metabolismo , Células Cultivadas , Gônadas/embriologia , Gônadas/metabolismo , Interleucina-3/fisiologia , Mesonefro/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Receptores de Trombopoetina/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Transdução de Sinais , Fator de Células-Tronco/fisiologia , Transdução Genética
14.
Genesis ; 52(9): 771-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24920186

RESUMO

During development, vertebrates form a progression of up to three different kidneys that are comprised of functional units termed nephrons. Nephron composition is highly conserved across species, and an increasing appreciation of the similarities between zebrafish and mammalian nephron cell types has positioned the zebrafish as a relevant genetic system for nephrogenesis studies. A key component of the nephron blood filter is a specialized epithelial cell known as the podocyte. Podocyte research is of the utmost importance as a vast majority of renal diseases initiate with the dysfunction or loss of podocytes, resulting in a condition known as proteinuria that causes nephron degeneration and eventually leads to kidney failure. Understanding how podocytes develop during organogenesis may elucidate new ways to promote nephron health by stimulating podocyte replacement in kidney disease patients. In this review, we discuss how the zebrafish model can be used to study kidney development, and how zebrafish research has provided new insights into podocyte lineage specification and differentiation. Further, we discuss the recent discovery of podocyte regeneration in adult zebrafish, and explore how continued basic research using zebrafish can provide important knowledge about podocyte genesis in embryonic and adult environments. genesis 52:771-792, 2014. © 2014 Wiley Periodicals, Inc.


Assuntos
Mesonefro/citologia , Organogênese , Podócitos/citologia , Regeneração , Peixe-Zebra/embriologia , Animais , Diferenciação Celular , Humanos , Rim/embriologia , Modelos Animais
15.
Exp Cell Res ; 318(6): 705-15, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22289156

RESUMO

Long-term reconstituting hematopoietic stem cells first arise from the aorta of the aorta-gonad-mesonephros (AGM) region in a mouse embryo. We have previously reported that in cultures of the dispersed AGM region, CD45(low)c-Kit(+) cells possess the ability to reconstitute multilineage hematopoietic cells, but investigations are needed to show that this is not a cultured artifact and to clarify when and how this population is present. Based on the expression profile of CD45 and c-Kit in freshly dissociated AGM cells from embryonic day 9.5 (E9.5) to E12.5 and aorta cells in the AGM from E13.5 to E15.5, we defined six cell populations (CD45(-)c-Kit(-), CD45(-)c-Kit(low), CD45(-)c-Kit(high), CD45(low)c-Kit(high), CD45(high)c-Kit(high), and CD45(high)c-Kit(very low)). Among these six populations, CD45(low)c-Kit(high) cells were most able to form hematopoietic cell colonies, but their ability decreased after E11.5 and was undetectable at E13.5 and later. The CD45(low)c-Kit(high) cells showed multipotency in vitro. We demonstrated further enrichment of hematopoietic activity in the Hoechst dye-effluxing side population among the CD45(low)c-Kit(high) cells. Here, we determined that CD45(low)c-Kit(high) cells arise from the lateral plate mesoderm using embryonic stem cell-derived differentiation system. In conclusion, CD45(low)c-Kit(high) cells are the major hematopoietic cells of mouse AGM.


Assuntos
Aorta/citologia , Gônadas/citologia , Células-Tronco Hematopoéticas/citologia , Antígenos Comuns de Leucócito/metabolismo , Mesonefro/citologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Aorta/embriologia , Aorta/metabolismo , Diferenciação Celular , Gônadas/embriologia , Gônadas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/embriologia , Camundongos
16.
Dev Biol ; 352(1): 14-26, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21255566

RESUMO

During the differentiation of the mammalian embryonic testis, two compartments are defined: the testis cords and the interstitium. The testis cords give rise to the adult seminiferous tubules, whereas steroidogenic Leydig cells and other less well characterized cell types differentiate in the interstitium (the space between testis cords). Although the process of testis cord formation is essential for male development, it is not entirely understood. It has been viewed as a Sertoli-cell driven process, but growing evidence suggests that interstitial cells play an essential role during testis formation. However, little is known about the origin of the interstitium or the molecular and cellular diversity within this early stromal compartment. To better understand the process of mammalian gonad differentiation, we have undertaken an analysis of developing interstitial/stromal cells in the early mouse testis and ovary. We have discovered molecular heterogeneity in the interstitium and have characterized new markers of distinct cell types in the gonad: MAFB, C-MAF, and VCAM1. Our results show that at least two distinct progenitor lineages give rise to the interstitial/stromal compartment of the gonad: the coelomic epithelium and specialized cells along the gonad-mesonephros border. We demonstrate that both these populations give rise to interstitial precursors that can differentiate into fetal Leydig cells. Our analysis also reveals that perivascular cells migrate into the gonad from the mesonephric border along with endothelial cells and that these vessel-associated cells likely represent an interstitial precursor lineage. This study highlights the cellular diversity of the interstitial cell population and suggests that complex cell-cell interactions among cells in the interstitium are involved in testis morphogenesis.


Assuntos
Linhagem da Célula , Feto/citologia , Células Intersticiais do Testículo/citologia , Células-Tronco/citologia , Testículo/citologia , Testículo/embriologia , Animais , Diferenciação Celular , Movimento Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Intersticiais do Testículo/metabolismo , Fatores de Transcrição Maf/metabolismo , Masculino , Mesonefro/citologia , Mesonefro/metabolismo , Camundongos , Modelos Biológicos , Morfogênese , Células-Tronco/metabolismo , Testículo/irrigação sanguínea , Testículo/metabolismo
17.
Blood ; 115(14): 2806-9, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20154212

RESUMO

Runx1 is required for the emergence of hematopoietic stem cells (HSCs) from hemogenic endothelium during embryogenesis. However, its role in the generation and maintenance of HSCs during adult hematopoiesis remains uncertain. Here, we present analysis of a zebrafish mutant line carrying a truncation mutation, W84X, in runx1. The runx1(W84X/W84X) embryos showed blockage in the initiation of definitive hematopoiesis, but some embryos were able to recover from a larval "bloodless" phase and develop to fertile adults with multilineage hematopoiesis. Using cd41-green fluorescent protein transgenic zebrafish and lineage tracing, we demonstrated that the runx1(W84X/W84X) embryos developed cd41(+) HSCs in the aorta-gonad-mesonephros region, which later migrated to the kidney, the site of adult hematopoiesis. Overall, our data suggest that in zebrafish adult HSCs can be formed without an intact runx1.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Mutação , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Células-Tronco Hematopoéticas/citologia , Mesonefro/citologia , Mesonefro/embriologia , Mesonefro/metabolismo , Glicoproteína IIb da Membrana de Plaquetas/biossíntese , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
18.
Dev Dyn ; 240(6): 1600-12, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21491542

RESUMO

The metanephros is the functional organ in adult amniotes while the mesonephros degenerates. However, parallel tubulogenetic events are thought to exist between mesonephros and metanephros. Mesonephric tubules are retained in males and differentiate into efferent ducts of the male reproductive tract. By examining the murine mesonephric expression of markers of distinct stages and regions of metanephric nephrons during tubule formation and patterning, we provide further evidence to support this common morphogenetic mechanism. Renal vesicle, early proximal and distal tubule, loop of Henle, and renal corpuscle genes were expressed by mesonephric tubules. Vip, Slc6a20b, and Slc18a1 were male-specific. In contrast, mining of the GUDMAP database identified candidate late mesonephros-specific genes, 10 of which were restricted to the male. Among the male-specific genes are candidates for regulating ion/fluid balance within the efferent ducts, thereby regulating sperm maturation and genes marking tubule-associated neurons potentially critical for normal male reproductive tract function.


Assuntos
Diferenciação Celular/genética , Genes Controladores do Desenvolvimento , Mesonefro/embriologia , Néfrons/embriologia , Néfrons/metabolismo , Animais , Padronização Corporal/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Masculino , Mesonefro/citologia , Mesonefro/metabolismo , Mesonefro/fisiologia , Camundongos , Modelos Biológicos , Organogênese/genética , Organogênese/fisiologia , Distribuição Tecidual
19.
Dev Cell ; 11(2): 171-80, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16890157

RESUMO

Cytokines are important in adult hematopoiesis, yet their function in embryonic hematopoiesis has been largely unexplored. During development, hematopoietic stem cells (HSCs) are found in the aorta-gonad-mesonephros (AGM) region, yolk sac (YS), and placenta and require the Runx1 transcription factor for their normal generation. Since IL-3 is a Runx1 target and this cytokine acts on adult hematopoietic cells, we examined whether IL-3 affects HSCs in the mouse embryo. Using Runx1 haploinsufficient mice, we show that IL-3 amplifies HSCs from E11 AGM, YS, and placenta. Moreover, we show that IL-3 mutant embryos are deficient in HSCs and that IL-3 reveals the presence of HSCs in the AGM and YS prior to the stage at which HSCs are normally detected. Thus, our studies support an unexpected role for IL-3 during development and strongly suggest that IL-3 functions as a proliferation and/or survival factor for the earliest HSCs in the embryo.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Desenvolvimento Embrionário , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Interleucina-3/fisiologia , Animais , Aorta/citologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Gônadas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Interleucina-3/genética , Interleucina-3/farmacologia , Mesonefro/citologia , Camundongos , Placenta/citologia , Saco Vitelino/citologia
20.
Blood ; 113(6): 1241-9, 2009 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18927441

RESUMO

The transcription factor Runx1 is essential for the development of definitive hematopoietic stem cells (HSCs) during vertebrate embryogenesis and is transcribed from 2 promoters, P1 and P2, generating 2 major Runx1 isoforms. We have created 2 stable runx1 promoter zebrafish-transgenic lines that provide insight into the roles of the P1 and P2 isoforms during the establishment of definitive hematopoiesis. The Tg(runx1P1:EGFP) line displays fluorescence in the posterior blood island, where definitive erythromyeloid progenitors develop. The Tg(runx1P2:EGFP) line marks definitive HSCs in the aorta-gonad-mesonephros, with enhanced green fluorescent protein-labeled cells later populating the pronephros and thymus. This suggests that a function of runx1 promoter switching is associated with the establishment of discrete definitive blood progenitor compartments. These runx1 promoter-transgenic lines are novel tools for the study of Runx1 regulation and function in normal and malignant hematopoiesis. The ability to visualize and isolate fluorescently labeled HSCs should contribute to further elucidating the complex regulation of HSC development.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Células Precursoras Eritroides/citologia , Proteínas de Fluorescência Verde/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Southern Blotting , Linhagem da Célula , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Hematopoese , Técnicas Imunoenzimáticas , Hibridização In Situ , Mesonefro/citologia , Mesonefro/embriologia , Isoformas de Proteínas , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa