Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.167
Filtrar
1.
Cell ; 184(18): 4753-4771.e27, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34388391

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by notorious resistance to current therapies attributed to inherent tumor heterogeneity and highly desmoplastic and immunosuppressive tumor microenvironment (TME). Unique proline isomerase Pin1 regulates multiple cancer pathways, but its role in the TME and cancer immunotherapy is unknown. Here, we find that Pin1 is overexpressed both in cancer cells and cancer-associated fibroblasts (CAFs) and correlates with poor survival in PDAC patients. Targeting Pin1 using clinically available drugs induces complete elimination or sustained remissions of aggressive PDAC by synergizing with anti-PD-1 and gemcitabine in diverse model systems. Mechanistically, Pin1 drives the desmoplastic and immunosuppressive TME by acting on CAFs and induces lysosomal degradation of the PD-1 ligand PD-L1 and the gemcitabine transporter ENT1 in cancer cells, besides activating multiple cancer pathways. Thus, Pin1 inhibition simultaneously blocks multiple cancer pathways, disrupts the desmoplastic and immunosuppressive TME, and upregulates PD-L1 and ENT1, rendering PDAC eradicable by immunochemotherapy.


Assuntos
Imunoterapia , Terapia de Alvo Molecular , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Aloenxertos/imunologia , Motivos de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Terapia de Imunossupressão , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Oncogenes , Organoides/efeitos dos fármacos , Organoides/patologia , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
2.
Cell ; 154(3): 637-50, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23911326

RESUMO

Synaptic plasticity induced by cocaine and other drugs underlies addiction. Here we elucidate molecular events at synapses that cause this plasticity and the resulting behavioral response to cocaine in mice. In response to D1-dopamine-receptor signaling that is induced by drug administration, the glutamate-receptor protein metabotropic glutamate receptor 5 (mGluR5) is phosphorylated by microtubule-associated protein kinase (MAPK), which we show potentiates Pin1-mediated prolyl-isomerization of mGluR5 in instances where the product of an activity-dependent gene, Homer1a, is present to enable Pin1-mGluR5 interaction. These biochemical events potentiate N-methyl-D-aspartate receptor (NMDAR)-mediated currents that underlie synaptic plasticity and cocaine-evoked motor sensitization as tested in mice with relevant mutations. The findings elucidate how a coincidence of signals from the nucleus and the synapse can render mGluR5 accessible to activation with consequences for drug-induced dopamine responses and point to depotentiation at corticostriatal synapses as a possible therapeutic target for treating addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Cocaína/metabolismo , Dopamina/metabolismo , Peptidilprolil Isomerase/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Embrião de Mamíferos/metabolismo , Proteínas de Arcabouço Homer , Potenciação de Longa Duração , Camundongos , Dados de Sequência Molecular , Peptidilprolil Isomerase de Interação com NIMA , Fosforilação , Receptores de AMPA/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
3.
Cell ; 149(1): 232-44, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22464332

RESUMO

cis-trans isomerization of proteins phosphorylated by proline-directed kinases is proposed to control numerous signaling molecules and is implicated in the pathogenesis of Alzheimer's and other diseases. However, there is no direct evidence for the existence of cis-trans protein isomers in vivo or for their conformation-specific function or regulation. Here we develop peptide chemistries that allow the generation of cis- and trans-specific antibodies and use them to raise antibodies specific for isomers of phosphorylated tau. cis, but not trans, p-tau appears early in the brains of humans with mild cognitive impairment, accumulates exclusively in degenerated neurons, and localizes to dystrophic neurites during Alzheimer's progression. Unlike trans p-tau, the cis isomer cannot promote microtubule assembly, is more resistant to dephosphorylation and degradation, and is more prone to aggregation. Pin1 converts cis to trans p-tau to prevent Alzheimer's tau pathology. Isomer-specific antibodies and vaccines may therefore have value for the early diagnosis and treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer/patologia , Prolina/química , Prolina/metabolismo , Proteínas tau/metabolismo , Idoso , Doença de Alzheimer/fisiopatologia , Animais , Córtex Cerebral/patologia , Modelos Animais de Doenças , Lobo Frontal/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Isomerismo , Camundongos , Camundongos Endogâmicos C57BL , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/metabolismo
4.
Mol Cell Proteomics ; 23(2): 100715, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216124

RESUMO

Mammalian cells possess intrinsic mechanisms to prevent tumorigenesis upon deleterious mutations, including oncogene-induced senescence (OIS). The molecular mechanisms underlying OIS are, however, complex and remain to be fully characterized. In this study, we analyzed the changes in the nuclear proteome and phosphoproteome of human lung fibroblast IMR90 cells during the progression of OIS induced by oncogenic RASG12V activation. We found that most of the differentially regulated phosphosites during OIS contained prolyl isomerase PIN1 target motifs, suggesting PIN1 is a key regulator of several promyelocytic leukemia nuclear body proteins, specifically regulating several proteins upon oncogenic Ras activation. We showed that PIN1 knockdown promotes cell proliferation, while diminishing the senescence phenotype and hallmarks of senescence, including p21, p16, and p53 with concomitant accumulation of the protein PML and the dysregulation of promyelocytic leukemia nuclear body formation. Collectively, our data demonstrate that PIN1 plays an important role as a tumor suppressor in response to oncogenic ER:RasG12V activation.


Assuntos
Peptidilprolil Isomerase , Proteoma , Animais , Humanos , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Proteoma/metabolismo , Fatores de Transcrição/metabolismo , Fibroblastos/metabolismo , Oncogenes , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Senescência Celular/fisiologia , Mamíferos/metabolismo
5.
Genes Dev ; 32(21-22): 1398-1419, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366908

RESUMO

The transcription factor MYC (also c-Myc) induces histone modification, chromatin remodeling, and the release of paused RNA polymerase to broadly regulate transcription. MYC is subject to a series of post-translational modifications that affect its stability and oncogenic activity, but how these control MYC's function on the genome is largely unknown. Recent work demonstrates an intimate connection between nuclear compartmentalization and gene regulation. Here, we report that Ser62 phosphorylation and PIN1-mediated isomerization of MYC dynamically regulate the spatial distribution of MYC in the nucleus, promoting its association with the inner basket of the nuclear pore in response to proliferative signals, where it recruits the histone acetyltransferase GCN5 to bind and regulate local gene acetylation and expression. We demonstrate that PIN1-mediated localization of MYC to the nuclear pore regulates MYC target genes responsive to mitogen stimulation that are involved in proliferation and migration pathways. These changes are also present at the chromatin level, with an increase in open regulatory elements in response to stimulation that is PIN1-dependent and associated with MYC chromatin binding. Taken together, our study indicates that post-translational modification of MYC controls its spatial activity to optimally regulate gene expression in response to extrinsic signals in normal and diseased states.


Assuntos
Poro Nuclear/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ativação Transcricional , Animais , Linhagem Celular , Células Cultivadas , Cromatina/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mitógenos/farmacologia , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-myc/química , Serina/metabolismo , Cicatrização , Fatores de Transcrição de p300-CBP/metabolismo
6.
Nature ; 571(7766): 521-527, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31270457

RESUMO

The integrity of genomes is constantly threatened by problems encountered by the replication fork. BRCA1, BRCA2 and a subset of Fanconi anaemia proteins protect stalled replication forks from degradation by nucleases, through pathways that involve RAD51. The contribution and regulation of BRCA1 in replication fork protection, and how this role relates to its role in homologous recombination, is unclear. Here we show that BRCA1 in complex with BARD1, and not the canonical BRCA1-PALB2 interaction, is required for fork protection. BRCA1-BARD1 is regulated by a conformational change mediated by the phosphorylation-directed prolyl isomerase PIN1. PIN1 activity enhances BRCA1-BARD1 interaction with RAD51, thereby increasing the presence of RAD51 at stalled replication structures. We identify genetic variants of BRCA1-BARD1 in patients with cancer that exhibit poor protection of nascent strands but retain homologous recombination proficiency, thus defining domains of BRCA1-BARD1 that are required for fork protection and associated with cancer development. Together, these findings reveal a BRCA1-mediated pathway that governs replication fork protection.


Assuntos
Proteína BRCA1/química , Proteína BRCA1/metabolismo , Replicação do DNA , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína BRCA1/genética , Linhagem Celular Tumoral , Replicação do DNA/genética , Instabilidade Genômica/genética , Humanos , Isomerismo , Mutação , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Rad51 Recombinase/metabolismo
7.
Mol Cell ; 68(6): 1134-1146.e6, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29225033

RESUMO

TP53 missense mutations significantly influence the development and progression of various human cancers via their gain of new functions (GOF) through different mechanisms. Here we report a unique mechanism underlying the GOF of p53-R249S (p53-RS), a p53 mutant frequently detected in human hepatocellular carcinoma (HCC) that is highly related to hepatitis B infection and aflatoxin B1. A CDK inhibitor blocks p53-RS's nuclear translocation in HCC, whereas CDK4 interacts with p53-RS in the G1/S phase of the cells, phosphorylates it, and enhances its nuclear localization. This is coupled with binding of a peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) to p53-RS, but not the p53 form with mutations of four serines/threonines previously shown to be crucial for PIN1 binding. As a result, p53-RS interacts with c-Myc and enhances c-Myc-dependent rDNA transcription key for ribosomal biogenesis. These results unveil a CDK4-PIN1-p53-RS-c-Myc pathway as a novel mechanism for the GOF of p53-RS in HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Mutação , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Serina/metabolismo , Proteína Supressora de Tumor p53/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células , Quinase 4 Dependente de Ciclina/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Peptidilprolil Isomerase de Interação com NIMA/genética , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Serina/genética , Células Tumorais Cultivadas
8.
Semin Cancer Biol ; 91: 143-157, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36871635

RESUMO

Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) is a member of a family of peptidyl-prolyl isomerases that specifically recognizes and binds phosphoproteins, catalyzing the rapid cis-trans isomerization of phosphorylated serine/threonine-proline motifs, which leads to changes in the structures and activities of the targeted proteins. Through this complex mechanism, PIN1 regulates many hallmarks of cancer including cell autonomous metabolism and the crosstalk with the cellular microenvironment. Many studies showed that PIN1 is largely overexpressed in cancer turning on a set of oncogenes and abrogating the function of tumor suppressor genes. Among these targets, recent evidence demonstrated that PIN1 is involved in lipid and glucose metabolism and accordingly, in the Warburg effect, a characteristic of tumor cells. As an orchestra master, PIN1 finely tunes the signaling pathways allowing cancer cells to adapt and take advantage from a poorly organized tumor microenvironment. In this review, we highlight the trilogy among PIN1, the tumor microenvironment and the metabolic program rewiring.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Transdução de Sinais , Fosforilação
9.
J Lipid Res ; 65(4): 100529, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467328

RESUMO

FASN, the sole cytosolic enzyme responsible for de novo palmitate synthesis in mammalian cells, has been associated with poor prognosis in cancer and shown to cause drug and radiation resistance by upregulating DNA damage repair via suppression of p65 expression. Targeting FASN by repurposing proton pump inhibitors has generated impressive outcomes in triple-negative breast cancer patients. While p65 regulation of DNA damage repair was thought to be due to its suppression of poly(ADP-ribose) polymerase 1 gene transcription, the mechanism of FASN regulation of p65 expression was unknown. In this study, we show that FASN regulates p65 stability by controlling its phosphorylation at Thr254, which recruits the peptidyl-prolyl cis/trans isomerase Pin1 that is known to stabilize many proteins in the nucleus. This regulation is mediated by palmitate, the FASN catalytic product, not by FASN protein per se. This finding of FASN regulation of p65 stability via phosphorylation of Thr254 and isomerization by Pin1 implicates that FASN and its catalytic product palmitate may play an important role in regulating protein stability in general and p65 more specifically.


Assuntos
Ácido Graxo Sintase Tipo I , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , Humanos , Fosforilação , Estabilidade Proteica , Fator de Transcrição RelA/metabolismo , Isomerismo
10.
Biochemistry ; 63(9): 1067-1074, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38619104

RESUMO

NANOG protein levels correlate with stem cell pluripotency. NANOG concentrations fluctuate constantly with low NANOG levels leading to spontaneous cell differentiation. Previous literature implicated Pin1, a phosphorylation-dependent prolyl isomerase, as a key player in NANOG stabilization. Here, using NMR spectroscopy, we investigate the molecular interactions of Pin1 with the NANOG unstructured N-terminal domain that contains a PEST sequence with two phosphorylation sites. Phosphorylation of NANOG PEST peptides increases affinity to Pin1. By systematically increasing the amount of cis PEST conformers, we show that the peptides bind tighter to the prolyl isomerase domain (PPIase) of Pin1. Phosphorylation and cis Pro enhancement at both PEST sites lead to a 5-10-fold increase in NANOG binding to the Pin1 WW domain and PPIase domain, respectively. The cis-populated NANOG PEST peptides can be potential inhibitors for disrupting Pin1-dependent NANOG stabilization in cancer stem cells.


Assuntos
Peptidilprolil Isomerase de Interação com NIMA , Proteína Homeobox Nanog , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/química , Peptidilprolil Isomerase de Interação com NIMA/genética , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Fosforilação , Humanos , Estabilidade Proteica , Ligação Proteica , Estereoisomerismo
11.
J Cell Mol Med ; 28(1): e18022, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37929660

RESUMO

Long noncoding RNAs (lncRNAs) play critical roles in the carcinogenesis and progression of cancers. However, the role and mechanism of the pseudogene lncRNA PIN1P1 in gastric carcinoma remain unclear. The expression and effects of lncRNA PIN1P1 in gastric cancer were investigated. The transcriptional regulation of CREB1 on PIN1P1 was determined by ChIP and luciferase assays. The mechanistic model of PIN1P1 in gastric cancer was further explored by RNA pull-down, RIP and western blot analysis. PIN1P1 was overexpressed in gastric cancer tissues, and upregulated PIN1P1 predicted poor prognosis in patients. CREB1 was directly combined with the promoter region of PIN1P1 to promote the transcription of PIN1P1. CREB1-mediated enhanced proliferation, migration and invasion could be partially reversed by downregulation of PIN1P1. Overexpressed PIN1P1 promoted the proliferation, migration and invasion of gastric cancer cells, whereas decreased PIN1P1 showed the opposite effects. PIN1P1 directly interacted with YBX1 and promoted YBX1 protein expression, leading to upregulation of PIN1, in which E2F1 may be involved. Silencing of YBX1 during PIN1P1 overexpression could partially rescue PIN1 upregulation. PIN1, the parental gene of PIN1P1, was elevated in gastric cancer tissues, and its upregulation was correlated with poor patient outcomes. PIN1 facilitated gastric cancer cell proliferation, migration and invasion. To sum up, CREB1-activated PIN1P1 could promote gastric cancer progression through YBX1 and upregulating PIN1, suggesting that it is a potential target for gastric cancer.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo
12.
J Am Chem Soc ; 146(22): 15627-15639, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771982

RESUMO

Covalent peptide binders have found applications as activity-based probes and as irreversible therapeutic inhibitors. Currently, there is no rapid, label-free, and tunable affinity selection platform to enrich covalent reactive peptide binders from synthetic libraries. We address this challenge by developing a reversibly reactive affinity selection platform termed ReAct-ASMS enabled by tandem high-resolution mass spectrometry (MS/MS) to identify covalent peptide binders to native protein targets. It uses mixed disulfide-containing peptides to build reversible peptide-protein conjugates that can enrich for covalent variants, which can be sequenced by MS/MS after reduction. Using this platform, we identified covalent peptide binders against two oncoproteins, human papillomavirus 16 early protein 6 (HPV16 E6) and peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 protein (Pin1). The resulting peptide binders efficiently and selectively cross-link Cys58 of E6 at 37 °C and Cys113 of Pin1 at room temperature, respectively. ReAct-ASMS enables the identification of highly selective covalent peptide binders for diverse molecular targets, introducing an applicable platform to assist preclinical therapeutic development pipelines.


Assuntos
Peptídeos , Peptídeos/química , Proteínas Oncogênicas Virais/química , Humanos , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Peptidilprolil Isomerase de Interação com NIMA/química , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Espectrometria de Massas em Tandem/métodos , Ligação Proteica
13.
J Am Chem Soc ; 146(26): 17974-17985, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957136

RESUMO

The binding affinity determination of protein-ligand complexes is a cornerstone of drug design. State-of-the-art techniques are limited by lengthy and expensive processes. Building upon our recently introduced novel screening method utilizing photochemically induced dynamic nuclear polarization (photo-CIDNP) NMR, we provide the methodological framework to determine binding affinities within 5-15 min using 0.1 mg of protein. The accuracy of our method is demonstrated for the affinity constants of peptides binding to a PDZ domain and fragment ligands binding to the protein PIN1. The method can also be extended to measure the affinity of nonphoto-CIDNP-polarizable ligands in competition binding experiments. Finally, we demonstrate a strong correlation between the ligand-reduced signals in photo-CIDNP-based NMR fragment screening and the well-established saturation transfer difference (STD) NMR. Thus, our methodology measures protein-ligand affinities in the micro- to millimolar range in only a few minutes and informs on the binding epitope in a single-scan experiment, opening new avenues for early stage drug discovery approaches.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Ligantes , Ligação Proteica , Processos Fotoquímicos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/química , Proteínas/química , Proteínas/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Domínios PDZ
14.
Biochem Biophys Res Commun ; 715: 150001, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38676996

RESUMO

The skeletal muscle is a pivotal organ involved in the regulation of both energy metabolism and exercise capacity. There is no doubt that exercise contributes to a healthy life through the consumption of excessive energy or the release of myokines. Skeletal muscles exhibit insulin sensitivity and can rapidly uptake blood glucose. In addition, they can undergo non-shivering thermogenesis through actions of both the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) and small peptide, sarcolipin, resulting in systemic energy metabolism. Accordingly, the maintenance of skeletal muscles is important for both metabolism and exercise. Prolyl isomerase Pin1 is an enzyme that converts the cis-trans form of proline residues and controls substrate function. We have previously reported that Pin1 plays important roles in insulin release, thermogenesis, and lipolysis. However, the roles of Pin1 in skeletal muscles remains unknown. To clarify this issue, we generated skeletal muscle-specific Pin1 knockout mice. Pin1 deficiency had no effects on muscle weights, morphology and ratio of fiber types. However, they showed exacerbated obesity or insulin resistance when fed with a high-fat diet. They also showed a lower ability to exercise than wild type mice did. We also found that Pin1 interacted with SERCA and elevated its activity, resulting in the upregulation of oxygen consumption. Overall, our study reveals that Pin1 in skeletal muscles contributes to both systemic energy metabolism and exercise capacity.


Assuntos
Metabolismo Energético , Músculo Esquelético , Peptidilprolil Isomerase de Interação com NIMA , Condicionamento Físico Animal , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Animais , Masculino , Camundongos , Dieta Hiperlipídica , Metabolismo Energético/genética , Resistência à Insulina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
15.
J Autoimmun ; 147: 103262, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833897

RESUMO

Th17 cells mediated immune response is the basis of a variety of autoimmune diseases, including multiple sclerosis and its mouse model of immune aspects, experimental autoimmune encephalomyelitis (EAE). The gene network that drives both the development of Th17 and the expression of its effector program is dependent on the transcription factor RORγt. In this report, we showed that Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (Pin1) formed a complex with RORγt, and enhanced its transactivation activity, thus sustained the expression of the effector genes as well as RORγt in the EAE-pathogenic Th17 cells. We first found out that PIN1 was highly expressed in the samples from patients of multiple sclerosis, and the expression of Pin1 by the infiltrating lymphocytes in the central nerve system of EAE mice was elevated as well. An array of experiments with transgenic mouse models, cellular and molecular assays was included in the study to elucidate the role of Pin1 in the pathology of EAE. It turned out that Pin1 promoted the activation and maintained the effector program of EAE-pathogenic Th17 cells in the inflammation foci, but had little effect on the priming of Th17 cells in the draining lymph nodes. Mechanistically, Pin1 stabilized the phosphorylation of STAT3 induced by proinflammatory stimuli, and interacted with STAT3 in the nucleus of Th17 cells, which resulted in the increased expression of Rorc. Moreover, Pin1 formed a complex with RORγt, and enhanced the transactivation of RORγt to the +11 kb enhancer of Rorc, which enforced and maintained the expression of both Rorc and the effector program of pathogenic Th17 cells in EAE. Finally, the inhibition of Pin1, by genetic knockdown or by small molecule inhibitor, deceased the population of Th17 cells and the neuroinflammation, and alleviated the symptoms of EAE. These findings suggest that Pin1 is a potential therapeutic target for MS and other autoimmune inflammatory diseases.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Peptidilprolil Isomerase de Interação com NIMA , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Células Th17 , Células Th17/imunologia , Células Th17/metabolismo , Animais , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Humanos , Esclerose Múltipla/imunologia , Fator de Transcrição STAT3/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Feminino
16.
Phys Chem Chem Phys ; 26(5): 4643-4656, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38251755

RESUMO

Pin1 (protein interacting with never-in-mitosis akinase-1) is a member of the family of peptidylprolyl cis-trans isomerases (PPIases) that specifically recognize and isomerize substrates containing phosphorylated Ser/Thr-Pro sequences. Pin1 is involved in many cellular processes and plays a key role in the cell cycle, transcriptional regulation, cell metabolism, proliferation and differentiation, and its abnormalities lead to degenerative and neoplastic diseases. Pin1 is highly expressed in human cancers and promotes the development of tumors by activating multiple oncogenes and inactivating multiple tumor suppressor genes, making it an attractive target for cancer therapy. In this study, we investigated the binding mechanism and conformational relationship between benzimidazole Pin1 inhibitors and Pin1 proteins by molecular docking, three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling, binding free energy calculations and decomposition, and molecular dynamics simulations. Molecular docking and molecular dynamics simulations disclosed the most likely binding pose of benzimidazoles with the Pin1 protein. The results of 3D-QSAR modeling indicated that electrostatic fields, hydrophobic fields and hydrogen bonding play important roles in the binding process of inhibitors to proteins. The binding free energy calculations and energy decomposition indicated that Lys63, Arg69, Cys113, Leu122, Met130, and Ser154 may be key residues in the binding of benzimidazole-based inhibitors to the Pin1 protein. This study provides an important theoretical basis for the design and optimization of benzimidazole compounds.


Assuntos
Benzimidazóis , Simulação de Dinâmica Molecular , Humanos , Peptidilprolil Isomerase de Interação com NIMA , Simulação de Acoplamento Molecular , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Ligação Proteica
17.
Bioorg Chem ; 144: 107171, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325131

RESUMO

Pin1 (proline isomerase peptidyl-prolyl isomerase NIMA-interacting-1), as a member of PPIase family, catalyzes cis-trans isomerization of pThr/Ser-Pro amide bonds of its substrate proteins, further regulating cell proliferation, division, apoptosis, and transformation. Pin1 is overexpressed in various cancers and is positively correlated with tumor initiation and progression. Pin1 inhibition can effectively reduce tumor growth and cancer stem cell expansion, block metastatic spread, and restore chemosensitivity, suggesting that targeting Pin1 may be an effective strategy for cancer treatment. Considering the promising therapeutic effects of Pin1 inhibitors on cancers, we herein are intended to comprehensively summarize the reported Pin1 inhibitors, mainly highlighting their structures, biological functions and binding modes, in hope of providing a reference for the future drug discovery.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Neoplasias/tratamento farmacológico , Proliferação de Células
18.
Exp Cell Res ; 425(2): 113544, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36906101

RESUMO

Hepatic stellate cells (HSCs) produce extracellular matrixes (ECMs), such as collagen and fibronectin, in response to stimulation with transforming growth factor ß (TGFß). The massive ECM accumulation in the liver due to HSCs causes fibrosis which eventually leads to hepatic cirrhosis and hepatoma development. However, details of the mechanisms underlying continuous HSC activation are as yet poorly understood. We thus attempted to elucidate the role of Pin1, one of the prolyl isomerases, in the underlying mechanism(s), using the human HSC line LX-2. Treatment with Pin1 siRNAs markedly alleviated the TGFß-induced expressions of ECM components such as collagen 1a1/2, smooth muscle actin and fibronectin at both the mRNA and the protein level. Pin1 inhibitors also decreased the expressions of fibrotic markers. In addition, it was revealed that Pin1 associates with Smad2/3/4, and that four Ser/Thr-Pro motifs in the linker domain of Smad3 are essential for binding with Pin1. Pin1 significantly regulated Smad-binding element transcriptional activity without affecting Smad3 phosphorylations or translocation. Importantly, both Yes-associated protein (YAP) and WW domain-containing transcription regulator (TAZ) also participate in ECM induction, and upregulate Smad3 activity rather than TEA domain transcriptional factor transcriptional activity. Although Smad3 interacts with both TAZ and YAP, Pin1 facilitates the Smad3 association with TAZ, but not that with YAP. In conclusion, Pin1 plays pivotal roles in ECM component productions in HSCs through regulation of the interaction between TAZ and Smad3, and Pin1 inhibitors may have the potential to ameliorate fibrotic diseases.


Assuntos
Fibronectinas , Peptidilprolil Isomerase , Humanos , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Células Estreladas do Fígado/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Cirrose Hepática/patologia , Fibrose , Matriz Extracelular/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo
19.
Nature ; 553(7687): 222-227, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323298

RESUMO

Chromosomal translocations that generate in-frame oncogenic gene fusions are notable examples of the success of targeted cancer therapies. We have previously described gene fusions of FGFR3-TACC3 (F3-T3) in 3% of human glioblastoma cases. Subsequent studies have reported similar frequencies of F3-T3 in many other cancers, indicating that F3-T3 is a commonly occuring fusion across all tumour types. F3-T3 fusions are potent oncogenes that confer sensitivity to FGFR inhibitors, but the downstream oncogenic signalling pathways remain unknown. Here we show that human tumours with F3-T3 fusions cluster within transcriptional subgroups that are characterized by the activation of mitochondrial functions. F3-T3 activates oxidative phosphorylation and mitochondrial biogenesis and induces sensitivity to inhibitors of oxidative metabolism. Phosphorylation of the phosphopeptide PIN4 is an intermediate step in the signalling pathway of the activation of mitochondrial metabolism. The F3-T3-PIN4 axis triggers the biogenesis of peroxisomes and the synthesis of new proteins. The anabolic response converges on the PGC1α coactivator through the production of intracellular reactive oxygen species, which enables mitochondrial respiration and tumour growth. These data illustrate the oncogenic circuit engaged by F3-T3 and show that F3-T3-positive tumours rely on mitochondrial respiration, highlighting this pathway as a therapeutic opportunity for the treatment of tumours with F3-T3 fusions. We also provide insights into the genetic alterations that initiate the chain of metabolic responses that drive mitochondrial metabolism in cancer.


Assuntos
Respiração Celular , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Respiração Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Peptidilprolil Isomerase de Interação com NIMA/química , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Biogênese de Organelas , Fosforilação Oxidativa/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Peroxissomos/efeitos dos fármacos , Peroxissomos/metabolismo , Fosforilação , Biossíntese de Proteínas , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/metabolismo , Transcrição Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mol Cell ; 61(5): 705-719, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26942675

RESUMO

It is unclear how the Warburg effect that exemplifies enhanced glycolysis in the cytosol is coordinated with suppressed mitochondrial pyruvate metabolism. We demonstrate here that hypoxia, EGFR activation, and expression of K-Ras G12V and B-Raf V600E induce mitochondrial translocation of phosphoglycerate kinase 1 (PGK1); this is mediated by ERK-dependent PGK1 S203 phosphorylation and subsequent PIN1-mediated cis-trans isomerization. Mitochondrial PGK1 acts as a protein kinase to phosphorylate pyruvate dehydrogenase kinase 1 (PDHK1) at T338, which activates PDHK1 to phosphorylate and inhibit the pyruvate dehydrogenase (PDH) complex. This reduces mitochondrial pyruvate utilization, suppresses reactive oxygen species production, increases lactate production, and promotes brain tumorigenesis. Furthermore, PGK1 S203 and PDHK1 T338 phosphorylation levels correlate with PDH S293 inactivating phosphorylation levels and poor prognosis in glioblastoma patients. This work highlights that PGK1 acts as a protein kinase in coordinating glycolysis and the tricarboxylic acid (TCA) cycle, which is instrumental in cancer metabolism and tumorigenesis.


Assuntos
Ciclo do Ácido Cítrico , Glioblastoma/enzimologia , Glicólise , Mitocôndrias/enzimologia , Fosfoglicerato Quinase/metabolismo , Animais , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células , Ativação Enzimática , Receptores ErbB/genética , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos Nus , Mitocôndrias/patologia , Mutação , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Fosfoglicerato Quinase/genética , Fosforilação , Prognóstico , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Interferência de RNA , Ratos , Transdução de Sinais , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa