RESUMO
In life sciences, tracking objects from movies enables researchers to quantify the behavior of single particles, organelles, bacteria, cells, and even whole animals. While numerous tools now allow automated tracking from video, a significant challenge persists in compiling, analyzing, and exploring the large datasets generated by these approaches. Here, we introduce CellTracksColab, a platform tailored to simplify the exploration and analysis of cell tracking data. CellTracksColab facilitates the compiling and analysis of results across multiple fields of view, conditions, and repeats, ensuring a holistic dataset overview. CellTracksColab also harnesses the power of high-dimensional data reduction and clustering, enabling researchers to identify distinct behavioral patterns and trends without bias. Finally, CellTracksColab also includes specialized analysis modules enabling spatial analyses (clustering, proximity to specific regions of interest). We demonstrate CellTracksColab capabilities with 3 use cases, including T cells and cancer cell migration, as well as filopodia dynamics. CellTracksColab is available for the broader scientific community at https://github.com/CellMigrationLab/CellTracksColab.
Assuntos
Movimento Celular , Rastreamento de Células , Software , Rastreamento de Células/métodos , Humanos , Animais , Processamento de Imagem Assistida por Computador/métodos , Pseudópodes/fisiologia , Linfócitos T , CamundongosRESUMO
Cell migration requires sustained forward movement of the plasma membrane at the cell's front or "leading edge." To date, researchers have uncovered four distinct ways of extending the membrane at the leading edge. In lamellipodia and filopodia, actin polymerization directly pushes the plasma membrane forward, whereas in invadopodia, actin polymerization couples with the extracellular delivery of matrix-degrading metalloproteases to clear a path for cells through the extracellular matrix. Membrane blebs drive the plasma membrane forward using a combination of actomyosin-based contractility and reversible detachment of the membrane from the cortical actin cytoskeleton. Each protrusion type requires the coordination of a wide spectrum of signaling molecules and regulators of cytoskeletal dynamics. In addition, these different protrusion methods likely act in concert to move cells through complex environments in vivo.
Assuntos
Membrana Celular/fisiologia , Movimento Celular , Actinas/fisiologia , Animais , Humanos , Miosinas/fisiologia , Pseudópodes/fisiologiaRESUMO
Filopodia are thin synaptic protrusions that have been long known to play an important role in early development. Recently, they have been found to be more abundant in the adult cortex than previously thought, and more plastic than spines (button-shaped mature synapses). Inspired by these findings, we introduce a new model of synaptic plasticity that jointly describes learning of filopodia and spines. The model assumes that filopodia exhibit strongly competitive learning dynamics -similarly to additive spike-timing-dependent plasticity (STDP). At the same time it proposes that, if filopodia undergo sufficient potentiation, they consolidate into spines. Spines follow weakly competitive learning, classically associated with multiplicative, soft-bounded models of STDP. This makes spines more stable and sensitive to the fine structure of input correlations. We show that our learning rule has a selectivity comparable to additive STDP and captures input correlations as well as multiplicative models of STDP. We also show how it can protect previously formed memories and perform synaptic consolidation. Overall, our results can be seen as a phenomenological description of how filopodia and spines could cooperate to overcome the individual difficulties faced by strong and weak competition mechanisms.
Assuntos
Espinhas Dendríticas , Aprendizagem , Modelos Neurológicos , Plasticidade Neuronal , Pseudópodes , Pseudópodes/fisiologia , Plasticidade Neuronal/fisiologia , Espinhas Dendríticas/fisiologia , Aprendizagem/fisiologia , Animais , Humanos , Biologia Computacional , Sinapses/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologiaRESUMO
During Xenopus gastrulation, leading edge mesendoderm (LEM) advances animally as a wedge-shaped cell mass over the vegetally moving blastocoel roof (BCR). We show that close contact across the BCR-LEM interface correlates with attenuated net advance of the LEM, which is pulled forward by tip cells while the remaining LEM frequently separates from the BCR. Nevertheless, lamellipodia persist on the detached LEM surface. They attach to adjacent LEM cells and depend on PDGF-A, cell-surface fibronectin and cadherin. We argue that active cell motility on the LEM surface prevents adverse capillary effects in the liquid LEM tissue as it moves by being pulled. It counters tissue surface-tension effects with oriented cell movement and bulges the LEM surface out to keep it close to the curved BCR without attaching to it. Proximity to the BCR is necessary, in turn, for the maintenance and orientation of lamellipodia that permit mass cell movement with minimal substratum contact. Together with a similar process in epithelial invagination, vertical telescoping, the cell movement at the LEM surface defines a novel type of cell rearrangement: vertical shearing.
Assuntos
Movimento Celular/fisiologia , Gastrulação/fisiologia , Mesoderma/fisiologia , Xenopus laevis/fisiologia , Animais , Caderinas/metabolismo , Ação Capilar , Adesão Celular/fisiologia , Endoderma/metabolismo , Endoderma/fisiologia , Fibronectinas/metabolismo , Gástrula/metabolismo , Gástrula/fisiologia , Mesoderma/metabolismo , Pseudópodes/metabolismo , Pseudópodes/fisiologia , Xenopus laevis/metabolismoRESUMO
Changes in synaptic connections are believed to underlie long-term memory storage. Previous studies have suggested that sleep is important for synapse formation after learning, but how sleep is involved in the process of synapse formation remains unclear. To address this question, we used transcranial two-photon microscopy to investigate the effect of postlearning sleep on the location of newly formed dendritic filopodia and spines of layer 5 pyramidal neurons in the primary motor cortex of adolescent mice. We found that newly formed filopodia and spines were partially clustered with existing spines along individual dendritic segments 24 h after motor training. Notably, posttraining sleep was critical for promoting the formation of dendritic filopodia and spines clustered with existing spines within 8 h. A fraction of these filopodia was converted into new spines and contributed to clustered spine formation 24 h after motor training. This sleep-dependent spine formation via filopodia was different from retraining-induced new spine formation, which emerged from dendritic shafts without prior presence of filopodia. Furthermore, sleep-dependent new filopodia and spines tended to be formed away from existing spines that were active at the time of motor training. Taken together, these findings reveal a role of postlearning sleep in regulating the number and location of new synapses via promoting filopodial formation.
Assuntos
Dendritos/fisiologia , Atividade Motora/fisiologia , Pseudópodes/fisiologia , Células Piramidais/fisiologia , Sono/fisiologia , Animais , Proteínas de Bactérias , Cálcio/metabolismo , Feminino , Proteínas Luminescentes , Masculino , Camundongos , Plasticidade Neuronal , Restrição FísicaRESUMO
Neural crest migration requires cells to move through an environment filled with dense extracellular matrix and mesoderm to reach targets throughout the vertebrate embryo. Here, we use high-resolution microscopy, computational modeling, and in vitro and in vivo cell invasion assays to investigate the function of Aquaporin 1 (AQP-1) signaling. We find that migrating lead cranial neural crest cells express AQP-1 mRNA and protein, implicating a biological role for water channel protein function during invasion. Differential AQP-1 levels affect neural crest cell speed and direction, as well as the length and stability of cell filopodia. Furthermore, AQP-1 enhances matrix metalloprotease activity and colocalizes with phosphorylated focal adhesion kinases. Colocalization of AQP-1 with EphB guidance receptors in the same migrating neural crest cells has novel implications for the concept of guided bulldozing by lead cells during migration.
Assuntos
Aquaporina 1/fisiologia , Movimento Celular/fisiologia , Crista Neural/citologia , Pseudópodes/fisiologia , Animais , Região Branquial/citologia , Região Branquial/embriologia , Membrana Celular/fisiologia , Microambiente Celular , Embrião de Galinha , Biologia Computacional , Adesões Focais , Crista Neural/embriologia , Receptor EphB1/metabolismo , Receptor EphB3/metabolismoRESUMO
Despites several decades of studies on the neuromuscular system, the relationship between muscle stem cells and motor neurons remains elusive. Using the Drosophila model, we provide evidence that adult muscle precursors (AMPs), the Drosophila muscle stem cells, interact with the motor axons during embryogenesis. AMPs not only hold the capacity to attract the navigating intersegmental (ISN) and segmental a (SNa) nerve branches, but are also mandatory to the innervation of muscles in the lateral field. This so-far-ignored AMP role involves their filopodia-based interactions with nerve growth cones. In parallel, we report the previously undetected expression of the guidance molecule-encoding genes sidestep and side IV in AMPs. Altogether, our data support the view that Drosophila muscle stem cells represent spatial landmarks for navigating motor neurons and reveal that their positioning is crucial for the muscles innervation in the lateral region. Furthermore, AMPs and motor axons are interdependent, as the genetic ablation of SNa leads to a specific loss of SNa-associated lateral AMPs.
Assuntos
Axônios/fisiologia , Neurônios Motores/fisiologia , Músculos/embriologia , Músculos/inervação , Mioblastos/fisiologia , Animais , Apoptose , Orientação de Axônios , Movimento Celular , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Genótipo , Proteínas de Fluorescência Verde , Cones de Crescimento/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Proteínas de Membrana/fisiologia , Microscopia de Fluorescência , Pseudópodes/fisiologia , Transdução de Sinais , Células-Tronco/citologiaRESUMO
Collective cell migration is a process where cohorts of cells exhibit coordinated migratory behavior. During individual and collective cellular migration, cells must extend protrusions to interact with the extracellular environment, sense chemotactic cues, and act as points of attachment. The mechanisms and regulators of protrusive behavior have been widely studied in individually migrating cells; however, how this behavior is regulated throughout collectives is not well understood. To address this, we used the zebrafish posterior lateral line primordium (pLLP) as a model. The pLLP is a cluster of ~150 âcells that migrates along the zebrafish trunk, depositing groups of cells that will become sensory organs. To define protrusive behavior, we performed mosaic analysis to sparsely label pLLP cells with a transgene marking filamentous actin. This approach revealed an abundance of brush-like protrusions throughout the pLLP that orient in the direction of migration. Formation of these protrusions depends on the Arp2/3 complex, a regulator of dendritic actin. This argues that these brush-like protrusions are an in vivo example of lamellipodia. Mosaic analysis demonstrated that these lamellipodia-like protrusions are located in a close proximity to the overlying skin. Immunostaining revealed an abundance of focal adhesion complexes surrounding the pLLP. Disruption of these complexes specifically in pLLP cells led to impaired pLLP migration. Finally, we show that Erk signaling, a known regulator of focal adhesions, is required for proper formation of lamellipodia-like protrusions and pLLP migration. Altogether, our results suggest a model where the coordinated dynamics of lamellipodia-like protrusions, making contact with either the overlying skin or the extracellular matrix through focal adhesions, promotes migration of pLLP cells.
Assuntos
Movimento Celular , Adesões Focais/fisiologia , Pseudópodes/fisiologia , Peixe-Zebra/embriologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/análise , Animais , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Pseudópodes/enzimologia , Pseudópodes/metabolismo , Peixe-Zebra/fisiologiaRESUMO
Therapeutic angiogenesis would be clinically valuable in situations such as peripheral vascular disease in diabetic patients and tissue reperfusion following ischemia or injury, but approaches using traditional isoforms of vascular endothelial growth factor-A (VEGF) have had little success. The isoform VEGF165 is both soluble and matrix-associated, but can cause pathologic vascular changes. Freely diffusible VEGF121 is not associated with pathologic angiogenesis, but its failure to remain in the vicinity of the targeted area presents therapeutic challenges. In this study, we evaluate the cellular effects of engineered VEGF variants that tether extracellular VEGF121 to the cell membrane with the goal of activating VEGF receptor 2 (VEGFR2) in a sustained, autologous fashion in endothelial cells. When expressed by primary human retinal endothelial cells (hRECs), the engineered, membrane-tethered variants eVEGF-38 and eVEGF-53 provide a lasting VEGF signal that induces cell proliferation and survival, increases endothelial permeability, promotes the formation of a cord/tube network, and stimulates the formation of elongated filopodia on the endothelial cells. The engineered VEGF variants activate VEGFR2, MAPK/ERK, and the Rho GTPase mediators CDC42 and ROCK, activities that are required for the formation of the elongated filopodia. The sustained, pro-angiogenic activities induced by eVEGF-38 and eVEGF-53 support the potential of engineered VEGF variants-overexpressing endothelial cells as a novel combination of gene and cell-based therapeutic strategy for stimulating endothelial cell-autologous therapeutic angiogenesis.
Assuntos
Proliferação de Células , Células Endoteliais/citologia , Regulação da Expressão Gênica , Mutação , Neovascularização Fisiológica , Pseudópodes/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Movimento Celular , Células Endoteliais/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Retina/citologia , Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismoRESUMO
Mechanical forces, actin filament turnover, and adhesion to the extracellular environment regulate lamellipodial protrusions. Computational and mathematical models at the continuum level have been used to investigate the molecular clutch mechanism, calculating the stress profile through the lamellipodium and around focal adhesions. However, the forces and deformations of individual actin filaments have not been considered while interactions between actin networks and actin bundles is not easily accounted with such methods. We develop a filament-level model of a lamellipodial actin network undergoing retrograde flow using 3D Brownian dynamics. Retrograde flow is promoted in simulations by pushing forces from the leading edge (due to actin polymerization), pulling forces (due to molecular motors), and opposed by viscous drag in cytoplasm and focal adhesions. Simulated networks have densities similar to measurements in prior electron micrographs. Connectivity between individual actin segments is maintained by permanent and dynamic crosslinkers. Remodeling of the network occurs via the addition of single actin filaments near the leading edge and via filament bond severing. We investigated how several parameters affect the stress distribution, network deformation and retrograde flow speed. The model captures the decrease in retrograde flow upon increase of focal adhesion strength. The stress profile changes from compression to extension across the leading edge, with regions of filament bending around focal adhesions. The model reproduces the observed reduction in retrograde flow speed upon exposure to cytochalasin D, which halts actin polymerization. Changes in crosslinker concentration and dynamics, as well as in the orientation pattern of newly added filaments demonstrate the model's ability to generate bundles of filaments perpendicular (actin arcs) or parallel (microspikes) to the protruding direction.
Assuntos
Citoesqueleto de Actina , Modelos Biológicos , Pseudópodes , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Biologia Computacional , Adesões Focais , Pseudópodes/química , Pseudópodes/metabolismo , Pseudópodes/fisiologiaRESUMO
Filopodia are thin finger-like protrusions at the surface of cells that are internally occupied with bundles of tightly parallel actin filaments. They play significant roles in cellular physiological processes, such as adhesion to extracellular matrix, guidance towards chemo-attractants and in wound healing. Filopodia were recently reported to play important roles in viral infection including initial viral attachment to host cells, cell surfing, viral trafficking, internalization, budding, virus release and spread to other cells in a form that would avoid the host immune system. The detailed virus-host protein interactions underlying most of these processes remain to be elucidated. This review will describe some reported virus-host protein interactions on filopodia with the aim of identifying potential new anti-virus therapeutic targets. Exploring this research area may lead to the development of novel classes of anti-viral therapeutics that can block signalling pathways used by the virus to trigger filopodia formation. Successful compounds would inhibit initial virus attachment, formation of filopodia, expression of putative virus binding protein, extracellular virus trafficking, and budding.
Assuntos
Antivirais/farmacologia , Interações entre Hospedeiro e Microrganismos , Proteoma , Pseudópodes/metabolismo , Humanos , Pseudópodes/fisiologiaRESUMO
Communication between neoplastic cells and cells of their microenvironment is critical to cancer progression. To investigate the role of cytoneme-mediated signaling as a mechanism for distributing growth factor signaling proteins between tumor and tumor-associated cells, we analyzed EGFR and RET Drosophila tumor models and tested several genetic loss-of-function conditions that impair cytoneme-mediated signaling. Neuroglian, capricious, Irk2, SCAR, and diaphanous are genes that cytonemes require during normal development. Neuroglian and Capricious are cell adhesion proteins, Irk2 is a potassium channel, and SCAR and Diaphanous are actin-binding proteins, and the only process to which they are known to contribute jointly is cytoneme-mediated signaling. We observed that diminished function of any one of these genes suppressed tumor growth and increased organism survival. We also noted that EGFR-expressing tumor discs have abnormally extensive tracheation (respiratory tubes) and ectopically express Branchless (Bnl, a FGF) and FGFR. Bnl is a known inducer of tracheation that signals by a cytoneme-mediated process in other contexts, and we determined that exogenous over-expression of dominant negative FGFR suppressed tumor growth. Our results are consistent with the idea that cytonemes move signaling proteins between tumor and stromal cells and that cytoneme-mediated signaling is required for tumor growth and malignancy.
Assuntos
Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Pseudópodes/fisiologia , Animais , Carcinogênese/genética , Estruturas da Membrana Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Receptores ErbB/metabolismo , Discos Imaginais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Animais , Metástase Neoplásica/genética , Neoplasias/metabolismo , Receptores de Peptídeos de Invertebrados/metabolismo , Transdução de Sinais/fisiologia , Microambiente Tumoral/fisiologia , Asas de Animais/crescimento & desenvolvimentoRESUMO
Junction dynamics of endothelial cells are based on the integration of signal transduction, cytoskeletal remodeling and contraction, which are necessary for the formation and maintenance of monolayer integrity, but also enable repair and regeneration. The VE-cadherin-catenin complex forms the molecular basis of the adherence junctions and cooperates closely with actin filaments. Several groups have recently described small actin-driven protrusions at the cell junctions that are controlled by the Arp2/3 complex, contributing to cell junction regulation. We identified these protrusions as the driving force for VE-cadherin dynamics, as they directly induce new VE-cadherin-mediated adhesion sites, and have accordingly referred to these structures as junction-associated intermittent lamellipodia (JAIL). JAIL extend over only a few microns and thus provide the basis for a subcellular regulation of adhesion. The local (subcellular) VE-cadherin concentration and JAIL formation are directly interdependent, which enables autoregulation. Therefore, this mechanism can contribute a subcellularly regulated adaptation of cell contact dynamics, and is therefore of great importance for monolayer integrity and relative cell migration during wound healing and angiogenesis, as well as for inflammatory responses. In this Review, we discuss the mechanisms and functions underlying these actin-driven protrusions and consider their contribution to the dynamic regulation of endothelial cell junctions.
Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Movimento Celular , Junções Intercelulares/fisiologia , Neovascularização Fisiológica , Pseudópodes/fisiologia , Animais , Humanos , Transdução de SinaisRESUMO
Dendritic spines are major sites of excitatory synaptic connection in pyramidal neurons of the forebrain, and their functional regulation underlies the development of functional neuronal circuits and experience-dependent circuit plasticity. Dendritic spines contain a large amount of actin filaments, and their organization and dynamics control both the morphology and function of dendritic spines. New optical technologies, including super-resolution microscopy, fluorescence lifetime imaging, and fluorescence correlation measurements, have helped gather further information about the nanoscale features of spine structure and cytoskeletal organization, together with the molecular interactions and mobility within spines. These experiments identified signals that are responsible for actin reorganization in nascent spine formation, the dynamic regulation of actin assembly/disassembly in spine nanodomains, and the interaction between actin and other cytoskeletal and membranous components that modulate synaptic functions. We discuss the crucial roles of nanoscale actin dynamics in both nascent and mature spines, which may differ fundamentally in the organization of actin filaments. Combined with the progress in the mathematical simulation of spine actin dynamics, realistic modeling of spine nanostructure based on the dynamic organization of actin filaments will become possible. The models will promote our understanding of the complex interaction between the structure, function, and signaling of dendritic spines.
Assuntos
Actinas/metabolismo , Espinhas Dendríticas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Espinhas Dendríticas/ultraestrutura , Difusão , Lisossomos/metabolismo , Camundongos , Microscopia/métodos , Microtúbulos/metabolismo , Modelos Neurológicos , Nanoestruturas , Neocórtex/ultraestrutura , Neurotransmissores/fisiologia , Domínios Proteicos , Mapeamento de Interação de Proteínas , Pseudópodes/fisiologia , Transdução de SinaisRESUMO
Arginine-rich cell-penetrating peptides do not enter cells by directly passing through a lipid membrane; they instead passively enter vesicles and live cells by inducing membrane multilamellarity and fusion. The molecular picture of this penetration mode, which differs qualitatively from the previously proposed direct mechanism, is provided by molecular dynamics simulations. The kinetics of vesicle agglomeration and fusion by an iconic cell-penetrating peptide-nonaarginine-are documented via real-time fluorescence techniques, while the induction of multilamellar phases in vesicles and live cells is demonstrated by a combination of electron and fluorescence microscopies. This concert of experiments and simulations reveals that the identified passive cell penetration mechanism bears analogy to vesicle fusion induced by calcium ions, indicating that the two processes may share a common mechanistic origin.
Assuntos
Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Fusão de Membrana/fisiologia , Arginina/metabolismo , Arginina/fisiologia , Transporte Biológico , Membrana Celular/metabolismo , Cinética , Bicamadas Lipídicas/química , Fusão de Membrana/efeitos dos fármacos , Membranas/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/fisiologia , Pseudópodes/metabolismo , Pseudópodes/fisiologiaRESUMO
Entamoeba histolytica and its reptilian counterpart and encystation model Entamoeba invadens formed a polarized monopodial morphology when treated with pentoxifylline. This morphology was propelled by retrograde flow of the cell surface resulting from a cyclic sol-gel conversion of cytoplasm and a stable bleb at the leading edge. Pentoxifylline treatment switched the unpolarized, adherent trophozoites to the nonadherent, stable bleb-driven form and altered the motility pattern from slow and random to fast, directionally persistent, and highly chemotactic. Interestingly, exogenously added adenosine produced multiple protrusions and random motility, an opposite phenotype to that of pentoxifylline. Thus, pentoxifylline, an adenosine antagonist, may be inducing the monopodial morphology by preventing lateral protrusions and restricting the leading edge to one site. The polarized form of E. invadens was aggregation competent, and time-lapse microscopy of encystation revealed its appearance during early hours, mediating the cell aggregation by directional cell migration. The addition of purine nucleotides to in vitro encystation culture prevented the formation of polarized morphology and inhibited the cell aggregation and, thus, the encystation, which further showed the importance of the polarized form in the Entamoeba life cycle. Cell polarity and motility are essential in the pathogenesis of Entamoeba parasites, and the stable bleb-driven polarized morphology of Entamoeba may also be important in invasive amoebiasis.
Assuntos
Adenosina/farmacologia , Entamoeba histolytica/efeitos dos fármacos , Entamoeba/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos , Pentoxifilina/farmacologia , Pseudópodes/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/fisiologia , Entamoeba/fisiologia , Entamoeba/ultraestrutura , Entamoeba histolytica/fisiologia , Entamoeba histolytica/ultraestrutura , Sequestradores de Radicais Livres/farmacologia , Estágios do Ciclo de Vida/fisiologia , Movimento/efeitos dos fármacos , Movimento/fisiologia , Pentoxifilina/antagonistas & inibidores , Transição de Fase , Pseudópodes/fisiologia , Pseudópodes/ultraestrutura , Imagem com Lapso de TempoRESUMO
Aquaporin-2 (AQP2) promotes renal cell migration by the modulation of integrin ß1 trafficking and the turnover of focal adhesions. The aim of this study was to investigate whether AQP2 also works in cooperation with Na+ /H+ exchanger isoform 1 (NHE1), another well-known protein involved in the regulation of cell migration. Our results showed that the lamellipodia of AQP2-expressing cells exhibit significantly smaller volumes and areas of focal adhesions and more alkaline intracellular pH due to increased NHE1 activity than AQP2-null cells. The blockage of AQP2, or its physically-associated calcium channel TRPV4, significantly reduced lamellipodia NHE1 activity. NHE1 blockage significantly reduced the rate of cell migration, the number of lamellipodia, and the assembly of F-actin only in AQP2-expressing cells. Our data suggest that AQP2 modulates the activity of NHE1 through its calcium channel partner TRPV4, thereby determining pH-dependent actin polymerization, providing mechanical stability to delineate lamellipodia structure and defining the efficiency of cell migration.
Assuntos
Aquaporina 2/metabolismo , Rim/citologia , Trocador 1 de Sódio-Hidrogênio/metabolismo , Animais , Aquaporina 2/genética , Linhagem Celular , Tamanho Celular , Células Epiteliais , Adesões Focais , Regulação da Expressão Gênica/efeitos dos fármacos , Guanidinas/farmacologia , Concentração de Íons de Hidrogênio , Pseudópodes/fisiologia , Ratos , Trocador 1 de Sódio-Hidrogênio/genética , Sulfonas/farmacologiaRESUMO
Cells need to sense their environment to ensure accurate targeting to specific destinations. This occurs in developing muscles, which need to attach to tendon cells before muscle contractions can begin. Elongating myotube tips form filopodia, which are presumed to have sensory roles, and are later suppressed upon building the attachment site. Here, we use live imaging and quantitative image analysis of lateral transverse (LT) myotubes in Drosophila to show that filopodia suppression occurs as a result of integrin signaling. Loss of the integrin subunits αPS2 and ßPS (also known as If and Mys, respectively, in flies) increased filopodia number and length at stages when they are normally suppressed. Conversely, inducing integrin signaling, achieved by the expression of constitutively dimerised ßPS cytoplasmic domain (diß), prematurely suppressed filopodia. We discovered that the integrin signal is transmitted through the protein G protein-coupled receptor kinase interacting ArfGAP (Git) and its downstream kinase p21-activated kinase (Pak). Absence of these proteins causes profuse filopodia and prevents the filopodial inhibition mediated by diß. Thus, integrin signaling terminates the exploratory behavior of myotubes seeking tendons, enabling the actin machinery to focus on forming a strong attachment and assembling the contractile apparatus.
Assuntos
Comunicação Celular , Integrinas/fisiologia , Músculo Esquelético/embriologia , Pseudópodes/fisiologia , Tendões/embriologia , Animais , Animais Geneticamente Modificados , Comunicação Celular/genética , Regulação para Baixo/genética , Drosophila/embriologia , Drosophila/genética , Drosophila/metabolismo , Embrião não Mamífero , Integrinas/genética , Integrinas/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/fisiologia , Transdução de Sinais/genética , Tendões/fisiologiaRESUMO
Cells may exchange information with other cells and tissues by exerting forces on the extracellular matrix (ECM). Fibronectin (FN) is an important ECM component that forms fibrils through cell contacts and creates directionally biased geometry. Here, we demonstrate that FN is deposited as pillars between widely separated germ layers, namely the somitic mesoderm and the endoderm, in quail embryos. Alongside the FN pillars, long filopodia protrude from the basal surfaces of somite epithelial cells. Loss-of-function of Ena/VASP, α5ß1-integrins or talin in the somitic cells abolished the FN pillars, indicating that FN pillar formation is dependent on the basal filopodia through these molecules. The basal filopodia and FN pillars are also necessary for proper somite morphogenesis. We identified a new mechanism contributing to FN pillar formation by focusing on cyclic expansion of adjacent dorsal aorta. Maintenance of the directional alignment of the FN pillars depends on pulsatile blood flow through the dorsal aortae. These results suggest that the FN pillars are specifically established through filopodia-mediated and pulsating force-related mechanisms.