Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.120
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(33): e2123146119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35947618

RESUMO

Human prefrontal cortex (hPFC) is a complex brain region involved in cognitive and emotional processes and several psychiatric disorders. Here, we present an overview of the distribution of the peptidergic systems in 17 subregions of hPFC and three reference cortices obtained by microdissection and based on RNA sequencing and RNAscope methods integrated with published single-cell transcriptomics data. We detected expression of 60 neuropeptides and 60 neuropeptide receptors in at least one of the hPFC subregions. The results reveal that the peptidergic landscape in PFC consists of closely located and functionally different subregions with unique peptide/transmitter-related profiles. Neuropeptide-rich PFC subregions were identified, encompassing regions from anterior cingulate cortex/orbitofrontal gyrus. Furthermore, marked differences in gene expression exist between different PFC regions (>5-fold; cocaine and amphetamine-regulated transcript peptide) as well as between PFC regions and reference regions, for example, for somatostatin and several receptors. We suggest that the present approach allows definition of, still hypothetical, microcircuits exemplified by glutamatergic neurons expressing a peptide cotransmitter either as an agonist (hypocretin/orexin) or antagonist (galanin). Specific neuropeptide receptors have been identified as possible targets for neuronal afferents and, interestingly, peripheral blood-borne peptide hormones (leptin, adiponectin, gastric inhibitory peptide, glucagon-like peptides, and peptide YY). Together with other recent publications, our results support the view that neuropeptide systems may play an important role in hPFC and underpin the concept that neuropeptide signaling helps stabilize circuit connectivity and fine-tune/modulate PFC functions executed during health and disease.


Assuntos
Neuropeptídeos , Córtex Pré-Frontal , Receptores de Neuropeptídeos , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo
2.
Biochem Biophys Res Commun ; 717: 149992, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38714013

RESUMO

Insects have about 50 neuropeptide genes and about 70 genes, coding for neuropeptide G protein-coupled receptors (GPCRs). An important, but small family of evolutionarily related insect neuropeptides consists of adipokinetic hormone (AKH), corazonin, and AKH/corazonin-related peptide (ACP). Normally, insects have one specific GPCR for each of these neuropeptides. The tick Ixodes scapularis is not an insect, but belongs to the subphylum Chelicerata, which comprises ticks, scorpions, mites, spiders, and horseshoe crabs. Many of the neuropeptides and neuropeptide GPCRs occurring in insects, also occur in chelicerates, illustrating that insects and chelicerates are evolutionarily closely related. The tick I. scapularis is an ectoparasite and health risk for humans, because it infects its human host with dangerous pathogens during a blood meal. Understanding the biology of ticks will help researchers to prevent tick-borne diseases. By annotating the I. scapularis genome sequence, we previously found that ticks contain as many as five genes, coding for presumed ACP receptors. In the current paper, we cloned these receptors and expressed each of them in Chinese Hamster Ovary (CHO) cells. Each expressed receptor was activated by nanomolar concentrations of ACP, demonstrating that all five receptors were functional ACP receptors. Phylogenetic tree analyses showed that the cloned tick ACP receptors were mostly related to insect ACP receptors and, next, to insect AKH receptors, suggesting that ACP receptor genes and AKH receptor genes originated by gene duplications from a common ancestor. Similar duplications have probably occurred for the ligand genes, during a process of ligand/receptor co-evolution. Interestingly, chelicerates, in contrast to all other arthropods, do not have AKH or AKH receptor genes. Therefore, the ancestor of chelicerates might have lost AKH and AKH receptor genes and functionally replaced them by ACP and ACP receptor genes. For the small family of AKH, ACP, and corazonin receptors and their ligands, gene losses and gene gains occur frequently between the various ecdysozoan clades. Tardigrades, for example, which are well known for their survival in extreme environments, have as many as ten corazonin receptor genes and six corazonin peptide genes, while insects only have one of each, or none.


Assuntos
Hormônios de Inseto , Ixodes , Neuropeptídeos , Oligopeptídeos , Ácido Pirrolidonocarboxílico , Receptores Acoplados a Proteínas G , Animais , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Hormônios de Inseto/metabolismo , Hormônios de Inseto/genética , Ixodes/metabolismo , Ixodes/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Oligopeptídeos/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/química , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo , Filogenia , Sequência de Aminoácidos , Cricetulus , Células CHO , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/genética
3.
Gen Comp Endocrinol ; 355: 114560, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38806133

RESUMO

Growth hormone-releasing hormone (GHRH) has been widely shown to stimulate growth hormone (GH) production via binding to GHRH receptor GHRHR in various species of vertebrates, but information regarding the functional roles of GHRH and GHRHR in the protochordate amphioxus remains rather scarce. We showed here that two mature peptides, BjGHRH-1 and BjGHRH-2, encoded by BjGHRH precursor, and a single BjGHRHR protein were identified in the amphioxus Branchiostoma. japonicum. Like the distribution profiles of vertebrate GHRHs and GHRHRs, both the genes Bjghrh and Bjghrhr were widely expressed in the different tissues of amphioxus, including in the cerebral vesicle, Hatschek's pit, neural tube, gill, hepatic caecum, notochord, testis and ovary. Moreover, both BjGHRH-1 and BjGHRH-2 interacted with BjGHRHR, and triggered the cAMP/PKA signal pathway in a dose-dependent manner. Importantly, BjGHRH-1 and BjGHRH-2 were both able to activate the expression of GH-like gene in the cells of Hatschek's pit. These indicate that a functional vertebrate-like GHRH-GHRHR axis had already emerged in amphioxus, which is a seminal innovation making physiological divergence including reproduction, growth, metabolism, stress and osmoregulation possible during the early evolution of vertebrates.


Assuntos
Hormônio Liberador de Hormônio do Crescimento , Anfioxos , Receptores de Neuropeptídeos , Receptores de Hormônios Reguladores de Hormônio Hipofisário , Animais , Anfioxos/metabolismo , Anfioxos/genética , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hormônio Liberador de Hormônio do Crescimento/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Sistema Hipotálamo-Hipofisário/metabolismo
4.
Skin Res Technol ; 30(2): e13588, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38284237

RESUMO

BACKGROUND: Prurigo nodularis (PN) is a chronic inflammatory skin disorder that is characterized by extremely itchy nodules. Proadrenomedullin N-terminal 20 (PAMP) activates mast cell degranulation via Mas-related G protein-coupled receptor X2 (MRGPRX2), which is associated with pruritus in allergic contact dermatitis. However, the mechanisms underlying the action of PAMP and MRGPRX2 in PN remain unclear. OBJECTIVE: To determine the role of PAMP-induced mast cell activation via MRGPRX2 (mouse homologous Mrgprb2) in PN. METHODS: The expression of PAMP and the number of MRGPRX2-expressing mast cells in the skin biopsies of patients with PN, atopic dermatitis (AD), and healthy participants were analyzed using immunohistochemistry and immunofluorescence, respectively. The biphasic response of PAMP9-20 mediated by Mrgprb2 in mouse peritoneal mast cells (PMC) was validated in vitro using qRT-PCR, ELISA, flow cytometry, and siRNA techniques. RESULTS: PAMP expression and the number of MRGPRX2+ mast cells in lesional PN skin, but not in AD, were elevated compared to healthy skin. PAMP9-20 mediates the immediate and delayed phase responses of PMC, such as degranulation, histamine and ß-hexosaminidase release, and secretion of inflammatory factors such as CCL2, TNF-α, and GM-CSF. These effects were inhibited when Mrgprb2 expression was silenced. Silencing Mrgprb2 did not affect the biphasic response of PMC that was induced by IgE-FcεRI activation. CONCLUSIONS: The results show that PAMP mediates mouse mast cell activation via Mrgprb2, which may be involved in the pathogenesis of PN. The PAMP/ Mrgprb2 pathway, independent of classical IgE signaling, could be developed as a candidate drug target for treating PN.


Assuntos
Dermatite Atópica , Prurigo , Receptores Acoplados a Proteínas G , Animais , Humanos , Camundongos , Adrenomedulina/metabolismo , Dermatite Atópica/patologia , Imunoglobulina E/metabolismo , Mastócitos/metabolismo , Mastócitos/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Prurigo/metabolismo , Prurigo/patologia , Prurido , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Pele/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34599099

RESUMO

Alternative splicing of G protein-coupled receptors has been observed, but their functions are largely unknown. Here, we report that a splice variant (SV1) of the human growth hormone-releasing hormone receptor (GHRHR) is capable of transducing biased signal. Differing only at the receptor N terminus, GHRHR predominantly activates Gs while SV1 selectively couples to ß-arrestins. Based on the cryogenic electron microscopy structures of SV1 in the apo state or GHRH-bound state in complex with the Gs protein, molecular dynamics simulations reveal that the N termini of GHRHR and SV1 differentiate the downstream signaling pathways, Gs versus ß-arrestins. As suggested by mutagenesis and functional studies, it appears that GHRH-elicited signal bias toward ß-arrestin recruitment is constitutively mediated by SV1. The level of SV1 expression in prostate cancer cells is also positively correlated with ERK1/2 phosphorylation but negatively correlated with cAMP response. Our findings imply that constitutive signal bias may be a mechanism that ensures cancer cell proliferation.


Assuntos
Processamento Alternativo/genética , Variação Genética/genética , Receptores de Neuropeptídeos/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Cultivadas , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/genética , Células PC-3 , Células Sf9 , Transdução de Sinais/genética , beta-Arrestinas/genética
6.
J Allergy Clin Immunol ; 151(6): 1585-1594.e9, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36804596

RESUMO

BACKGROUND: Drug-induced anaphylaxis is triggered by the direct stimulation of mast cells (MCs) via Mas-related G protein-coupled receptor X2 (MRGPRX2; mouse ortholog MRGPRB2). However, the precise mechanism that links MRGPRX2/B2 to MC degranulation is poorly understood. Dedicator of cytokinesis 2 (DOCK2) is a Rac activator predominantly expressed in hematopoietic cells. Although DOCK2 regulates migration and activation of leukocytes, its role in MCs remains unknown. OBJECTIVE: We aimed to elucidate whether-and if so, how-DOCK2 is involved in MRGPRX2/B2-mediated MC degranulation and anaphylaxis. METHODS: Induction of drug-induced systemic and cutaneous anaphylaxis was compared between wild-type and DOCK2-deficient mice. In addition, genetic or pharmacologic inactivation of DOCK2 in human and murine MCs was used to reveal its role in MRGPRX2/B2-mediated signal transduction and degranulation. RESULTS: Induction of MC degranulation and anaphylaxis by compound 48/80 and ciprofloxacin was severely attenuated in the absence of DOCK2. Although calcium influx and phosphorylation of several signaling molecules were unaffected, MRGPRB2-mediated Rac activation and phosphorylation of p21-activated kinase 1 (PAK1) were impaired in DOCK2-deficient MCs. Similar results were obtained when mice or MCs were treated with small-molecule inhibitors that bind to the catalytic domain of DOCK2 and inhibit Rac activation. CONCLUSION: DOCK2 regulates MRGPRX2/B2-mediated MC degranulation through Rac activation and PAK1 phosphorylation, thereby indicating that the DOCK2-Rac-PAK1 axis could be a target for preventing drug-induced anaphylaxis.


Assuntos
Anafilaxia , Hipersensibilidade a Drogas , Humanos , Camundongos , Animais , Anafilaxia/induzido quimicamente , Degranulação Celular , Mastócitos/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Hipersensibilidade a Drogas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
7.
J Biol Chem ; 298(10): 102440, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36049520

RESUMO

The protostome leucokinin (LK) signaling system, including LK peptides and their G protein-coupled receptors, has been characterized in several species. Despite the progress, molecular mechanisms governing LK peptide-receptor interactions remain to be elucidated. Previously, we identified a precursor protein for Aplysia leucokinin-like peptides (ALKs) that contains the greatest number of amidated peptides among LK precursors in all species identified so far. Here, we identified the first ALK receptor from Aplysia, ALKR. We used cell-based IP1 activation assays to demonstrate that two ALK peptides with the most copies, ALK1 and ALK2, activated ALKR with high potencies. Other endogenous ALK-derived peptides bearing the FXXWX-amide motif also activated ALKR to various degrees. Our examination of cross-species activity of ALKs with the Anopheles LK receptor was consistent with a critical role for the FXXWX-amide motif in receptor activity. Furthermore, we showed, through alanine substitution of ALK1, the highly conserved phenylalanine (F), tryptophan (W), and C-terminal amidation were each essential for receptor activation. Finally, we used an artificial intelligence-based protein structure prediction server (Robetta) and Autodock Vina to predict the ligand-bound conformation of ALKR. Our model predicted several interactions (i.e., hydrophobic interactions, hydrogen bonds, and amide-pi stacking) between ALK peptides and ALKR, and several of our substitution and mutagenesis experiments were consistent with the predicted model. In conclusion, our results provide important information defining possible interactions between ALK peptides and their receptors. The workflow utilized here may be useful for studying other ligand-receptor interactions for a neuropeptide signaling system, particularly in protostomes.


Assuntos
Aplysia , Inteligência Artificial , Neuropeptídeos , Receptores de Neuropeptídeos , Animais , Amidas , Aplysia/genética , Aplysia/metabolismo , Ligantes , Mutagênese , Neuropeptídeos/química , Neuropeptídeos/genética , Conformação Proteica , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/genética
8.
Biochem Biophys Res Commun ; 660: 28-34, 2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37060828

RESUMO

G protein-coupled receptors (GPCRs) are a major class of membrane receptors that modulate a wide range of physiological functions. These receptors transmit extracellular signals, including secreted bioactive peptides, to intracellular signaling pathways. The nematode Caenorhabditis elegans has FMRFamide-like peptides, which are one of the most diverse neuropeptide families, some of which modulate larval development through GPCRs. In this study, we identified the GPCR neuropeptide receptor (NPR)-15, which modulates C. elegans larval development. Our molecular genetic analyses indicated the following: 1) NPR-15 mainly functions in ASI neurons, which predominantly regulate larval development, 2) NPR-15 interacts with GPA-4, a C. elegans Gα subunit, and 3) NPR-15, along with GPA-4, modulates larval development by regulating the production and secretion of the transforming growth factor-ß (TGF-ß)-like protein DAF-7. The present study is the first report to demonstrate the importance of a GPCR to the direct regulation of a TGF-ß-like protein.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/metabolismo
9.
Toxicol Appl Pharmacol ; 474: 116601, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321326

RESUMO

Two potent and selective KRASG12D inhibitors, ERAS-4693 and ERAS-5024, were generated as possible clinical candidates to treat patients harboring G12D mutations in solid tumors. Both molecules exhibited strong anti-tumor activity in the KRASG12D mutant PDAC xenograft mouse models while ERAS-5024 also showed tumor growth inhibition when administered on an intermittent dosing regimen. Acute dose-limiting toxicity consistent with an allergic reaction was observed for both molecules shortly after administration at doses just above those which demonstrated anti-tumor activity, indicative of a narrow therapeutic index. A series of studies were subsequently conducted to identify a common underlying mechanism for the observed toxicity, including CETSA® (Cellular Thermal Shift Assay) as well as several functional off-target screens. Both ERAS-4693 and ERAS-5024 were identified to agonize MRGPRX2 which has been linked to pseudo-allergic reactions. In vivo toxicologic characterization of both molecules included repeat-dose studies in the rat and dog. Dose-limiting toxicities were observed in both species with ERAS-4693 and ERAS-5024 and plasma exposure levels at the maximum tolerated doses were generally below that which caused strong anti-tumor activity, supporting the initial observation of a narrow therapeutic index. Additional overlapping toxicities included a reduction in reticulocytes and clinical pathological changes suggestive of an inflammatory response. Furthermore, increases in plasma histamine were observed in dogs administered ERAS-5024, supporting the hypothesis that MRGPRX2 agonism may be the cause of the pseudo-allergic reaction. This work highlights the importance of balancing both the safety and efficacy of KRASG12D inhibitors as this class of molecules begins to enter clinical development.


Assuntos
Hipersensibilidade , Neoplasias Pancreáticas , Humanos , Camundongos , Ratos , Animais , Cães , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pancreáticas/patologia , Mutação , Proteínas do Tecido Nervoso , Receptores de Neuropeptídeos/genética , Receptores Acoplados a Proteínas G/genética
10.
Exp Dermatol ; 32(4): 436-446, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36463492

RESUMO

Hydroquinone (HQ) is one of the most effective drugs to treat hyperpigmentary disorders, but often causes skin irritation in clinic. Mast cell plays an important role in contact dermatitis and triggering pseudo-allergic reactions via MRGPRX2. Whether HQ-induced skin irritant reaction through activating mast cells via MRGPRX2 remains unknown. To investigate the role of mast cells in HQ-induced skin irritant reaction and verify whether MRGPRX2 participated in the HQ effect on mast cells which contributed to the pathogenesis of skin irritant reaction, a mouse model of HQ-induced skin irritation was established to observe the local and systemic inflammation associated with mast cell receptor MrgprB2. Human mast cell LAD2 was used to verify the effect of HQ on mast cells via MRGPRX2 by knocking down with siRNA. As a result, mast cells were involved in the development of HQ-induced irritant reaction, and local inflammation is closely related to mast cell receptor MrgprB2. HQ could activate mast cells via MRGPRX2, causing changes in calcium concentration, degranulation and release of inflammatory cytokines which lead to skin irritant reaction. In conclusion, HQ-induced skin irritant reaction could be skin pseudo-allergic reactions achieved by activating mast cells via MRGPRX2.


Assuntos
Dermatite Atópica , Hipersensibilidade , Animais , Camundongos , Humanos , Mastócitos/patologia , Irritantes/toxicidade , Hidroquinonas/efeitos adversos , Receptores Acoplados a Proteínas G/genética , Inflamação/patologia , Dermatite Atópica/patologia , Degranulação Celular , Proteínas do Tecido Nervoso/genética , Receptores de Neuropeptídeos/genética
11.
PLoS Biol ; 18(3): e3000614, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32126082

RESUMO

The reproductive hormones that trigger oocyte meiotic maturation and release from the ovary vary greatly between animal species. Identification of receptors for these maturation-inducing hormones (MIHs) and understanding how they initiate the largely conserved maturation process remain important challenges. In hydrozoan cnidarians including the jellyfish Clytia hemisphaerica, MIH comprises neuropeptides released from somatic cells of the gonad. We identified the receptor (MIHR) for these MIH neuropeptides in Clytia using cell culture-based "deorphanization" of candidate oocyte-expressed G protein-coupled receptors (GPCRs). MIHR mutant jellyfish generated using CRISPR-Cas9 editing had severe defects in gamete development or in spawning both in males and females. Female gonads, or oocytes isolated from MIHR mutants, failed to respond to synthetic MIH. Treatment with the cAMP analogue Br-cAMP to mimic cAMP rise at maturation onset rescued meiotic maturation and spawning. Injection of inhibitory antibodies to the alpha subunit of the Gs heterodimeric protein (GαS) into wild-type oocytes phenocopied the MIHR mutants. These results provide the molecular links between MIH stimulation and meiotic maturation initiation in hydrozoan oocytes. Molecular phylogeny grouped Clytia MIHR with a subset of bilaterian neuropeptide receptors, including neuropeptide Y, gonadotropin inhibitory hormone (GnIH), pyroglutamylated RFamide, and luqin, all upstream regulators of sexual reproduction. This identification and functional characterization of a cnidarian peptide GPCR advances our understanding of oocyte maturation initiation and sheds light on the evolution of neuropeptide-hormone systems.


Assuntos
Hidrozoários/fisiologia , Neuropeptídeos/metabolismo , Oócitos/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , AMP Cíclico/metabolismo , Feminino , Expressão Gênica , Hidrozoários/genética , Masculino , Mutação , Filogenia , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo
12.
J Allergy Clin Immunol ; 149(6): 1998-2009.e5, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35283140

RESUMO

BACKGROUND: Chronic prurigo (CPG) is characterized by intensive itch and interactions among nerves, neuropeptides, and mast cells (MCs). The role of some neuropeptides such as cortistatin (CST) and its receptor, Mas-related G protein-coupled receptor X2 (MRGPRX2), in CPG remains poorly investigated. OBJECTIVES: We evaluated first whether CST activates human skin MCs, and second whether CST and MRGPRX2 are expressed in the skin of CPG patients, and by which cells. METHODS: Skin prick tests and microdialysis with CST were performed in 6 and 1 healthy volunteers, respectively. Degranulation of human skin MCs was assessed using ß-hexosaminidase and histamine release assays. Skin samples from 10 patients with CPG and 10 control subjects were stained for CST, MCs, and MRGPRX2 (protein and mRNA) using immunohistochemistry, immunofluorescence, and/or in situ hybridization. Flow cytometry was used to assess CST in human skin MCs. MRGPRX2 levels were measured in serum by ELISA. RESULTS: CST induced concentration-dependent degranulation of human skin MCs in vivo and ex vivo. Skin lesions of CPG patients exhibited markedly higher numbers of CST-expressing cells, CST-expressing MCs, MRGPRX2-expressing cells, and MRGPRX2 mRNA-expressing cells than nonlesional skin. MCs were the main MRGPRX2 mRNA-expressing cells in the lesions of most CPG patients (70%). Stimulation of human skin MCs with anti-IgE led to a release of CST. The number of MRGPRX2-expressing cells correlated with disease severity (r = 0.649, P = .04). MRGPRX2 serum levels in CPG patients correlated with disease severity (r = 0.704, P = .023) and quality-of-life impairment (r = 0.687, P = .028). CONCLUSIONS: CST and MRGPRX2 may contribute to the pathogenesis of CPG and should be evaluated in further studies as potential biomarkers and novel therapeutic targets.


Assuntos
Neuropeptídeos , Prurigo , Degranulação Celular , Humanos , Mastócitos/fisiologia , Proteínas do Tecido Nervoso/genética , RNA Mensageiro , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética
13.
Fish Physiol Biochem ; 49(5): 983-1003, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37670169

RESUMO

The neuropeptide B/W signaling system is composed of neuropeptide B (NPB), neuropeptide W (NPW), and two cognate receptors, NPBWR1 and NPBWR2, which are involved in diverse physiological processes, including the central regulation of neuroendocrine axes in vertebrates. The components of this signaling system are not well conserved during vertebrate evolution, implicating its functional diversity. The present study characterized the ricefield eel neuropeptide B/W system, generated a specific antiserum against the neuropeptide B/W receptor, and examined the potential roles of the system in the regulation of adenohypophysial functions. The ricefield eel genome contains npba, npbb, and npbwr2b but lacks the npw, npbwr1, and npbwr2a genes. The loss of npw and npbwr1 probably occurred at the base of ray-finned fish radiation and that of npbwr2a species specifically in ray-finned fish. Npba and npbb genes are produced through whole-genome duplication (WGD) in ray-finned fish. The ricefield eel npba was expressed in the brain and some peripheral tissues, while npbb was predominantly expressed in the brain. The ricefield eel npbwr2b was also expressed in the brain and in some peripheral tissues, such as the pituitary, gonad, heart, and eye. Immunoreactive Npbwr2b was shown to be localized to Lh and Fsh cells but not to Gh or Prl cells in the pituitary of ricefield eels. Npba upregulated the expression of fshb and cga but not lhb mRNA in pituitary fragments of ricefield eels cultured in vitro. The results of the present study suggest that the NPB system of ricefield eels may be involved in the neuroendocrine regulation of reproduction.


Assuntos
Enguias , Neuropeptídeos , Animais , Enguias/genética , Enguias/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Gonadotropinas/metabolismo , Receptores de Neuropeptídeos/genética
14.
Gastroenterology ; 160(5): 1709-1724, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421512

RESUMO

BACKGROUND & AIMS: Recent literature has implicated a key role for mast cells in murine models of colonic inflammation, but their role in human ulcerative colitis (UC) is not well established. A major advance has been the identification of mrgprb2 (human orthologue, MRGPX2) as mediating IgE-independent mast cell activation. We sought to define mechanisms of mast cell activation and MRGPRX2 in human UC. METHODS: Colon tissues were collected from patients with UC for bulk RNA sequencing and lamina propria cells were isolated for MRGPRX2 activation studies and single-cell RNA sequencing. Genetic association of all protein-altering G-protein coupled receptor single-nucleotide polymorphism was performed in an Ashkenazi Jewish UC case-control cohort. Variants of MRGPRX2 were transfected into Chinese hamster ovary (CHO) and human mast cell (HMC) 1.1 cells to detect genotype-dependent effects on ß-arrestin recruitment, IP-1 accumulation, and phosphorylated extracellular signal-regulated kinase. RESULTS: Mast cell-specific mediators and adrenomedullin (proteolytic precursor of PAMP-12, an MRGPRX2 agonist) are up-regulated in inflamed compared to uninflamed UC. MRGPRX2 stimulation induces carboxypeptidase secretion from inflamed UC. Of all protein-altering GPCR alleles, a unique variant of MRGPRX2, Asn62Ser, was most associated with and was bioinformatically predicted to alter arrestin recruitment. We validated that the UC protective serine allele enhances ß-arrestin recruitment, decreases IP-1, and increases phosphorylated extracellular signal-regulated kinase with MRGPRX2 agonists. Single-cell RNA sequencing defines that adrenomedullin is expressed by activated fibroblasts and epithelial cells and that interferon gamma is a key upstream regulator of mast cell gene expression. CONCLUSION: Inflamed UC regions are distinguished by MRGPRX2-mediated activation of mast cells, with decreased activation observed with a UC-protective genetic variant. These results define cell modules of UC activation and a new therapeutic target.


Assuntos
Degranulação Celular , Colite Ulcerativa/metabolismo , Colo/metabolismo , Mastócitos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Adrenomedulina/genética , Adrenomedulina/metabolismo , Animais , Células CHO , Estudos de Casos e Controles , Colite Ulcerativa/genética , Colite Ulcerativa/imunologia , Colo/imunologia , Cricetulus , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Variação Genética , Humanos , Fosfatos de Inositol/metabolismo , Ligantes , Mastócitos/imunologia , Proteínas do Tecido Nervoso/genética , Fosforilação , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo
15.
Cell Immunol ; 375: 104514, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398603

RESUMO

Morphine derivatives are clinically important anesthetic and sedative drugs, which often show anaphylactic side effects. Mas-related G-protein coupled receptor member X2 (MRGPRX2) triggers mast cell degranulation, which is important process in anaphylactic reactions. MRGPRX2-HEK293 and LAD2 cell membrane chromatographic (CMC) models were used to screen morphine derivatives binding to MRGPRX2. Furthermore, most morphine derivatives significantly enhanced Ca2+ mobilization. More importantly, thebaine was found to effectively promote histamine release. Thebaine induced the increased release of ß-hexosaminidase and high secretion level of cytokines, confirming that thebaine could further trigger anaphylactic reactions and promote subsequent inflammatory reactions. Moreover, the ability of thebaine inducing degranulation and the release of allergenic mediators in mast cells was significantly decreased after MRGPRX2 knockdown, which proved that MRGPRX2 is the key media for thebaine-induced anaphylactic reactions. Significant hind paw swelling and hypothermia in mice after injecting thebaine suggested that thebaine could trigger anaphylactic reactions in vivo.


Assuntos
Anafilaxia , Mastócitos , Proteínas do Tecido Nervoso , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos , Tebaína , Anafilaxia/induzido quimicamente , Animais , Degranulação Celular , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/genética , Tebaína/efeitos adversos
16.
FASEB J ; 35(1): e21222, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33337563

RESUMO

MiRNAs have attracted more attention in recent years as regulators of sleep and circadian rhythms after their roles in circadian rhythm and sleep were discovered. In this study, we explored the roles of the miR-276a on daily sleep in Drosophila melanogaster, and found a regulatory cycle for the miR-276a pathway, in which miR-276a, regulated by the core CLOCK/CYCLE (CLK/CYC) transcription factor upstream, regulates sleep via suppressing targets TIM and NPFR1. (a) Loss of miR-276a function makes the flies sleep more during both daytime and nighttime, while flies with gain of miR-276a function sleep less; (b) MiR-276a is widely expressed in the mushroom body (MB), the pars intercerebralis (PI) and some clock neurons lateral dorsal neurons (LNds), in which tim neurons is important for sleep regulation; (c) MiR-276a promoter is identified to locate in the 8th fragment (aFrag8) of the pre-miR-276a, and this fragment is directly activated and regulated by CLK/CYC; (4) MiR-276a is rhythmically oscillating in heads of the wild-type w1118 , but this oscillation disappears in the loss of function mutant clkjrk ; (5) The neuropeptide F receptor 1 (npfr1) was found to be a downstream target of miR-276a. These results clarify that the miR-276a is a very important factor for sleep regulation.


Assuntos
MicroRNAs/metabolismo , Sono/fisiologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , MicroRNAs/genética , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo
17.
Mol Biol Rep ; 49(7): 6385-6394, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35503491

RESUMO

BACKGROUND: Neuropeptide FF (NPFF), an octapeptide of the RFamide-related peptides (FaRPs), is involved in regulatory function in various biological processes. The regulatory role of NPFF in the immune and inflammatory response was currently being revealed. METHODS: Neuropeptide FF-related gene (termed LpNPFF) and its two receptors, NPFF receptor 1 (LpNPFFR1) and NPFF receptor 2 (LpNPFFR2) were identified by PCR and Semi-quantitative RT-PCR assay. Effect of LpNPFF on the production of nitric oxide (NO) in macrophage RAW264.7 cell was divided into PBS group, lipopolysaccharide (LPS) group, LPS treated with LpNPFF group, and LPS treated with LpNPFF and receptor antagonist RF9 group. Then specimens were measured by color reaction at 570 nm absorbance value. RESULTS: Sequence analysis showed that LpNPFF cDNA consists of 835 nucleotides with a 5'- untranslated region (UTR) of 150 base pair (bp), an open reading frame (ORF) of 384 bp and a 3'-UTR of 300 bp (Accession No. MT012894). The ORF encodes 127 amino acid (aa) residues with a hydrophobic signal peptide at N-terminus and two presumptive peptides with -PQRFa structure, LpNPFF (1) and LpNPFF (2). LpNPFFR1 and LpNPFFR2 encode 427 and 444 aa residues respectively, which both have seven hydrophobic TMDs and identified as G protein coupled receptors (GPCRs). Results of tissue distribution showed that LpNPFF and receptors were highly expressed in the brain and gonad. Furtherly, in vitro assay found LpNPFF could inhibit NO production in RAW 264.7 macrophages under inflammatory stress with LPS, while its receptor antagonist RF9 caused the evoke of NO generation. CONCLUSIONS: These results contribute to the further study of neuropeptide evolution in marine organisms, and also provide a new research idea for exploring the related functions of NPFF gene.


Assuntos
Lipopolissacarídeos , Receptores de Neuropeptídeos , Animais , Anti-Inflamatórios , Lipopolissacarídeos/farmacologia , Óxido Nítrico , Oligopeptídeos/farmacologia , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo
18.
Arch Insect Biochem Physiol ; 110(4): e21897, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35368094

RESUMO

The fall armyworm, Spodoptera frugiperda, native to the tropical and subtropical areas of the American continent is one of the world's most destructive insect pests. In most insects, sex pheromone production is initiated following the activation of a pheromone-biosynthesis-activating neuropeptide (PBAN) receptor, which belongs to G protein-coupled receptor. We explored expression level of S. frugiperda PBAN receptor (Sf-PBANr) gene and validated the physiological function by assessing the fecundity of adult females subjected to its specific RNA interference (RNAi). Sf-PBANr was predicted from a transcriptome of S. frugiperda. Reverse-transcription polymerase chain reaction assay showed its expression in all developmental stages of S. frugiperda. Specific suppression of Sf-PBANr by RNAi in either sex significantly reduced the total number of laid eggs per adult female. Matings between both RNAi-treated males and female resulted in 63.3% reduction in fecundity. In contrast, the RNAi effect was less 47.5%-49.5% at the matings from single-parent RNAi treatment. These results suggest that the Sf-PBANr is associated with female of S. frugiperda.


Assuntos
Neuropeptídeos , Receptores de Neuropeptídeos , Sequência de Aminoácidos , Animais , Feminino , Fertilidade , Insetos/metabolismo , Masculino , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/genética , Spodoptera/genética , Spodoptera/metabolismo
19.
Proc Natl Acad Sci U S A ; 116(16): 7847-7856, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30936317

RESUMO

Neuropeptides play pivotal roles in various biological events in the nervous, neuroendocrine, and endocrine systems, and are correlated with both physiological functions and unique behavioral traits of animals. Elucidation of functional interaction between neuropeptides and receptors is a crucial step for the verification of their biological roles and evolutionary processes. However, most receptors for novel peptides remain to be identified. Here, we show the identification of multiple G protein-coupled receptors (GPCRs) for species-specific neuropeptides of the vertebrate sister group, Ciona intestinalis Type A, by combining machine learning and experimental validation. We developed an original peptide descriptor-incorporated support vector machine and used it to predict 22 neuropeptide-GPCR pairs. Of note, signaling assays of the predicted pairs identified 1 homologous and 11 Ciona-specific neuropeptide-GPCR pairs for a 41% hit rate: the respective GPCRs for Ci-GALP, Ci-NTLP-2, Ci-LF-1, Ci-LF-2, Ci-LF-5, Ci-LF-6, Ci-LF-7, Ci-LF-8, Ci-YFV-1, and Ci-YFV-3. Interestingly, molecular phylogenetic tree analysis revealed that these receptors, excluding the Ci-GALP receptor, were evolutionarily unrelated to any other known peptide GPCRs, confirming that these GPCRs constitute unprecedented neuropeptide receptor clusters. Altogether, these results verified the neuropeptide-GPCR pairs in the protochordate and evolutionary lineages of neuropeptide GPCRs, and pave the way for investigating the endogenous roles of novel neuropeptides in the closest relatives of vertebrates and the evolutionary processes of neuropeptidergic systems throughout chordates. In addition, the present study also indicates the versatility of the machine-learning-assisted strategy for the identification of novel peptide-receptor pairs in various organisms.


Assuntos
Ciona intestinalis , Neuropeptídeos , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos , Animais , Ciona intestinalis/química , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Biologia Computacional , Neuropeptídeos/química , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Máquina de Vetores de Suporte
20.
Proc Natl Acad Sci U S A ; 116(6): 2226-2231, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659154

RESUMO

Malignant pleural mesothelioma (MPM) is an aggressive malignancy associated with exposure to asbestos, with poor prognosis and no effective therapies. The strong inhibitory activities of growth hormone-releasing hormone (GHRH) antagonists have been demonstrated in different experimental human cancers, including lung cancer; however, their role in MPM remains unknown. We assessed the effects of the GHRH antagonists MIA-602 and MIA-690 in vitro in MPM cell lines and in primary MPM cells, and in vivo in MPM xenografts. GHRH, GHRH receptor, and its main splice variant SV1 were found in all the MPM cell types examined. In vitro, MIA-602 and MIA-690 reduced survival and proliferation in both MPM cell lines and primary cells and showed synergistic inhibitory activity with the chemotherapy drug pemetrexed. In MPM cells, GHRH antagonists also regulated activity and expression of apoptotic molecules, inhibited cell migration, and reduced the expression of matrix metalloproteinases. These effects were accompanied by impairment of mitochondrial activity and increased production of reactive oxygen species. In vivo, s.c. administration of MIA-602 and MIA-690 at the dose of 5 µg/d for 4 wk strongly inhibited the growth of MPM xenografts in mice, along with reduction of tumor insulin-like growth factor-I and vascular endothelial growth factor. Overall, these results suggest that treatment with GHRH antagonists, alone or in association with chemotherapy, may offer an approach for the treatment of MPM.


Assuntos
Antineoplásicos/farmacologia , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mesotelioma/metabolismo , Mesotelioma/patologia , Neoplasias Pleurais/metabolismo , Neoplasias Pleurais/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Expressão Gênica , Hormônio Liberador de Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Mesotelioma Maligno , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias Pleurais/tratamento farmacológico , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa