RESUMO
Upon stress, cytoplasmic mRNA is sequestered to insoluble ribonucleoprotein (RNP) granules, such as the stress granule (SG). Partially due to the belief that translationally suppressed mRNAs are recruited to SGs in bulk, stress-induced dynamic redistribution of mRNA has not been thoroughly characterized. Here, we report that endoplasmic reticulum (ER) stress targets only a small subset of translationally suppressed mRNAs into the insoluble RNP granule fraction (RG). This subset, characterized by extended length and adenylate-uridylate (AU)-rich motifs, is highly enriched with genes critical for cell survival and proliferation. This pattern of RG targeting was conserved for two other stress types, heat shock and arsenite toxicity, which induce distinct responses in the total cytoplasmic transcriptome. Nevertheless, stress-specific RG-targeting motifs, such as guanylate-cytidylate (GC)-rich motifs in heat shock, were also identified. Previously underappreciated, transcriptome profiling in the RG may contribute to understanding human diseases associated with RNP dysfunction, such as cancer and neurodegeneration.
Assuntos
Grânulos Citoplasmáticos/metabolismo , Estresse do Retículo Endoplasmático , Resposta ao Choque Térmico , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Transcriptoma , Elementos Ricos em Adenilato e Uridilato , Animais , Arsenitos/toxicidade , Sítios de Ligação , Grânulos Citoplasmáticos/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HCT116 , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Ligação Proteica , Proto-Oncogenes , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Solubilidade , Tapsigargina/toxicidade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacosRESUMO
Liver injury triggers adaptive remodeling of the hepatic transcriptome for repair/regeneration. We demonstrate that this involves particularly profound transcriptomic alterations where acute induction of genes involved in handling of endoplasmic reticulum stress (ERS) is accompanied by partial hepatic dedifferentiation. Importantly, widespread hepatic gene downregulation could not simply be ascribed to cofactor squelching secondary to ERS gene induction, but rather involves a combination of active repressive mechanisms. ERS acts through inhibition of the liver-identity (LIVER-ID) transcription factor (TF) network, initiated by rapid LIVER-ID TF protein loss. In addition, induction of the transcriptional repressor NFIL3 further contributes to LIVER-ID gene repression. Alteration to the liver TF repertoire translates into compromised activity of regulatory regions characterized by the densest co-recruitment of LIVER-ID TFs and decommissioning of BRD4 super-enhancers driving hepatic identity. While transient repression of the hepatic molecular identity is an intrinsic part of liver repair, sustained disequilibrium between the ERS and LIVER-ID transcriptional programs is linked to liver dysfunction as shown using mouse models of acute liver injury and livers from deceased human septic patients.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica/genética , Hepatopatias/metabolismo , Transcriptoma/genética , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/genética , Sequenciamento de Cromatina por Imunoprecipitação , Regulação para Baixo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hepatopatias/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Tapsigargina/toxicidade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para CimaRESUMO
The inability of neurons to undergo mitosis renders damage to the central or peripheral nervous system. Neural stem cell therapy could provide a path for treating the neurodegenerative diseases. However, reliable and simple tools for the developing and testing neural stem cell therapy are still required. Here, we show the development of a micropillar-based microfluidic device to trap the uniform-sized neurospheres. The neurospheres trapped within micropillar arrays were largely differentiated into neuronal cells, and their neurite networks were observed in the microfluidic device. Compared to conventional cultures on glass slides, the neurite networks generated with this method have a higher reproducibility. Furthermore, we demonstrated the effect of thapsigargin on the neurite networks in the microfluidic device, demonstrating that neural networks exposed to thapsigargin were largely diminished and disconnected from each other. Therefore, this micropillar-based microfluidic device could be a potential tool for screening of neurotoxins.
Assuntos
Técnicas Citológicas/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Células-Tronco Neurais/citologia , Neuritos/fisiologia , Animais , Células Cultivadas , Desenho de Equipamento , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neurotoxinas/toxicidade , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Tapsigargina/toxicidade , Testes de Toxicidade/instrumentaçãoRESUMO
Our understanding of autophagy and lysosomal function has been greatly enhanced by the discovery of natural product structures that can serve as chemical probes to reveal new patterns of signal transduction in cells. Coibamide A is a cytotoxic marine natural product that induces mTOR-independent autophagy as an adaptive stress response that precedes cell death. Autophagy-related (ATG) protein 5 (ATG5) is required for coibamide-induced autophagy but not required for coibamide-induced apoptosis. Using wild-type and autophagy-deficient mouse embryonic fibroblasts (MEFs) we demonstrate that coibamide-induced toxicity is delayed in ATG5-/- cells relative to ATG5+/+ cells. Time-dependent changes in annexin V staining, membrane integrity, metabolic capacity and caspase activation indicated that MEFs with a functional autophagy pathway are more sensitive to coibamide A. This pattern could be distinguished from autophagy modulators that induce acute ER stress (thapsigargin, tunicamycin), ATP depletion (oligomycin A) or mTORC1 inhibition (rapamycin), but was shared with the Sec61 inhibitor apratoxin A. Coibamide- or apratoxin-induced cell stress was further distinguished from the action of thapsigargin by a pattern of early LC3-II accumulation in the absence of CHOP or BiP expression. Time-dependent changes in ATG5-ATG12, PARP1 and caspase-3 expression patterns were consistent with the conversion of ATG5 to a pro-death signal in response to both compounds.
Assuntos
Apoptose/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia/efeitos dos fármacos , Depsipeptídeos/toxicidade , Animais , Proteína 5 Relacionada à Autofagia/genética , Linhagem Celular , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos , Técnicas de Inativação de Genes , Toxinas Marinhas/toxicidade , Camundongos , Transdução de Sinais/efeitos dos fármacos , Tapsigargina/toxicidadeRESUMO
It was recently shown that ZnO nanoparticles (NPs) could induce endoplasmic reticulum (ER) stress in human umbilical vein endothelial cells (HUVECs). If ER stress is associated the toxicity of ZnO NPs, the presence of ER stress inducer thapsigargin (TG) should alter the response of HUVECs to ZnO NP exposure. In this study, we addressed this issue by assessing cytotoxicity, oxidative stress and inflammatory responses in ZnO NP exposed HUVECs with or without the presence of TG. Moreover, TiO2 NPs were used to compare the effects. Exposure to 32 µg/mL ZnO NPs (p < 0.05), but not TiO2 NPs (p > 0.05), significantly induced cytotoxicity as assessed by WST-1 and neutral red uptake assay, as well as intracellular ROS. ZnO NPs dose-dependently increased the accumulation of intracellular Zn ions, and ZnSO4 induced similar cytotoxic effects as ZnO NPs, which indicated a role of Zn ions. The release of inflammatory proteins tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) or the adhesion of THP-1 monocytes to HUVECs was not significantly affected by ZnO or TiO2 NP exposure (p > 0.05). The presence of 250 nM TG significantly induced cytotoxicity, release of IL-6 and THP-1 monocyte adhesion (p < 0.01), but did not significantly affect intracellular ROS or release of TNFα (p > 0.05). ANOVA analysis indicated no interaction between exposure to ZnO NPs and the presence of TG on almost all the endpoints (p > 0.05) except neutral red uptake assay (p < 0.01). We concluded ER stress is probably not associated with ZnO NP exposure induced oxidative stress and inflammatory responses in HUVECs.
Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Nanopartículas/toxicidade , Tapsigargina/toxicidade , Titânio/toxicidade , Óxido de Zinco/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/ultraestrutura , Humanos , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Tapsigargina/química , Titânio/química , Óxido de Zinco/químicaRESUMO
BACKGROUND & AIMS: Sustained activation of the cytosolic calcium concentration induces injury to pancreatic acinar cells and necrosis. The calcium release-activated calcium modulator ORAI1 is the most abundant Ca(2+) entry channel in pancreatic acinar cells; it sustains calcium overload in mice exposed to toxins that induce pancreatitis. We investigated the roles of ORAI1 in pancreatic acinar cell injury and the development of acute pancreatitis in mice. METHODS: Mouse and human acinar cells, as well as HEK 293 cells transfected to express human ORAI1 with human stromal interaction molecule 1, were hyperstimulated or incubated with human bile acid, thapsigargin, or cyclopiazonic acid to induce calcium entry. GSK-7975A or CM_128 were added to some cells, which were analyzed by confocal and video microscopy and patch clamp recordings. Acute pancreatitis was induced in C57BL/6J mice by ductal injection of taurolithocholic acid 3-sulfate or intravenous' administration of cerulein or ethanol and palmitoleic acid. Some mice then were given GSK-7975A or CM_128, which inhibit ORAI1, at different time points to assess local and systemic effects. RESULTS: GSK-7975A and CM_128 each separately inhibited toxin-induced activation of ORAI1 and/or activation of Ca(2+) currents after Ca(2+) release, in a concentration-dependent manner, in mouse and human pancreatic acinar cells (inhibition >90% of the levels observed in control cells). The ORAI1 inhibitors also prevented activation of the necrotic cell death pathway in mouse and human pancreatic acinar cells. GSK-7975A and CM_128 each inhibited all local and systemic features of acute pancreatitis in all 3 models, in dose- and time-dependent manners. The agents were significantly more effective, in a range of parameters, when given at 1 vs 6 hours after induction of pancreatitis. CONCLUSIONS: Cytosolic calcium overload, mediated via ORAI1, contributes to the pathogenesis of acute pancreatitis. ORAI1 inhibitors might be developed for the treatment of patients with pancreatitis.
Assuntos
Células Acinares/efeitos dos fármacos , Benzamidas/farmacologia , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Pancreatite/tratamento farmacológico , Pirazóis/farmacologia , Células Acinares/citologia , Doença Aguda , Animais , Ácidos e Sais Biliares/toxicidade , Cálcio/toxicidade , Células Cultivadas , Modelos Animais de Doenças , Células HEK293 , Humanos , Indóis/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Proteína ORAI1 , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Tapsigargina/toxicidade , Fatores de Tempo , Resultado do TratamentoRESUMO
BACKGROUND: The endoplasmic-reticulum (ER) responds to the burden of unfolded proteins in its lumen by activating intracellular signal transduction pathways, also known as the unfolded protein response (UPR). Many signal transduction events and transcription factors have been demonstrated to be associated with ER stress. The process in which ER stress affects or interacts with other pathways is still a progressing topic that is not completely understood. Identifying new transcription factors associated with ER stress pathways provides a platform to comprehensively characterize mechanism and functionality of ER. METHODS: We utilized a transcription factor (TF) activation plate array to profile the TF activities which were affected by ER stress induced by pharmacological agents, thapsigargin (TG) and tunicamycin (TM) at 1 h, 4 h, 8 h and 16 h respectively, in MiaPACA2 cells. The altered activity patterns were analyzed and validated using gel shift assays and cell-based luciferase reporter assay. RESULTS: The study has not only confirmed previous findings, which the TFs including ATF4, ATF6, XBP, NFkB, CHOP and AP1, were activated by ER stress, but also found four newly discovered TFs, NFAT, TCF/LEF were activated, and PXR was repressed in response of ER stress. Different patterns of TF activities in MiaPaCa2 were demonstrated upon TM or TG treatment in the time course experiments. The altered activities of TFs were confirmed using gel shift assays and luciferase reporter vectors. CONCLUSION: This study utilized a TF activation array technology to identify four new TFs, HIF, NFAT, TCF/LEF and PXR that were changed in their activity as a result of ER stress induced by TG and TM. The TF activity patterns were demonstrated to be diverse in response to the duration of TG or TM treatment. These new findings will facilitate further unveiling the complex mechanisms of the ER stress process and associated diseases.
Assuntos
Estresse do Retículo Endoplasmático , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Ensaio de Desvio de Mobilidade Eletroforética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Transdução de Sinais/efeitos dos fármacos , Tapsigargina/toxicidade , Tunicamicina/toxicidadeRESUMO
Triclosan (TCS) is an antimicrobial used widely in hospitals and personal care products, at ~10 mm. Human skin efficiently absorbs TCS. Mast cells are ubiquitous key players both in physiological processes and in disease, including asthma, cancer and autism. We previously showed that non-cytotoxic levels of TCS inhibit degranulation, the release of histamine and other mediators, from rat basophilic leukemia mast cells (RBL-2H3), and in this study, we replicate this finding in human mast cells (HMC-1.2). Our investigation into the molecular mechanisms underlying this effect led to the discovery that TCS disrupts adenosine triphosphate (ATP) production in RBL-2H3 cells in glucose-free, galactose-containing media (95% confidence interval EC50 = 7.5-9.7 µm), without causing cytotoxicity. Using these same glucose-free conditions, 15 µm TCS dampens RBL-2H3 degranulation by 40%. The same ATP disruption was found with human HMC-1.2 cells (EC50 4.2-13.7 µm), NIH-3 T3 mouse fibroblasts (EC50 4.8-7.4 µm) and primary human keratinocytes (EC50 3.0-4.1 µm) all with no cytotoxicity. TCS increases oxygen consumption rate in RBL-2H3 cells. Known mitochondrial uncouplers (e.g., carbonyl cyanide 3-chlorophenylhydrazone) previously were found to inhibit mast cell function. TCS-methyl, which has a methyl group in place of the TCS ionizable proton, affects neither degranulation nor ATP production at non-cytotoxic doses. Thus, the effects of TCS on mast cell function are due to its proton ionophore structure. In addition, 5 µm TCS inhibits thapsigargin-stimulated degranulation of RBL-2H3 cells: further evidence that TCS disrupts mast cell signaling. Our data indicate that TCS is a mitochondrial uncoupler, and TCS may affect numerous cell types and functions via this mechanism. Copyright © 2015 John Wiley & Sons, Ltd.
Assuntos
Anti-Infecciosos Locais/farmacologia , Queratinócitos/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Triclosan/farmacologia , Desacopladores/farmacologia , Animais , Anti-Infecciosos Locais/efeitos adversos , Anticarcinógenos/efeitos adversos , Anticarcinógenos/farmacologia , Carcinógenos/antagonistas & inibidores , Carcinógenos/toxicidade , Degranulação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Queratinócitos/metabolismo , Cinética , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Células NIH 3T3 , Ratos , Tapsigargina/antagonistas & inibidores , Tapsigargina/toxicidade , Triclosan/efeitos adversos , Triclosan/análogos & derivados , Desacopladores/efeitos adversosRESUMO
The present study evaluated survival effects of N-acetylcysteine (NAC) on cultured corneal endothelial cells exposed to oxidative and endoplasmic reticulum (ER) stress and in a mouse model of early-onset Fuchs endothelial corneal dystrophy (FECD). Cultured bovine corneal endothelial cell viability against oxidative and ER stress was determined by CellTiter-Glo(®) luminescent reagent. Two-month-old homozygous knock-in Col8a2(L450W/L450W) mutant (L450W) and C57/Bl6 wild-type (WT) animals were divided into two groups of 15 mice. Group I received 7 mg/mL NAC in drinking water and Group II received control water for 7 months. Endothelial cell density and morphology were evaluated with confocal microscopy. Antioxidant gene (iNos) and ER stress/unfolded protein response gene (Grp78 and Chop) mRNA levels and protein expression were measured in corneal endothelium by real time PCR and Western blotting. Cell viability of H2O2 and thapsigargin exposed cells pre-treated with NAC was significantly increased compared to untreated controls (p < 0.01). Corneal endothelial cell density (CD) was higher (p = 0.001) and percent polymegathism was lower (p = 0.04) in NAC treated L450W mice than in untreated L450W mice. NAC treated L450W endothelium showed significant upregulation of iNos, whereas Grp78 and Chop were downregulated compared to untreated L450W endothelium by real time PCR and Western blotting. NAC increases survival in cultured corneal endothelial cells exposed against ER and oxidative stress. Systemic NAC ingestion increases corneal endothelial cell survival which is associated with increased antioxidant and decreased ER stress markers in a mouse model of early-onset FECD. Our study presents in vivo evidence of a novel potential medical treatment for FECD.
Assuntos
Acetilcisteína/farmacologia , Modelos Animais de Doenças , Endotélio Corneano/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Distrofia Endotelial de Fuchs/prevenção & controle , Animais , Western Blotting , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Endotélio Corneano/metabolismo , Endotélio Corneano/patologia , Distrofia Endotelial de Fuchs/metabolismo , Distrofia Endotelial de Fuchs/patologia , Proteínas de Choque Térmico/genética , Peróxido de Hidrogênio/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Tapsigargina/toxicidade , Fator de Transcrição CHOP/genéticaRESUMO
Chronic endoplasmic reticulum (ER) stress was recently revealed to affect hypothalamic neuroendocrine pathways that regulate feeding and body weight. However, it remains unexplored whether brain ER stress could use a neural route to rapidly cause the peripheral disorders that underlie the development of type 2 diabetes (T2D) and the metabolic syndrome. Using a pharmacologic model that delivered ER stress inducer thapsigargin into the brain, this study demonstrated that a short-term brain ER stress over 3 d was sufficient to induce glucose intolerance, systemic and hepatic insulin resistance, and blood pressure (BP) increase. The collection of these changes was accompanied by elevated sympathetic tone and prevented by sympathetic suppression. Molecular studies revealed that acute induction of metabolic disorders via brain ER stress was abrogated by NF-κB inhibition in the hypothalamus. Therapeutic experiments further revealed that acute inhibition of brain ER stress with tauroursodeoxycholic acid (TUDCA) partially reversed obesity-associated metabolic and blood pressure disorders. In conclusion, ER stress in the brain represents a mediator of the sympathetic disorders that underlie the development of insulin resistance syndrome and T2D.
Assuntos
Pressão Sanguínea/fisiologia , Diabetes Mellitus Tipo 2/etiologia , Retículo Endoplasmático/patologia , Hipotálamo/fisiopatologia , Insulina/metabolismo , Sistemas Neurossecretores/fisiologia , Estresse Fisiológico/fisiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Western Blotting , Peso Corporal , Ingestão de Alimentos , Retículo Endoplasmático/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Intolerância à Glucose/induzido quimicamente , Proteínas de Fluorescência Verde , Hipotálamo/efeitos dos fármacos , Imunoprecipitação , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , Sistemas Neurossecretores/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Fisiológico/efeitos dos fármacos , Ácido Tauroquenodesoxicólico/farmacologia , Telemetria , Tapsigargina/toxicidadeRESUMO
The neuroblastoma-spinal motor neuron fusion cell line, NSC-34, in its differentiated form, NSC-34D, permits examining the effects of riluzole, a proven treatment for amyotrophic lateral sclerosis (ALS) on cell death induction by staurosporine (STS), thapsigargin (Thaps), hydrogen peroxide (H(2)O(2)) and homocysteine (HCy). These neurotoxins, applied exogenously, have mechanisms of action related to the various proposed molecular pathogenetic pathways in ALS and are differentiated from endogenous cell death that is associated with cytoplasmic aggregate formation in motor neurons. Nuclear morphology, caspase-3/7 activation and high content imaging were used to assess toxicity of these neurotoxins with and without co-treatment with riluzole, a benzothiazole compound with multiple pharmacological actions. STS was the most potent neurotoxin at killing NSC-34D cells with a toxic concentration at which 50% of maximal cell death is achieved (TC(50)=0.01µM), followed by Thaps (TC(50)=0.9µM) and H(2)O(2) (TC(50)=15µM) with HCy requiring higher concentrations to kill at the same level (TC(50)=2200µM). Riluzole provided neurorescue with a 20% absolute reduction (47.6% relative reduction) in apoptotic cell death against Thaps-induced NSC-34D cell (p≤0.05), but had no effect on STS-, H(2)O(2)- and HCy-induced NSC-34D cell death. This effect of riluzole on Thaps induction of cell death was independent of caspase-3/7 activation. Riluzole mitigated a toxin that can cause intracellular calcium dysregulation associated with endoplasmic reticulum (ER) stress but not toxins associated with other cell death mechanisms.
Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/toxicidade , Riluzol/farmacologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Cálcio/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Retículo Endoplasmático/metabolismo , Homocisteína/administração & dosagem , Homocisteína/toxicidade , Células Híbridas , Peróxido de Hidrogênio/administração & dosagem , Peróxido de Hidrogênio/toxicidade , Camundongos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Neuroblastoma/metabolismo , Neurotoxinas/administração & dosagem , Estaurosporina/administração & dosagem , Estaurosporina/toxicidade , Tapsigargina/administração & dosagem , Tapsigargina/toxicidadeRESUMO
Saturated fatty acids promote lipotoxic ER (endoplasmic reticulum) stress in pancreatic ß-cells in association with Type 2 diabetes. To address the underlying mechanisms we employed MS in a comprehensive lipidomic screen of MIN6 ß-cells treated for 48 h with palmitate. Both the overall mass and the degree of saturation of major neutral lipids and phospholipids were only modestly increased by palmitate. The mass of GlcCer (glucosylceramide) was augmented by 70% under these conditions, without any significant alteration in the amounts of either ceramide or sphingomyelin. However, flux into ceramide (measured by [3H]serine incorporation) was augmented by chronic palmitate, and inhibition of ceramide synthesis decreased both ER stress and apoptosis. ER-to-Golgi protein trafficking was also reduced by palmitate pre-treatment, but was overcome by overexpression of GlcCer synthase. This was accompanied by increased conversion of ceramide into GlcCer, and reduced ER stress and apoptosis, but no change in phospholipid desaturation. Sphingolipid alterations due to palmitate were not secondary to ER stress since they were neither reproduced by pharmacological ER stressors nor overcome using the chemical chaperone phenylbutyric acid. In conclusion, alterations in sphingolipid, rather than phospholipid, metabolism are more likely to be implicated in the defective protein trafficking and enhanced ER stress and apoptosis of lipotoxic ß-cells.
Assuntos
Retículo Endoplasmático/metabolismo , Células Secretoras de Insulina/metabolismo , Ácido Palmítico/metabolismo , Esfingolipídeos/metabolismo , Estresse Fisiológico , Animais , Apoptose , Biomarcadores/metabolismo , Linhagem Celular , Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glucosilceramidas/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Metabolismo dos Lipídeos , Metabolômica/métodos , Camundongos , Ácido Palmítico/efeitos adversos , Fenilbutiratos/farmacologia , Biossíntese de Proteínas , Transporte Proteico , Serina C-Palmitoiltransferase/antagonistas & inibidores , Estresse Fisiológico/efeitos dos fármacos , Tapsigargina/toxicidade , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Tunicamicina/toxicidadeRESUMO
Endoplasmic reticulum stress (ERS) and mitochondrial dysfunction have been suggested to relate with the pathology of Alzheimer's disease (AD). However, their cross-talk is needed to investigate further. Mitofusin-2 (Mfn2) is a member of mitochondria-associated membrane (MAM), which connects endoplasmic reticulum (ER) and mitochondria. This study investigated the protective effect of curcumin on thapsigargin (TG)-induced ERS and cell apoptosis and the role of Mfn2 on mitochondrial dysfunction. The cell viability of SH-SY5Y cells was decreased and cell damage and apoptosis were increased in a concentration-dependent manner when cells were treated with TG. TG upregulated the protein levels of GRP78, pSer981-PERK, and pSer51-eIF2α. Curcumin attenuated TG-induced damage on cell viability and apoptosis and downregulated the protein levels of GRP78, pSer981-PERK, and pSer51-eIF2α. TG caused the increases in intracellular reactive oxygen species (ROS) and in the protein levels of pSer40-Nrf2 and hemoglobin oxygenase 1 (HO-1). Curcumin decreased the TG-induced intracellular ROS but did not alter the protein levels of pSer40-Nrf2 and HO-1. TG resulted in the upregulation on Mfn2 expression and mitochondrial spare respiratory capacity but the downregulation on mitochondrial basal respiration and ATP production. Curcumin attenuated the TG-induced Mfn2 expression and mitochondrial stress. When Mfn2 was silenced by shRNA interference, curcumin failed to recovery the TG-damaged mitochondrial function. In general, the TG-induced ERS trigged mitochondrial dysfunction and cell apoptosis. Curcumin attenuates TG-induced ERS and the cell damage and apoptosis. Mfn2 is required for curcumin's protection against the TG-induced damage on mitochondrial functions.
Assuntos
Curcumina , Estresse do Retículo Endoplasmático , Apoptose , Curcumina/farmacologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tapsigargina/metabolismo , Tapsigargina/toxicidadeRESUMO
Increase of resting Ca(2+) levels and amplitude of vasopressin-induced Ca(2+) transients were observed when cells in serum-free medium were exposed to 5mM Ca(2+) for 2h. Small effect on cell viability was also observed. A rapid cytotoxic effect was developed in the presence of 10mM Ca(2+) and absence of serum. However, cells exposed to 10mM Ca(2+) in the presence of serum were protected from damage for at least 2days. Resting Ca(2+) levels and cytosolic Ca(2+) transients in serum-containing medium with 10mM Ca(2+) displayed lower increases and a tendency to recover control values. When serum was absent, cells preincubated with 10mM Ca(2+) were more sensitive to thapsigargin-induced damage than cells preincubated with lower Ca(2+). The sensitivity was similar when serum was present. Tolerance to high Ca(2+) in the presence of serum was linked to potentiation of the mitochondrial Ca(2+) entry to decrease the sarcoplasmic reticulum Ca(2+) overload.
Assuntos
Cálcio/metabolismo , Mioblastos Cardíacos/metabolismo , Animais , Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Meios de Cultura , Meios de Cultura Livres de Soro , Citosol/efeitos dos fármacos , Citosol/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Modelos Cardiovasculares , Mioblastos Cardíacos/efeitos dos fármacos , Mioblastos Cardíacos/patologia , Ratos , Sarcolema/efeitos dos fármacos , Sarcolema/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Tapsigargina/toxicidadeRESUMO
Thapsigargin, an inhibitor of the endoplasmic reticulum (ER) calcium transporters, generates Ca(2+)-store depletion within the ER and simultaneously increases Ca(2+) level in the cytosol. Perturbation of Ca(2+) homeostasis leads cells to cope with stressful conditions, including ER stress, which affect the folding of newly synthesized proteins and induce the accumulation of unfolded polypeptides and eventually apoptosis, via activation of the unfolded protein response pathway. In the present work, we analyzed the proteome changes in human hepatoma cells following acute treatment with thapsigargin. We highlighted a peculiar pattern of protein expression, marked by altered expression of calcium-dependent proteins, and of proteins involved in secretory pathways or in cell survival. For specific deregulated proteins, the thapsigargin-induced proteomic signature was compared by Western blotting to that resulting from the treatment of hepatoma cells with reducing agents or with proteasome inhibitors, to elicit endoplasmic reticulum stress by additional means and to reveal novel, potential targets of the unfolded protein response pathway.
Assuntos
Bloqueadores dos Canais de Cálcio/toxicidade , Proteoma/análise , Tapsigargina/toxicidade , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Tapsigargina/uso terapêuticoRESUMO
The aim of our work was to study effect of antidepressant imipramine on both thapsigargin- and tunicamycin-induced ER stress and mitochondrial dysfunction in neuroblastoma SH-SY5Y cells. ER stress in SH-SY5Y cells was induced by either tunicamycin or thapsigargin in the presence or absence of imipramine. Cell viability was tested by the MTT assay. Splicing of XBP1 mRNA was studied by RT-PCR. Finally, expression of Hrd1 and Hsp60 was determined by Western blot analysis. Our findings provide evidence that at high concentrations imipramine potentiates ER stress-induced death of SH-SY5Y cells. The effect of imipramine on ER stress-induced death of SH-SY5Y cells was stronger in combination of imipramine with thapsigargin. In addition, we have found that treatment of SH-SY5Y cells with imipramine in combination of either thapsigargin or tunicamycin is associated with the alteration of ER stress-induced IRE1α-XBP1 signalling. Despite potentiation of ER stress-induced XBP1 splicing, imipramine suppresses both thapsigargin- and tunicamycin-induced expression of Hrd1. Finally, imipramine in combination with thapsigargin, but not tunicamycin, aggravates ER stress-induced mitochondrial dysfunction without significant impact on intracellular mitochondrial content as indicated by the unaltered expression of Hsp60. Our results indicate the possibility that chronic treatment with imipramine might be associated with a higher risk of development and progression of neurodegenerative disorders, in particular those allied with ER stress and mitochondrial dysfunction like Parkinson's and Alzheimer's disease.
Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Imipramina/farmacologia , Mitocôndrias/efeitos dos fármacos , Neuroblastoma/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Endorribonucleases/metabolismo , Humanos , Neuroblastoma/patologia , Doenças Neurodegenerativas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Splicing de RNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tapsigargina/toxicidade , Tunicamicina/toxicidade , Ubiquitina-Proteína Ligases/metabolismo , Proteína 1 de Ligação a X-Box/genéticaRESUMO
In vivo aggregation of tau protein is a hallmark of many neurodegenerative disorders, including Alzheimer's disease (AD). Recent evidence has also demonstrated activation of the unfolded protein response (UPR), a cellular response to endoplasmic reticulum (ER) stress, in AD, although the role of the UPR in disease pathogenesis is not known. Here, three model systems were used to determine whether a direct mechanistic link could be demonstrated between tau aggregation and the UPR. The first model system used was SH-SY5Y cells, a neuronal cultured cell line that endogenously expresses tau. In this system, the UPR was activated using chemical stressors, tunicamycin and thapsigargin, but no changes in tau expression levels, solubility, or phosphorylation were observed. In the second model system, wild-type 4R tau and P301L tau, a variant with increased aggregation propensity, were heterologously overexpressed in HEK 293 cells. This overexpression did not activate the UPR. The last model system examined here was the PS19 transgenic mouse model. Although PS19 mice, which express the P301S variant of tau, display severe neurodegeneration and formation of tau aggregates, brain tissue samples did not show any activation of the UPR. Taken together, the results from these three model systems suggest that a direct mechanistic link does not exist between tau aggregation and the UPR.
Assuntos
Retículo Endoplasmático/fisiologia , Estresse Fisiológico/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Proteínas tau/metabolismo , Animais , Antibacterianos/toxicidade , Encéfalo/patologia , Encéfalo/fisiopatologia , Células Cultivadas , Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/toxicidade , Variação Genética , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fosforilação , Solubilidade , Estresse Fisiológico/efeitos dos fármacos , Tapsigargina/toxicidade , Tunicamicina/toxicidade , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteínas tau/genéticaRESUMO
Astrocytes are essential cells for maintaining brain integrity. We have recently shown that the transcription factor C/EBP homologous protein (CHOP), associated with endoplasmic reticulum (ER) stress, plays a key role in the astrocyte death induced by ischemia. Meanwhile, mediators of apoptosis downstream of CHOP in the ER stress-dependent pathway remain to be elucidated. Our aim in this work was to determine whether caspase-11, able to activate apoptotic and proinflammatory pathways, is implicated in ER stress-dependent astrocyte death in ischemic conditions. According to our results, caspase-11 is up-regulated in primary astrocyte cultures following either oxygen and glucose deprivation (OGD) or treatment with the ER-stress inducers thapsigargin and tunicamycin. Moreover, these same stimuli increased caspase-11 mRNA levels and luciferase activity driven by a caspase-11 promoter, indicating that caspase-11 is regulated at the transcriptional level. Our data also illustrate the involvement of ER stress-associated CHOP in caspase-11 regulation, insofar as CHOP overexpression by means of an adenoviral vector caused a significant raise in caspase-11. In turn, caspase-11 suppression with siRNA rescued astrocytes from OGD- and ER stress-induced death, supporting the idea that caspase-11 is responsible for the deleterious effects of ischemia on astrocytes. Finally, inhibition of caspase-1 and caspase-3 significantly reduced astrocyte death, which indicates that these proteases act as death effectors of caspase-11. In conclusion, our work contributes to clarifying the pathways leading to astrocyte death in response to ischemia by defining caspase-11 as a key mediator of the ER stress response acting downstream of CHOP.
Assuntos
Apoptose/fisiologia , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Caspases/metabolismo , Retículo Endoplasmático/metabolismo , Fator de Transcrição CHOP/metabolismo , Animais , Astrócitos/patologia , Isquemia Encefálica/fisiopatologia , Inibidores de Caspase , Caspases/genética , Células Cultivadas , Modelos Animais de Doenças , Retículo Endoplasmático/patologia , Vetores Genéticos/farmacologia , Interferência de RNA/fisiologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia , Tapsigargina/toxicidade , Fator de Transcrição CHOP/genética , Transfecção/métodos , Tunicamicina/toxicidadeRESUMO
BACKGROUND: Eukaryotic translation initiation factor 2B (eIF2B), a guanine nucleotide exchange factor (GEF) and a key regulator of translation initiation under normal and stress conditions, causes an autosomal recessive leukodystrophy of a wide clinical spectrum. EBV-immortalised lymphocytes (EIL) from eIF2B-mutated patients exhibit a decrease in eIF2B GEF activity. eIF2B-mutated primary fibroblasts have a hyper-induction of activating transcription factor 4 (ATF4) which is involved in the protective unfolded protein response (UPR), also known as the ER-stress response. We tested the hypothesis that EIL from eIF2B-mutated patients also exhibit a heightened ER-stress response. METHODS: We used thapsigargin as an ER-stress agent and looked at polysomal profiles, rate of protein synthesis, translational activation of ATF4, and transcriptional induction of stress-specific mRNAs (ATF4, CHOP, ASNS, GRP78) in normal and eIF2B-mutated EIL. We also compared the level of stress-specific mRNAs between EIL and primary lymphocytes (PL). RESULTS: Despite the low eIF2B GEF activity in the 12 eIF2B-mutated EIL cell lines tested (range 40-70% of normal), these cell lines did not differ from normal EIL in their ATF4-mediated ER-stress response. The absence of hyper-induction of ATF4-mediated ER-stress response in eIF2B-mutated EIL in contrast to primary fibroblasts is not related to their transformation by EBV. Indeed, PL exhibited a higher induction of the stress-specific mRNAs in comparison to EIL, but no hyper-induction of the UPR was noticed in the eIF2B-mutated cell lines in comparison to controls. CONCLUSIONS: Taken together with work of others, our results demonstrate the absence of a major difference in ER-stress response between controls and eIF2B-mutated cells. Therefore, components of the ER-stress response cannot be used as discriminatory markers in eIF2B-related disorders.
Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2B em Eucariotos/metabolismo , Leucoencefalopatias/metabolismo , Linfócitos/metabolismo , Estresse Fisiológico/fisiologia , Fator 4 Ativador da Transcrição/genética , Adolescente , Western Blotting , Linhagem Celular , Criança , Pré-Escolar , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/genética , Chaperona BiP do Retículo Endoplasmático , Inibidores Enzimáticos/toxicidade , Fator de Iniciação 2B em Eucariotos/genética , Feminino , Humanos , Lactente , Leucoencefalopatias/genética , Masculino , Mutação , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tapsigargina/toxicidadeRESUMO
Recent studies indicated that intramammary administration of active vitamin D3 hormone (1,25D3) inhibits the inflammatory process associated with mastitis. We hypothesized that attenuation of endoplasmic reticulum (ER) stress by 1,25D3 in mammary epithelial cells (MECs) is an important cellular mechanism contributing to this beneficial effect of intramammary treatment with 1,25D3. To test this hypothesis, the effect of 1,25D3 was studied on induction of ER stress in a transformed human MEC line, MCF-7 cells. Treatment with two different ER stress inducers, thapsigargin (TG) and tunicamycin (TM), caused a dose-dependent induction of ER stress as evident from up-regulation of protein kinase RNA-like ER kinase (PERK), heat shock protein family A (Hsp70) member 5 (HSPA5), activating transcription factor (ATF4), ATF6, DNA damage inducible transcript 3 (DDIT3) and spliced X-box binding protein 1 (sXBP1) and impaired cell viability and decreased expression of vitamin D receptor (VDR) in MCF-7 cells (P < 0.05). Treatment with 1,25D3 (100 nM) inhibited TG (10 nM)- and TM (1 µg/mL)-induced mRNA and/or protein levels of ATF4, ATF6, DDIT3 and HSPA5 in MCF-7 cells (P < 0.05). In addition, 1,25D3 (100 nM) antagonized the effect of TG (10 nM) and TM (1 µg/mL) on mRNA and protein levels of VDR and mRNA levels of genes involved in production and degradation of 1,25D3 in MCF-7 cells (P < 0.05). Moreover, 1,25D3 (100 nM) inhibited nuclear factor-κB (NF-κB) activation in response to TM (10 nM) and TG (1 µg/mL) in MCF-7 cells. In conclusion, the present findings show that 1,25D3 is effective in attenuating ER stress and the NF-κB-driven inflammatory response in MCF-7 cells. This indicates that attenuation of ER stress by 1,25D3 in MECs may contribute to the recently observed inhibitory effect of intramammary treatment of dairy cows with 1,25D3 on the inflammatory process associated with mastitis.