Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.154
Filtrar
Mais filtros

Eixos temáticos
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 19(12): e1011060, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38055757

RESUMO

Mycobacterium abscessus is intrinsically resistant to antibiotics effective against other pathogenic mycobacteria largely due to the drug-induced expression of genes that confer resistance. WhiB7 is a major hub controlling the induction of resistance to ribosome-targeting antibiotics. It activates the expression of >100 genes, 7 of which are known determinants of drug resistance; the function of most genes within the regulon is however unknown, but some conceivably encode additional mechanisms of resistance. Furthermore, the hierarchy of gene expression within the regulon, if any, is poorly understood. In the present work we have identified 56 WhiB7 binding sites using chromatin immunoprecipitation sequencing (CHIP-Seq) which accounts for the WhiB7-dependent upregulation of 72 genes, and find that M. abscessus WhiB7 functions exclusively as a transcriptional activator at promoters recognized by σA/σB. We have investigated the role of 18 WhiB7 regulated genes in drug resistance. Our results suggest that while some genes within the regulon (eg. erm41, hflX, eis2 and the ABCFs) play a major role in resistance, others make smaller contributions (eg. MAB_4324c and MAB_1409c) and the observed hypersensitivity ΔMabwhiB7 is a cumulative effect of these individual contributions. Moreover, our CHIP-Seq data implicate additional roles of WhiB7 induced genes beyond antibiotic resistance. Finally, we identify a σH-dependent network in aminoglycoside and tigecycline resistance which is induced upon drug exposure and is further activated by WhiB7 demonstrating the existence of a crosstalk between components of the WhiB7-dependent and -independent circuits.


Assuntos
Antibacterianos , Mycobacterium abscessus , Antibacterianos/farmacologia , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo , Tigeciclina/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
PLoS Biol ; 20(9): e3001808, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36170241

RESUMO

In a collection of Escherichia coli isolates, we discovered a new mechanism leading to frequent and high-level tigecycline resistance involving tandem gene amplifications of an efflux pump encoded by the tet(A) determinant. Some isolates, despite carrying a functional tet(A), could not evolve high-level tigecycline resistance by amplification due to the presence of a deletion in the TetR(A) repressor. This mutation impaired induction of tetA(A) (encoding the TetA(A) efflux pump) in presence of tetracyclines, with the strongest effect observed for tigecycline, subsequently preventing the development of tet(A) amplification-dependent high-level tigecycline resistance. We found that this mutated tet(A) determinant was common among tet(A)-carrying E. coli isolates and analysed possible explanations for this high frequency. First, while the mutated tet(A) was found in several ST-groups, we found evidence of clonal spread among ST131 isolates, which increases its frequency within E. coli databases. Second, evolution and competition experiments revealed that the mutation in tetR(A) could be positively selected over the wild-type allele at sub-inhibitory concentrations of tetracyclines. Our work demonstrates how low concentrations of tetracyclines, such as those found in contaminated environments, can enrich and select for a mutation that generates an evolutionary dead-end that precludes the evolution towards high-level, clinically relevant tigecycline resistance.


Assuntos
Escherichia coli , Tetraciclinas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Mutação/genética , Plasmídeos , Inibidores da Síntese de Proteínas/farmacologia , Tetraciclinas/farmacologia , Tigeciclina/farmacologia
3.
J Antimicrob Chemother ; 79(6): 1294-1302, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574003

RESUMO

OBJECTIVES: To elucidate the mechanism of tigecycline resistance in Escherichia coli that is mediated by the tet(A) variant gene. METHODS: E. coli strain 573 carried a plasmid-borne tet(A) variant gene, tentatively designated tet(A)TIG, that conferred decreased tigecycline susceptibility (MIC 0.5 mg/L). When exposed to increasing concentrations of tigecycline (0.25-8 mg/L), mutants growing at 2, 4 and 8 mg/L were obtained and sequenced. Copies of plasmid and tet(A)TIG relative to the chromosomal DNA in the mutants were determined by WGS and quantitative PCR (qPCR). Expression of tet(A)TIG in the mutants was evaluated by RT-qPCR. The tet(A)TIG-carrying plasmids were visualized by S1-PFGE and Southern blot hybridization. PCR served for the detection of a tet(A)TIG-carrying unconventional circularizable structure (UCS). RESULTS: Tigecycline resistance with maximum MICs of 16 mg/L was seen in E. coli mutants selected in the presence of tigecycline. Compared with the parental strain, the relative copy number and transcription level of tet(A)TIG in the mutants increased significantly in the presence of 2, 4 and 8 mg/L tigecycline, respectively. With increasing tigecycline selection pressure, the tet(A)TIG-carrying plasmids in the mutants increased in size, correlating with the number of tandem amplificates of a ΔTnAs1-flanked UCS harbouring tet(A)TIG. These tandem amplificates were not stable in the absence of tigecycline. CONCLUSIONS: Tigecycline resistance is due to the tandem amplification of a ΔTnAs1-flanked tet(A)TIG-carrying plasmid-borne segment in E. coli. The gain/loss of the tandem amplificates in the presence/absence of tigecycline represents an economic way for the bacteria to survive in the presence of tigecycline.


Assuntos
Antibacterianos , Escherichia coli , Testes de Sensibilidade Microbiana , Plasmídeos , Tigeciclina , Tigeciclina/farmacologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Plasmídeos/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Minociclina/farmacologia , Minociclina/análogos & derivados , Amplificação de Genes , Farmacorresistência Bacteriana/genética , Sequenciamento Completo do Genoma , Antiporters
4.
BMC Microbiol ; 24(1): 122, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600509

RESUMO

BACKGROUND: Escherichia coli (E. coli) is a multidrug resistant opportunistic pathogen that can cause secondary bacterial infections in patients with COVID-19. This study aimed to determine the antimicrobial resistance profile of E. coli as a secondary bacterial infection in patients with COVID-19 and to assess the prevalence and characterization of genes related to efflux pumps and porin. METHODS: A total of 50 nonduplicate E. coli isolates were collected as secondary bacterial infections in COVID-19 patients. The isolates were cultured from sputum samples. Confirmation and antibiotic susceptibility testing were conducted by Vitek 2. PCR was used to assess the prevalence of the efflux pump and porin-related genes in the isolates. The phenotypic and genotypic evolution of antibiotic resistance genes related to the efflux pump was evaluated. RESULTS: The E. coli isolates demonstrated high resistance to ampicillin (100%), cefixime (62%), cefepime (62%), amoxicillin-clavulanic acid (60%), cefuroxime (60%), and ceftriaxone (58%). The susceptibility of E. coli to ertapenem was greatest (92%), followed by imipenem (88%), meropenem (86%), tigecycline (80%), and levofloxacin (76%). Regarding efflux pump gene combinations, there was a significant association between the acrA gene and increased resistance to levofloxacin, between the acrB gene and decreased resistance to meropenem and increased resistance to levofloxacin, and between the ompF and ompC genes and increased resistance to gentamicin. CONCLUSIONS: The antibiotics ertapenem, imipenem, meropenem, tigecycline, and levofloxacin were effective against E. coli in patients with COVID-19. Genes encoding efflux pumps and porins, such as acrA, acrB, and outer membrane porins, were highly distributed among all the isolates. Efflux pump inhibitors could be alternative antibiotics for restoring tetracycline activity in E. coli isolates.


Assuntos
COVID-19 , Coinfecção , Infecções por Escherichia coli , Humanos , Escherichia coli , Ertapenem/farmacologia , Levofloxacino/farmacologia , Meropeném/farmacologia , Tigeciclina/farmacologia , Antibacterianos/farmacologia , Infecções por Escherichia coli/microbiologia , Imipenem/farmacologia , Porinas/genética , Porinas/farmacologia , Testes de Sensibilidade Microbiana
5.
Microb Pathog ; 192: 106668, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697232

RESUMO

OBJECTIVES: The emergence of carbapenem-resistant Pseudomonas putida (CRPP) has raised public awareness. This study investigated two strains from the Pseudomonas putida group that were resistant to carbapenem, tigecycline, and aztreonam-avibactam (ATM-AVI), with a focus on their microbial and genomic characteristics. METHODS: We assessed the antibiotic resistance profile using broth dilution, disk diffusion, and E-test methods. Efflux pump phenotype testing and real-time quantitative PCR were employed to evaluate efflux pump activity in tigecycline resistance, while polymerase chain reaction was utilized to detect common carbapenem genes. Additionally, whole-genome sequencing was performed to analyze genomic characteristics. The transferability of blaIMP-1 and blaAFM-4 was assessed through a conjugation experiment. Furthermore, growth kinetics and biofilm formation were examined using growth curves and crystal violet staining. RESULTS: Both strains demonstrated resistance to carbapenem, tigecycline, and ATM-AVI. Notably, NMP can restore sensitivity to tigecycline. Subsequent analysis revealed that they co-produced blaIMP-1, blaAFM-4, tmexCD-toprJ, and blaOXA-1041, belonging to a novel sequence type ST268. Although they were closely related on the phylogenetic tree, they exhibited different levels of virulence. Genetic environment analysis indicated variations compared to prior studies, particularly regarding the blaIMP-1 and blaAFM-4 genes, which showed limited horizontal transferability. Moreover, it was observed that temperature exerted a specific influence on their biological factors. CONCLUSION: We initially identified two P. putida ST268 strains co-producing blaIMP-1, blaAFM-4, blaOXA-1041, and tmexCD-toprJ. The resistance to tigecycline and ATM-AVI can be attributed to the presence of multiple drug resistance determinants. These findings underscore the significance of P. putida as a reservoir for novel antibiotic resistance genes. Therefore, it is imperative to develop alternative antibiotic therapies and establish effective monitoring of bacterial resistance.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Aztreonam , Testes de Sensibilidade Microbiana , Pseudomonas putida , Tigeciclina , beta-Lactamases , Pseudomonas putida/genética , Pseudomonas putida/efeitos dos fármacos , Tigeciclina/farmacologia , Antibacterianos/farmacologia , China , Aztreonam/farmacologia , Compostos Azabicíclicos/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Sequenciamento Completo do Genoma , Humanos , Combinação de Medicamentos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Pseudomonas/microbiologia , Carbapenêmicos/farmacologia
6.
BMC Cancer ; 24(1): 323, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459456

RESUMO

BACKGROUND: Increased mitochondrial activities contributing to cancer cell proliferation, invasion, and metastasis have been reported in different cancers; however, studies on the therapeutic targeting of mitochondria in regulating cell proliferation and invasiveness are limited. Because mitochondria are believed to have evolved through bacterial invasion in mammalian cells, antibiotics could provide an alternative approach to target mitochondria, especially in cancers with increased mitochondrial activities. In this study, we investigated the therapeutic potential of bacteriostatic antibiotics in regulating the growth potential of colorectal cancer (CRC) cells, which differ in their metastatic potential and mitochondrial functions. METHODS: A combination of viability, cell migration, and spheroid formation assays was used to measure the effect on metastatic potential. The effect on mitochondrial mechanisms was investigated by measuring mitochondrial DNA copy number by qPCR, biogenesis (by qPCR and immunoblotting), and functions by measuring reactive oxygen species, membrane potential, and ATP using standard methods. In addition, the effect on assembly and activities of respiratory chain (RC) complexes was determined using blue native gel electrophoresis and in-gel assays, respectively). Changes in metastatic and cell death signaling were measured by immunoblotting with specific marker proteins and compared between CRC cells. RESULTS: Both tigecycline and tetracycline effectively reduced the viability, migration, and spheroid-forming capacity of highly metastatic CRC cells. This increased sensitivity was attributed to reduced mtDNA content, mitochondrial biogenesis, ATP content, membrane potential, and increased oxidative stress. Specifically, complex I assembly and activity were significantly inhibited by these antibiotics in high-metastatic cells. Significant down-regulation in the expression of mitochondrial-mediated survival pathways, such as phospho-AKT, cMYC, phospho-SRC, and phospho-FAK, and upregulation in cell death (apoptosis and autophagy) were observed, which contributed to the enhanced sensitivity of highly metastatic CRC cells toward these antibiotics. In addition, the combined treatment of the CRC chemotherapeutic agent oxaliplatin with tigecycline/tetracycline at physiological concentrations effectively sensitized these cells at early time points. CONCLUSION: Altogether, our study reports that bacterial antibiotics, such as tigecycline and tetracycline, target mitochondrial functions specifically mitochondrial complex I architecture and activity and would be useful in combination with cancer chemotherapeutics for high metastatic conditions.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Animais , Humanos , Tigeciclina/metabolismo , Tigeciclina/farmacologia , Reposicionamento de Medicamentos , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Antibacterianos/farmacologia , Neoplasias do Colo/metabolismo , Proliferação de Células , Apoptose , Trifosfato de Adenosina/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Mamíferos/metabolismo
7.
Anticancer Drugs ; 35(4): 317-324, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215016

RESUMO

The development of chemo-resistance in nasopharyngeal carcinoma (NPC) presents a significant therapeutic challenge, and its underlying mechanisms remain poorly understood. In our previous studies, we highlighted the association between isoprenylcysteine carboxylmethyltransferase (ICMT) and chemoresistance in NPC. In this current research, we revealed that both 5-FU and cisplatin-resistant NPC cells exhibited elevated mitochondrial function and increased expression of mitochondrial genes, independent of ICMT. Our investigations further showed that classic mitochondrial inhibitors, such as oligomycin, antimycin, and rotenone, were notably more effective in reducing viability in chemo-resistant NPC cells compared to parental cells. Moreover, we identified two antimicrobial drugs, tigecycline and atovaquone, recognized as mitochondrial inhibitors, as potent agents for decreasing chemo-resistant NPC cells by targeting mitochondrial respiration. Remarkably, tigecycline and atovaquone, administered at tolerable doses, inhibited chemo-resistant NPC growth in mouse models and extended overall survival rates. This work unveils the efficacy of mitochondrial inhibition as a promising strategy to overcome chemo-resistance in NPC. Additionally, our findings highlight the potential repurposing of clinically available drugs like tigecycline and atovaquone for treating NPC patients who develop chemoresistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Nasofaríngeas , Animais , Camundongos , Humanos , Carcinoma Nasofaríngeo/metabolismo , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Tigeciclina/farmacologia , Tigeciclina/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Mitocôndrias , Neoplasias Nasofaríngeas/metabolismo
8.
Microb Cell Fact ; 23(1): 152, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790017

RESUMO

BACKGROUND: A novel plasmid-mediated resistance-nodulation-division (RND) efflux pump gene cluster tmexCD1-toprJ1 in Klebsiella pneumoniae tremendously threatens the use of convenient therapeutic options in the post-antibiotic era, including the "last-resort" antibiotic tigecycline. RESULTS: In this work, the natural alkaloid harmaline was found to potentiate tigecycline efficacy (4- to 32-fold) against tmexCD1-toprJ1-positive K. pneumoniae, which also thwarted the evolution of tigecycline resistance. Galleria mellonella and mouse infection models in vivo further revealed that harmaline is a promising candidate to reverse tigecycline resistance. Inspiringly, harmaline works synergistically with tigecycline by undermining tmexCD1-toprJ1-mediated multidrug resistance efflux pump function via interactions with TMexCD1-TOprJ1 active residues and dissipation of the proton motive force (PMF), and triggers a vicious cycle of disrupting cell membrane integrity and metabolic homeostasis imbalance. CONCLUSION: These results reveal the potential of harmaline as a novel tigecycline adjuvant to combat hypervirulent K. pneumoniae infections.


Assuntos
Antibacterianos , Reposicionamento de Medicamentos , Harmalina , Infecções por Klebsiella , Klebsiella pneumoniae , Tigeciclina , Klebsiella pneumoniae/efeitos dos fármacos , Tigeciclina/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Animais , Camundongos , Antibacterianos/farmacologia , Harmalina/farmacologia , Harmalina/análogos & derivados , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Feminino
9.
BMC Infect Dis ; 24(1): 161, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317132

RESUMO

BACKGROUND: Bloodstream infection of Klebsiella pneumoniae (BSI-KP) were associated with increased mortality. Klebsiella pneumoniae was tested to susceptible to colistin by E-test and broth microdilution method in clinical laboratory. This study aimed to assess the efficacy of colistin versus tigecycline, carbapenem monotherapy and combination in the treatment of BSI-KP. METHODS: Electronic databases such as PubMed, Web of Science and Embase were searched. The last search was in November 24th, 2022, addressing the colistin, carbapenems and tigecycline monotherapy and combination treatments in patients with BSI-KP. The primary outcomes were 30-day or 28-day mortality. OR where available with 95% CI were pooled in random-effects meta-analysis. RESULTS: Following the outlined search strategy, a total of 658 articles were identified from the initial database searching. Six studies, 17 comparisons were included. However, they all were observational design, lacking high-quality randomized controlled trials (RCTs). Moderate or low-quality evidences suggested that colistin monotherapy was associated with an OR = 1.35 (95% CI = 0.62-2.97, P = 0.45, Tau2 = 0.00, I2 = 0%) compared with tigecycline monotherapy, OR = 0.81 (95% CI = 0.27-2.45, P = 0.71, Tau2 = 0.00, I2 = 0%) compared with carbapenem monotherapy. Compared with combination with tigecycline or carbapenem, Colistin monotherapy resulted in OR of 3.07 (95% CI = 1.34-7.04, P = 0.008, Tau2 = 0.00, I2 = 0%) and 0.98 (95%CI = 0.29-3.31, P = 0.98, Tau2 = 0.00, I2 = 0% ), respectively. CONCLUSIONS: Colistin, carbapenem and tigecycline monotherapy showed similar treatment effects in patients who suffered from BSI-KP. Compared with colistin monotherapy, colistin combined tigecycline therapy might play the synergism effects. TRIAL REGISTRATION: retrospectively registered.


Assuntos
Antibacterianos , Colistina , Quimioterapia Combinada , Infecções por Klebsiella , Klebsiella pneumoniae , Tigeciclina , Colistina/uso terapêutico , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Antibacterianos/uso terapêutico , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/mortalidade , Infecções por Klebsiella/microbiologia , Tigeciclina/uso terapêutico , Carbapenêmicos/uso terapêutico , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Testes de Sensibilidade Microbiana , Resultado do Tratamento
10.
Ann Clin Microbiol Antimicrob ; 23(1): 24, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448920

RESUMO

BACKGROUND: Klebsiella variicola is considered a newly emerging human pathogen. Clinical isolates of carbapenemase and broad-spectrum ß-lactamase-producing K. variicola remain relatively uncommon. A strain of K. variicola 4253 was isolated from a clinical sample, and was identified to carry the blaIMP-4 and blaSFO-1 genes. This study aims to discern its antibiotic resistance phenotype and genomic characteristics. METHODS: Species identification was conducted using MALDI-TOF/MS. PCR identification confirmed the presence of the blaIMP-4 and blaSFO-1 genes. Antibiotic resistance phenotype and genomic characteristics were detected by antimicrobial susceptibility testing and whole-genome sequencing. Plasmid characterization was carried out through S1-PFGE, conjugation experiments, Southern blot, and comparative genomic analysis. RESULTS: K. variicola 4253 belonged to ST347, and demonstrated resistance to broad-spectrum ß-lactamase drugs and tigecycline while being insensitive to imipenem and meropenem. The blaIMP-4 and blaSFO-1 genes harbored on the plasmid p4253-imp. The replicon type of p4253-imp was identified as IncHI5B, representing a multidrug-resistant plasmid capable of horizontal transfer and mediating the dissemination of drug resistance. The blaIMP-4 gene was located on the In809-like integrative element (Intl1-blaIMP-4-aacA4-catB3), which circulates in Acinetobacter and Enterobacteriaceae. CONCLUSIONS: This study reports the presence of a strain of K. variicola, which is insensitive to tigecycline, carrying a plasmid harboring blaIMP-4 and blaSFO-1. It is highly likely that the strain acquired this plasmid through horizontal transfer. The blaIMP-4 array (Intl1-blaIMP-4-aacA4-catB3) is also mobile in Acinetobacter and Enterobacteriaceae. So it is essential to enhance clinical awareness and conduct epidemiological surveillance on multidrug-resistant K. variicola, conjugative plasmids carrying blaIMP-4, and the In809 integrative element.


Assuntos
Acinetobacter , Klebsiella , Humanos , Tigeciclina/farmacologia , Klebsiella/genética , Plasmídeos/genética , beta-Lactamases/genética
11.
Ann Clin Microbiol Antimicrob ; 23(1): 14, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350903

RESUMO

PURPOSE: This study aimed to characterise the whole-genome structure of two clinical Klebsiella pneumoniae strains co-harbouring mcr-8.1 and tmexCD1-toprJ1, both resistant to colistin and tigecycline. METHODS: K. pneumoniae strains TGC-02 (ST656) and TGC-05 (ST273) were isolated from urine samples of different patients hospitalised at separate times in 2021. Characterisation involved antimicrobial susceptibility testing (AST), conjugation assays, whole-genome sequencing (WGS), and bioinformatics analysis. Comparative genomic analysis was conducted on mcr-8.1-carrying and tmexCD1-toprJ1-carrying plasmids. RESULTS: Both K. pneumoniae isolates displayed a multidrug-resistant phenotype, exhibiting resistance or reduced susceptibility to ampicillin, ampicillin/sulbactam, cefazolin, aztreonam, amikacin, gentamicin, tobramycin, ciprofloxacin, levofloxacin, nitrofurantoin, trimethoprim/sulfamethoxazole, apramycin, tigecycline and colistin. WGS analysis revealed that clinical strain TGC-02 carried the TmexCD1-toprJ1 gene on a 200-Kb IncFII/IncFIB-type plasmid, while mcr-8 was situated on a 146-Kb IncFII-type plasmid. In clinical strain TGC-05, TmexCD1-toprJ1 was found on a 300-Kb IncFIB/IncHI1B/IncR-type plasmid, and mcr-8 was identified on a 137-Kb IncFII/IncFIA-type plasmid. Conjugation experiments assessed the transferability of these plasmids. While transconjugants were not obtained for TGC-05 despite multiple screening with tigecycline or colistin, pTGC-02-tmex and pTGC-02-mcr8 from clinical K. pneumoniae TGC-02 demonstrated self-transferability through conjugation. Notably, the rearrangement of pTGC-02-tmex and pTGC-02-mcr8 via IS26-based homologous recombination was observed. Moreover, the conjugative and fusion plasmids of the transconjugant co-harboured the tmexCD1-toprJ1 gene cluster and mcr-8.1, potentially resulting from IS26-based homologous recombination. CONCLUSION: The emergence of colistin- and tigecycline-resistant K. pneumoniae strains is concerning, and effective surveillance measures should be implemented to prevent further dissemination.


Assuntos
Amicacina , Colistina , Humanos , Colistina/farmacologia , Tigeciclina , Ampicilina , Aztreonam , Klebsiella pneumoniae/genética , Plasmídeos/genética , Antibacterianos/farmacologia
12.
J Nanobiotechnology ; 22(1): 138, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555444

RESUMO

Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) is a formidable pathogen responsible for severe intracranial infections post-craniotomy, exhibiting a mortality rate as high as 71%. Tigecycline (TGC), a broad-spectrum antibiotic, emerged as a potential therapeutic agent for MDR A. baumannii infections. Nonetheless, its clinical application was hindered by a short in vivo half-life and limited permeability through the blood-brain barrier (BBB). In this study, we prepared a novel core-shell nanoparticle encapsulating water-soluble tigecycline using a blend of mPEG-PLGA and PLGA materials. This nanoparticle, modified with a dual-targeting peptide Aß11 and Tween 80 (Aß11/T80@CSs), was specifically designed to enhance the delivery of tigecycline to the brain for treating A. baumannii-induced intracranial infections. Our findings demonstrated that Aß11/T80@CSs nanocarriers successfully traversed the BBB and effectively delivered TGC into the cerebrospinal fluid (CSF), leading to a significant therapeutic response in a model of MDR A. baumannii intracranial infection. This study offers initial evidence and a platform for the application of brain-targeted nanocarrier delivery systems, showcasing their potential in administering water-soluble anti-infection drugs for intracranial infection treatments, and suggesting promising avenues for clinical translation.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Tigeciclina/farmacologia , Tigeciclina/uso terapêutico , Minociclina/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Água
13.
Int J Clin Pharmacol Ther ; 62(7): 339-344, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38606856

RESUMO

High-dose tigecycline is gradually being introduced for the treatment of serious infectious diseases due to the increasing difficulty in treating pan-resistant bacterial infections. However, the safety of high-dose tigecycline is controversial. We report the case of a 76-year-old female patient with cerebral hemorrhage who received high-dose tigecycline (100 mg q12h) with other drugs for ventilator-associated pneumonia. 25 days after admission, she developed acute liver failure, mainly manifested by abnormally high bilirubin, coagulation dysfunction, and gastrointestinal hemorrhage with hemorrhagic shock. According to the updated Roussel Uclaf causality assessment method, the patient's acute liver injury was most likely caused by tigecycline.


Assuntos
Antibacterianos , Falência Hepática Aguda , Tigeciclina , Humanos , Feminino , Idoso , Tigeciclina/administração & dosagem , Tigeciclina/efeitos adversos , Falência Hepática Aguda/induzido quimicamente , Antibacterianos/efeitos adversos , Antibacterianos/administração & dosagem , Minociclina/efeitos adversos , Minociclina/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico
14.
J Infect Chemother ; 30(5): 372-378, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369125

RESUMO

OBJECTIVE: To determine whether mortality is lower in patients with Klebsiella pneumoniae bloodstream infection (BSI) who receive combination antimicrobial therapy than in those who receive monotherapy. METHODS: Two authors independently searched for relevant articles in the PubMed, Embase, Web of Science, and Cochrane Library databases through to August 10, 2023. Risk of bias was evaluated using the ROBINS-I tool. Possible sources of heterogeneity were evaluated by meta-regression using a mixed-effects model. RESULTS: Among 8044 articles screened, there were 23 studies (3443 patients) that were eligible for meta-analysis. Meta-regression analysis identified the proportion of patients with carbapenem-resistant Klebsiella pneumoniae (CRKP) BSI to be a potential source of heterogeneity. Subgroup analysis showed that mortality on monotherapy was significantly higher when the proportion of patients with CRKP BSI was ≥50% (OR 1.75, 95% CI 1.33-2.30) and significantly lower when this proportion was <50% (OR 0.55, 95% CI 0.24-1.24). Overall mortality was significantly higher on tigecycline monotherapy (OR 2.86, 95% CI 1.46-5.59) than on combination therapy containing both these agents. There was a trend in favor of colistin/polymyxin B-containing combination therapy (OR 1.37, 95% CI 0.83-2.28). CONCLUSIONS: Combination antimicrobial therapy can lower mortality in patients with CRKP but may not show a survival advantage over monotherapy when the proportion of patients with CRKP BSI is <50%. High-quality prospective observational studies are needed because of the high risk of bias and limited data in the studies performed to date.


Assuntos
Antibacterianos , Bacteriemia , Quimioterapia Combinada , Infecções por Klebsiella , Klebsiella pneumoniae , Tigeciclina , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/mortalidade , Infecções por Klebsiella/microbiologia , Antibacterianos/uso terapêutico , Quimioterapia Combinada/métodos , Bacteriemia/tratamento farmacológico , Bacteriemia/mortalidade , Bacteriemia/microbiologia , Tigeciclina/uso terapêutico , Colistina/uso terapêutico
15.
Drug Resist Updat ; 70: 100989, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37480594

RESUMO

Carbapenems and tigecycline are crucial antimicrobials for the treatment of gram-negative bacteria infections. Recently, a novel resistance-nodulation-division (RND) efflux pump gene cluster, tmexCD-toprJ, which confers resistance to tigecycline, has been discovered in animals and clinical isolates. It was reported that hospital sewage could act as a reservoir for gram-negative bacteria with high antimicrobial resistance genes. In this study, we analyzed 84 isolates of carbapenem-resistant gram-negative bacteria (CR-GNB) from hospital sewage, and identified five isolates of TMexCD-ToprJ-producing CR-GNB, including one Raoultella ornithinolytica isolate and four Pseudomonas spp. isolates. All these five isolates carried at least one carbapenem resistance gene and were resistant to multiple antibiotics. Multiple tmexCD-toprJ clusters were detected, including tmexC2D2-toprJ2, tmexC3D3-toprJ3, tmexC3.2D3.3-toprJ1b and tmexC3.2D3-toprJ1b. Among these clusters, the genetic construct of tmexC3.2D3-toprJ1b showed 2-fold higher minimum inhibitory concentration (MIC) of tigecycline than other three variants. In addition, it was found that the tmexCD-toprJ gene cluster was originated from Pseudomonas spp. and mainly located on Tn6855 variants inserted in the same umuC-like genes on chromosomes and plasmids. This unit co-localized with blaIMP or blaVIM on IncHI5-, IncpJBCL41- and IncpSTY-type plasmids in the five isolates of TMCR-GNB. The IncHI5- and IncpSTY-type plasmids had the ability to conjugal transfer to E. coli J53 and P. aeruginosa PAO1, highlighting the potential risk of transfer of tmexCD-toprJ from Pseudomonas spp. to Enterobacterales. Importantly, genomic analysis showed that similar tmexCD-toprJ-harboring IncHI5 plasmids were also detected in human samples, suggesting transmission between environmental and human sectors. The emergence of TMCR-GNB from hospital sewage underscores the need for ongoing surveillance of antimicrobial resistance genes, particularly the novel resistance genes such as the tmexCD-toprJ gene clusters in the wastewater environment.


Assuntos
Carbapenêmicos , Esgotos , Humanos , Carbapenêmicos/farmacologia , Tigeciclina , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas/genética , Hospitais , Pseudomonas aeruginosa , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
16.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339095

RESUMO

The presence of sub-minimal inhibitory concentration (sub-MIC) antibiotics in our environment is widespread, and their ability to induce antibiotic resistance is inevitable. Acinetobacter baumannii, a pathogen known for its strong ability to acquire antibiotic resistance, has recently shown clinical resistance to the last-line antibiotic tigecycline. To unravel the complex mechanism of A. baumannii drug resistance, we subjected tigecycline-susceptible, -intermediate, and -mildly-resistant strains to successive increases in sub-MIC tigecycline and ultimately obtained tigecycline-resistant strains. The proteome of both key intermediate and final strains during the selection process was analyzed using nanoLC-MS/MS. Among the more than 2600 proteins detected in all strains, we found that RND efflux pump AdeABC was associated with the adaptability of A. baumannii to tigecycline under sub-MIC pressure. qRT-PCR analysis also revealed higher expression of AdeAB in strains that can quickly acquire tigecycline resistance compared with strains that displayed lower adaptability. To validate our findings, we added an efflux pump inhibitor, carbonyl cyanide m-chlorophenyl hydrazine (CCCP), to the medium and observed its ability to inhibit tigecycline resistance in A. baumannii strains with quick adaptability. This study contributes to a better understanding of the mechanisms underlying tigecycline resistance in A. baumannii under sub-MIC pressure.


Assuntos
Acinetobacter baumannii , Tigeciclina/farmacologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Espectrometria de Massas em Tandem , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla
17.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732105

RESUMO

Multiple myeloma is an incurable plasma cell malignancy. Most patients end up relapsing and developing resistance to antineoplastic drugs, like bortezomib. Antibiotic tigecycline has activity against myeloma. This study analyzed tigecycline and bortezomib combination on cell lines and plasma cells from myeloma patients. Apoptosis, autophagic vesicles, mitochondrial mass, mitochondrial superoxide, cell cycle, and hydrogen peroxide were studied by flow cytometry. In addition, mitochondrial antioxidants and electron transport chain complexes were quantified by reverse transcription real-time PCR (RT-qPCR) or western blot. Cell metabolism and mitochondrial activity were characterized by Seahorse and RT-qPCR. We found that the addition of tigecycline to bortezomib reduces apoptosis in proportion to tigecycline concentration. Supporting this, the combination of both drugs counteracts bortezomib in vitro individual effects on the cell cycle, reduces autophagy and mitophagy markers, and reverts bortezomib-induced increase in mitochondrial superoxide. Changes in mitochondrial homeostasis and MYC upregulation may account for some of these findings. These data not only advise to avoid considering tigecycline and bortezomib combination for treating myeloma, but caution on the potential adverse impact of treating infections with this antibiotic in myeloma patients under bortezomib treatment.


Assuntos
Apoptose , Bortezomib , Mitocôndrias , Mieloma Múltiplo , Espécies Reativas de Oxigênio , Tigeciclina , Bortezomib/farmacologia , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Tigeciclina/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos
18.
World J Microbiol Biotechnol ; 40(8): 233, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842631

RESUMO

Tigecycline-non-susceptible Klebsiella pneumoniae (TNSKP) is increasing and has emerged as a global public health issue. However, the mechanism of tigecycline resistance remains unclear. The objective of this study was to investigate the potential role of efflux pump system in tigecycline resistance. 29 tigecycline-non-susceptible Klebsiella pneumoniae (TNSKP) strains were collected and their minimum inhibitory concentrations (MIC) were determined by the broth microdilution method. The ramR, acrR, rpsJ, tet(A), and tet(X) were amplified by polymerase chain reaction (PCR). The mRNA expression of different efflux pump genes and regulator genes were analyzed by real-time PCR. Additionally, KP14 was selected for genome sequencing. KP14 genes without acrB, oqxB, and TetA were modified using suicide plasmids and MIC of tigecycline of KP14 with target genes knocked out was investigated. It was found that MIC of tigecycline of 20 out of the 29 TNSKP strains decreased by over four folds once combined with phenyl-arginine-ß-naphthylamide dihydrochloride (PaßN). Most strains exhibited upregulation of AcrAB and oqxAB efflux pumps. The strains with acrB, oqxB, and tetA genes knocked out were constructed, wherein the MIC of tigecycline of KP14∆acrB and KP14∆tetA was observed to be 2 µg/mL (decreased by 16 folds), the MIC of tigecycline of KP14ΔacrBΔTetA was 0.25 µg/mL (decreased by 128 folds), but the MIC of tigecycline of KP14∆oqxB remained unchanged at 32 µg/mL. The majority of TNSKP strains demonstrated increased expression of AcrAB-TolC and oqxAB, while certain strains showed mutations in other genes associated with tigecycline resistance. In KP14, both overexpression of AcrAB-TolC and tet(A) gene mutation contributed to the mechanism of tigecycline resistance.


Assuntos
Antibacterianos , Proteínas de Bactérias , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Mutação , Tigeciclina , Tigeciclina/farmacologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Farmacorresistência Bacteriana/genética , Humanos , Antiporters
19.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 204-209, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38322538

RESUMO

Objective: To analyze the distribution of ocular bacterial pathogens and their antibiotic resistance status at a tertiary-care hospital and to provide a reference for the appropriate use of antibiotics. Methods: Retrospective analysis was conducted with bacteria isolated from the ophthalmic samples sent for lab analysis at a tertiary-care hospital from 2012 to 2021. The suspected bacterial strains were identified with automated systems for microbial identification and susceptibility analysis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer. VITEK 2 Compact, an automated microbial identification and antibiotic susceptibility analysis system, was used for antimicrobial susceptibility testing. Results: A total of 1556 ophthalmology bacteria culture samples were collected, 574 of which showed bacterial growth, presenting an overall positive rate of 36.89%. Of the isolated bacteria, Gram-positive cocci, Gram-positive bacilli, Gram-negative bacilli, and Gram-negative cocci accounted for 63.15% (377/597), 18.76% (112/597), 17.09% (102/597), and 1.00% (6/597), respectively. Among the bacteria isolated in different years over the course of a decade, Gram-positive cocci always turned out to be the main cause of eye infections. Of the Gram-positive cocci, 73.47% (277/377) were isolated from patients with endophthalmitis, with the most important species being Staphylococcus epidermidis, which was followed by Streptococcus viridans. The rest, or 26.53% (100/377), of the Gram-positive cocci were isolated from patients with external eye infections, with the main isolated strains being Staphylococcus epidermidis, Streptococcus viridans, and Staphylococcus aureus. More than 70% of Staphylococcus epidermidis isolated from both endophthalmitis and external eye infections were resistant to methicillin. No strains resistant to vancomycin, linezolid, or tigecycline were detected. Staphylococcus epidermidis isolated from patients with external eye infections had a low rate of resistance to levofloxacin (2/27 or 7.41%), whereas those isolated from patients with endophthalmitis had a higher resistance rate (43/127 or 33.86%). The difference in drug resistance rate between the two groups was statistically significant (P<0.05). Conclusion: The chief ocular bacterial pathogens identified in a tertiary-care hospital were Gram-positive cocci, among which, Staphylococcus epidermidis was the most common species. The Staphylococcus epidermidis identified in the hospital had a high rate of resistance to oxacillin, but remained highly sensitive to vancomycin, linezolid, and tigecycline. The endophthalmitis caused by Staphylococcus epidermidis in the hospital can be treated empirically with vancomycin and then the treatment plan can be further adjusted according to the results of the drug susceptibility test. However, the establishment of the breakpoint of drug susceptibility test is mainly based on the model of bloodstream infection and has limited reference value for the treatment of eye infection. The required drug distribution concentration at the infection site can be achieved by dose increase or local administration.


Assuntos
Endoftalmite , Infecções Oculares , Humanos , Centros de Atenção Terciária , Vancomicina , Tigeciclina , Linezolida , Estudos Retrospectivos , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Staphylococcus aureus , Bactérias Gram-Negativas
20.
Antimicrob Agents Chemother ; 67(7): e0004723, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37289048

RESUMO

The emergence of TMexCD1-TOprJ1, a novel transferable resistance-nodulation-division (RND)-type efflux pump conferring resistance to tigecycline, is now a serious public health issue in the world. Here, we found that melatonin synergistically enhanced the antibacterial efficacy of tigecycline against tmexCD1-toprJ1-positive Klebsiella pneumoniae by disrupting the proton driving force and efflux function to promote the accumulation of tigecycline into cells, damaging cell membrane integrity and causing the leakage of cell contents. The synergistic effect was further validated by a murine thigh infection model. The results revealed that the melatonin/tigecycline combination is a potential therapy to combat resistant bacteria carrying the tmexCD1-toprJ1 gene.


Assuntos
Infecções por Klebsiella , Melatonina , Animais , Camundongos , Tigeciclina/farmacologia , Melatonina/farmacologia , Melatonina/metabolismo , Minociclina/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Farmacorresistência Bacteriana/genética , Proteínas de Membrana Transportadoras/genética , Antibacterianos/uso terapêutico , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Testes de Sensibilidade Microbiana , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa