Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Plant Physiol ; 169(4): 2553-71, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26443676

RESUMO

The epidermis of aerial plant organs is the primary source of building blocks forming the outer surface cuticular layer. To examine the relationship between epidermal cell development and cuticle assembly in the context of fruit surface, we investigated the tomato (Solanum lycopersicum) MIXTA-like gene. MIXTA/MIXTA-like proteins, initially described in snapdragon (Antirrhinum majus) petals, are known regulators of epidermal cell differentiation. Fruit of transgenically silenced SlMIXTA-like tomato plants displayed defects in patterning of conical epidermal cells. They also showed altered postharvest water loss and resistance to pathogens. Transcriptome and cuticular lipids profiling coupled with comprehensive microscopy revealed significant modifications to cuticle assembly and suggested SlMIXTA-like to regulate cutin biosynthesis. Candidate genes likely acting downstream of SlMIXTA-like included cytochrome P450s (CYPs) of the CYP77A and CYP86A subfamilies, LONG-CHAIN ACYL-COA SYNTHETASE2, GLYCEROL-3-PHOSPHATE SN-2-ACYLTRANSFERASE4, and the ATP-BINDING CASSETTE11 cuticular lipids transporter. As part of a larger regulatory network of epidermal cell patterning and L1-layer identity, we found that SlMIXTA-like acts downstream of SlSHINE3 and possibly cooperates with homeodomain Leu zipper IV transcription factors. Hence, SlMIXTA-like is a positive regulator of both cuticle and conical epidermal cell formation in tomato fruit, acting as a mediator of the tight association between fruit cutin polymer formation, cuticle assembly, and epidermal cell patterning.


Assuntos
Frutas/genética , Lipídeos/biossíntese , Solanum lycopersicum/genética , Fatores de Transcrição/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Fenótipo , Epiderme Vegetal/genética , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
2.
Plant Cell ; 23(11): 3893-910, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22045915

RESUMO

Tomato (Solanum lycopersicum) is the primary model for the study of fleshy fruits, and research in this species has elucidated many aspects of fruit physiology, development, and metabolism. However, most of these studies have involved homogenization of the fruit pericarp, with its many constituent cell types. Here, we describe the coupling of pyrosequencing technology with laser capture microdissection to characterize the transcriptomes of the five principal tissues of the pericarp from tomato fruits (outer and inner epidermal layers, collenchyma, parenchyma, and vascular tissues) at their maximal growth phase. A total of 20,976 high-quality expressed unigenes were identified, of which more than half were ubiquitous in their expression, while others were cell type specific or showed distinct expression patterns in specific tissues. The data provide new insights into the spatial distribution of many classes of regulatory and structural genes, including those involved in energy metabolism, source-sink relationships, secondary metabolite production, cell wall biology, and cuticle biogenesis. Finally, patterns of similar gene expression between tissues led to the characterization of a cuticle on the inner surface of the pericarp, demonstrating the utility of this approach as a platform for biological discovery.


Assuntos
Frutas/citologia , Frutas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Parede Celular/metabolismo , Análise por Conglomerados , Sistema Enzimático do Citocromo P-450/genética , Metabolismo Energético/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Microdissecção e Captura a Laser/métodos , Solanum lycopersicum/crescimento & desenvolvimento , Especificidade de Órgãos , Epiderme Vegetal/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
New Phytol ; 197(2): 468-480, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23205954

RESUMO

Fleshy tomato fruit typically lacks stomata; therefore, a proper cuticle is particularly vital for fruit development and interaction with the surroundings. Here, we characterized the tomato SlSHINE3 (SlSHN3) transcription factor to extend our limited knowledge regarding the regulation of cuticle formation in fleshy fruits. We created SlSHN3 overexpressing and silenced plants, and used them for detailed analysis of cuticular lipid compositions, phenotypic characterization, and the study on the mode of SlSHN3 action. Heterologous expression of SlSHN3 in Arabidopsis phenocopied overexpression of the Arabidopsis SHNs. Silencing of SlSHN3 results in profound morphological alterations of the fruit epidermis and significant reduction in cuticular lipids. We demonstrated that SlSHN3 activity is mediated by control of genes associated with cutin metabolism and epidermal cell patterning. As with SlSHN3 RNAi lines, mutation in the SlSHN3 target gene, SlCYP86A69, resulted in severe cutin deficiency and altered fruit surface architecture. In vitro activity assays demonstrated that SlCYP86A69 possesses NADPH-dependent ω-hydroxylation activity, particularly of C18:1 fatty acid to the 18-hydroxyoleic acid cutin monomer. This study provided insights into transcriptional mechanisms mediating fleshy fruit cuticle formation and highlighted the link between cutin metabolism and the process of fruit epidermal cell patterning.


Assuntos
Padronização Corporal , Frutas/crescimento & desenvolvimento , Epiderme Vegetal/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Alelos , Sequência de Aminoácidos , Arabidopsis/genética , Padronização Corporal/genética , Colletotrichum/fisiologia , Regulação para Baixo/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas/genética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Lipídeos de Membrana/metabolismo , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Epiderme Vegetal/genética , Proteínas de Plantas/química , Plantas Geneticamente Modificadas , Polimerização , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Ceras/metabolismo
4.
Plant Cell ; 22(6): 1977-97, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20571113

RESUMO

In higher plants, the plastidial NADH dehydrogenase (Ndh) complex supports nonphotochemical electron fluxes from stromal electron donors to plastoquinones. Ndh functions in chloroplasts are not clearly established; however, its activity was linked to the prevention of the overreduction of stroma, especially under stress conditions. Here, we show by the characterization of Orr(Ds), a dominant transposon-tagged tomato (Solanum lycopersicum) mutant deficient in the NDH-M subunit, that this complex is also essential for the fruit ripening process. Alteration to the NDH complex in fruit changed the climacteric, ripening-associated metabolites and transcripts as well as fruit shelf life. Metabolic processes in chromoplasts of ripening tomato fruit were affected in Orr(Ds), as mutant fruit were yellow-orange and accumulated substantially less total carotenoids, mainly beta-carotene and lutein. The changes in carotenoids were largely influenced by environmental conditions and accompanied by modifications in levels of other fruit antioxidants, namely, flavonoids and tocopherols. In contrast with the pigmentation phenotype in mature mutant fruit, Orr(Ds) leaves and green fruits did not display a visible phenotype but exhibited reduced Ndh complex quantity and activity. This study therefore paves the way for further studies on the role of electron transport and redox reactions in the regulation of fruit ripening and its associated metabolism.


Assuntos
Frutas/enzimologia , NADH Desidrogenase/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Carotenoides/metabolismo , Elementos de DNA Transponíveis , DNA de Plantas/genética , Flavonoides/metabolismo , Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genótipo , Solanum lycopersicum/enzimologia , Mutagênese Insercional , Mutação , NADH Desidrogenase/genética , Fenótipo , Proteínas de Plantas/genética , Tocoferóis/metabolismo
5.
J Clin Med ; 12(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37373665

RESUMO

BACKGROUND: Congenital central hypoventilation syndrome (CCHS) is a rare autosomal-dominant disorder of the autonomic nervous system that results from mutations in the PHOX2B gene. A national CCHS center was founded in Israel in 2018. Unique new findings were observed. METHODS: All 27 CCHS patients in Israel were contacted and followed. Novel findings were observed. RESULTS: The prevalence of new CCHS cases was almost twice higher compared to other countries. The most common mutations in our cohort were polyalanine repeat mutations (PARM) 20/25, 20/26, 20/27 (combined = 85% of cases). Two patients showed unique recessive inheritance while their heterozygotes family members were asymptomatic. A right-sided cardio-neuromodulation was performed on an eight-year-old boy for recurrent asystoles by ablating the parasympathetic ganglionated plexi using radiofrequency (RF) energy. Over 36 months' follow-up with an implantable loop-recorder, no bradycardias/pauses events were observed. A cardiac pacemaker was avoided. CONCLUSIONS: A significant benefit and new information arise from a nationwide expert CCHS center for both clinical and basic purposes. The incidence of CCHS in some populations may be increased. Asymptomatic NPARM mutations may be much more common in the general population, leading to an autosomal recessive presentation of CCHS. RF cardio-neuromodulation offers a novel approach to children avoiding the need for permanent pacemaker implantation.

6.
PLoS Genet ; 5(12): e1000777, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20019811

RESUMO

The cuticle covering plants' aerial surfaces is a unique structure that plays a key role in organ development and protection against diverse stress conditions. A detailed analysis of the tomato colorless-peel y mutant was carried out in the framework of studying the outer surface of reproductive organs. The y mutant peel lacks the yellow flavonoid pigment naringenin chalcone, which has been suggested to influence the characteristics and function of the cuticular layer. Large-scale metabolic and transcript profiling revealed broad effects on both primary and secondary metabolism, related mostly to the biosynthesis of phenylpropanoids, particularly flavonoids. These were not restricted to the fruit or to a specific stage of its development and indicated that the y mutant phenotype is due to a mutation in a regulatory gene. Indeed, expression analyses specified three R2R3-MYB-type transcription factors that were significantly down-regulated in the y mutant fruit peel. One of these, SlMYB12, was mapped to the genomic region on tomato chromosome 1 previously shown to harbor the y mutation. Identification of an additional mutant allele that co-segregates with the colorless-peel trait, specific down-regulation of SlMYB12 and rescue of the y phenotype by overexpression of SlMYB12 on the mutant background, confirmed that a lesion in this regulator underlies the y phenotype. Hence, this work provides novel insight to the study of fleshy fruit cuticular structure and paves the way for the elucidation of the regulatory network that controls flavonoid accumulation in tomato fruit cuticle.


Assuntos
Redes Reguladoras de Genes , Genes de Plantas , Solanum lycopersicum/genética , Cromossomos de Plantas , Flavonoides , Frutas , Regulação da Expressão Gênica de Plantas , Mutação
7.
Stem Cell Res ; 48: 101955, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32822965

RESUMO

Congenital central hypoventilation syndrome (CCHS) is a rare life-threatening condition affecting the autonomic nervous system that usually presents shortly after birth as hypoventilation or central apnea during sleep. In the majority of cases, heterozygous polyalanine expansion mutations within the third exon of the paired-like homeobox 2B (PHOX2B) gene underlie CCHS. Here, we report the generation of two induced pluripotent stem cell (iPSC) lines from two identical twins with a heterozygous PHOX2B expansion mutation (+5 alanine residues). Both generated lines highly express pluripotency markers, can differentiate into the three germ layers, retain the disease-causing mutation and display normal karyotypes.


Assuntos
Proteínas de Homeodomínio , Células-Tronco Pluripotentes Induzidas , Fatores de Transcrição , Linhagem Celular , Genes Homeobox , Proteínas de Homeodomínio/genética , Humanos , Mutação , Peptídeos , Gêmeos Monozigóticos
8.
Nucleic Acids Res ; 31(1): 142-6, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12519968

RESUMO

Recent enhancements and current research in the GeneCards (GC) (http://bioinfo.weizmann.ac.il/cards/) project are described, including the addition of gene expression profiles and integrated gene locations. Also highlighted are the contributions of specialized associated human gene-centric databases developed at the Weizmann Institute. These include the Unified Database (UDB) (http://bioinfo.weizmann.ac.il/udb) for human genome mapping, the human Chromosome 21 database at the Weizmann Insti-tute (CroW 21) (http://bioinfo.weizmann.ac.il/crow21), and the Human Olfactory Receptor Data Explora-torium (HORDE) (http://bioinfo.weizmann.ac.il/HORDE). The synergistic relationships amongst these efforts have positively impacted the quality, quantity and usefulness of the GeneCards gene compendium.


Assuntos
Cromossomos Humanos Par 21 , Bases de Dados Genéticas , Genoma Humano , Receptores Odorantes/genética , Algoritmos , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Humanos , Israel
9.
Eur J Hum Genet ; 10(6): 339-50, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12080385

RESUMO

Usher syndrome type 3 (USH3) is an autosomal recessive disorder characterised by the association of post-lingual progressive hearing loss, progressive visual loss due to retinitis pigmentosa and variable presence of vestibular dysfunction. Because the previously defined transcripts do not account for all USH3 cases, we performed further analysis and revealed the presence of additional exons embedded in longer human and mouse USH3A transcripts and three novel USH3A mutations. Expression of Ush3a transcripts was localised by whole mount in situ hybridisation to cochlear hair cells and spiral ganglion cells. The full length USH3A transcript encodes clarin-1, a four-transmembrane-domain protein, which defines a novel vertebrate-specific family of three paralogues. Limited sequence homology to stargazin, a cerebellar synapse four-transmembrane-domain protein, suggests a role for clarin-1 in hair cell and photoreceptor cell synapses, as well as a common pathophysiological pathway for different Usher syndromes.


Assuntos
Células Ciliadas Auditivas/fisiologia , Proteínas de Membrana/genética , Sinapses/fisiologia , Sequência de Aminoácidos , Animais , Canais de Cálcio/genética , Mapeamento Cromossômico , Feminino , Perfilação da Expressão Gênica , Humanos , Hibridização In Situ , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Dados de Sequência Molecular , Mutação , Linhagem , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína
10.
Nat Genet ; 43(2): 109-16, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21186353

RESUMO

The woodland strawberry, Fragaria vesca (2n = 2x = 14), is a versatile experimental plant system. This diminutive herbaceous perennial has a small genome (240 Mb), is amenable to genetic transformation and shares substantial sequence identity with the cultivated strawberry (Fragaria × ananassa) and other economically important rosaceous plants. Here we report the draft F. vesca genome, which was sequenced to ×39 coverage using second-generation technology, assembled de novo and then anchored to the genetic linkage map into seven pseudochromosomes. This diploid strawberry sequence lacks the large genome duplications seen in other rosids. Gene prediction modeling identified 34,809 genes, with most being supported by transcriptome mapping. Genes critical to valuable horticultural traits including flavor, nutritional value and flowering time were identified. Macrosyntenic relationships between Fragaria and Prunus predict a hypothetical ancestral Rosaceae genome that had nine chromosomes. New phylogenetic analysis of 154 protein-coding genes suggests that assignment of Populus to Malvidae, rather than Fabidae, is warranted.


Assuntos
Fragaria/genética , Genoma de Planta , Algoritmos , Cloroplastos/genética , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Genes de Plantas , Ligação Genética , Hibridização in Situ Fluorescente , Funções Verossimilhança , Modelos Genéticos , Filogenia , Sequências Repetidas Terminais , Transcrição Gênica
11.
Plant Physiol ; 147(2): 823-51, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18441227

RESUMO

The cuticle, covering the surface of all primary plant organs, plays important roles in plant development and protection against the biotic and abiotic environment. In contrast to vegetative organs, very little molecular information has been obtained regarding the surfaces of reproductive organs such as fleshy fruit. To broaden our knowledge related to fruit surface, comparative transcriptome and metabolome analyses were carried out on peel and flesh tissues during tomato (Solanum lycopersicum) fruit development. Out of 574 peel-associated transcripts, 17% were classified as putatively belonging to metabolic pathways generating cuticular components, such as wax, cutin, and phenylpropanoids. Orthologs of the Arabidopsis (Arabidopsis thaliana) SHINE2 and MIXTA-LIKE regulatory factors, activating cutin and wax biosynthesis and fruit epidermal cell differentiation, respectively, were also predominantly expressed in the peel. Ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer and gas chromatography-mass spectrometry using a flame ionization detector identified 100 metabolites that are enriched in the peel tissue during development. These included flavonoids, glycoalkaloids, and amyrin-type pentacyclic triterpenoids as well as polar metabolites associated with cuticle and cell wall metabolism and protection against photooxidative stress. Combined results at both transcript and metabolite levels revealed that the formation of cuticular lipids precedes phenylpropanoid and flavonoid biosynthesis. Expression patterns of reporter genes driven by the upstream region of the wax-associated SlCER6 gene indicated progressive activity of this wax biosynthetic gene in both fruit exocarp and endocarp. Peel-associated genes identified in our study, together with comparative analysis of genes enriched in surface tissues of various other plant species, establish a springboard for future investigations of plant surface biology.


Assuntos
Perfilação da Expressão Gênica , Genes de Plantas , Solanum lycopersicum/metabolismo , Sequência de Bases , Cromatografia Líquida , Primers do DNA , Cromatografia Gasosa-Espectrometria de Massas , Solanum lycopersicum/genética , Espectrometria de Massas , Família Multigênica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Genes Dev ; 21(22): 2874-9, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18006684

RESUMO

Riboswitches are natural RNA sensors that affect gene control via their capacity to bind small molecules. Their prevalence in higher eukaryotes is unclear. We discovered a post-transcriptional mechanism in plants that uses a riboswitch to control a metabolic feedback loop through differential processing of the precursor RNA 3' terminus. When cellular thiamin pyrophosphate (TPP) levels rise, metabolite sensing by the riboswitch located in TPP biosynthesis genes directs formation of an unstable splicing product, and consequently TPP levels drop. When transformed in plants, engineered TPP riboswitches can act autonomously to modulate gene expression. In an evolutionary perspective, a TPP riboswitch is also present in ancient plant taxa, suggesting that this mechanism is active since vascular plants emerged 400 million years ago.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas/genética , Plantas/genética , Plantas/metabolismo , RNA de Plantas , Regiões 3' não Traduzidas/genética , Processamento Alternativo , Arabidopsis/genética , Sequência de Bases , Genes de Plantas , Íntrons/genética , Solanum lycopersicum/genética , Modelos Biológicos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Plantas Geneticamente Modificadas , RNA Catalítico , RNA Mensageiro/metabolismo , RNA de Plantas/química , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo
13.
Hum Mol Genet ; 14(24): 3921-32, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16301217

RESUMO

Usher syndrome type IIa (USH2A) combines moderate to severe congenital hearing impairment and retinitis pigmentosa. It is the most common genetic form of USH. USH2A encodes usherin, which was previously defined as a basement membrane protein. A much larger USH2A transcript predicted to encode a transmembrane (TM) isoform was recently reported. Here, we address the role of TM usherin in the inner ear. Analysis of the usherin alternative transcripts in the murine inner ear revealed the existence of several predicted TM usherin isoforms with modular ectodomains of different lengths. In addition, we identified in the usherin cytoplasmic region a predicted 24 amino acid peptide, derived from a newly defined exon that is predominantly expressed in the inner ear but not in the retina. In mouse and rat inner ears, we show that TM usherin is present at the base of the differentiating stereocilia, which make up the mechanosensitive hair bundles receptive to sound. The usherin immunolabeling is transient in the hair bundles of cochlear hair cells (HCs), but persists in mature hair bundles of vestibular HCs. Several lines of evidence support the involvement of TM usherin in the composition of the ankle links, a subset of filamentous lateral links connecting stereocilia at the base. By co-immunoprecipitation and in vitro binding assays, we establish that the usherin cytodomain can bind to whirlin and harmonin, two PDZ domain-containing proteins that are defective in genetic forms of isolated deafness and USH type I, respectively. These PDZ proteins are suitable to provide the anchoring of interstereocilia lateral links to the F-actin core of stereocilia. Our results strongly suggest that congenital deafness in USH type I and type II shares similar pathogenic mechanisms, i.e. the disruption of hair bundle links-mediated adhesion forces that are essential for the proper organization of growing hair bundles.


Assuntos
Orelha Interna/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Células Ciliadas Auditivas/metabolismo , Síndromes de Usher/fisiopatologia , Processamento Alternativo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Cílios/metabolismo , Cílios/patologia , Proteínas do Citoesqueleto , Orelha Interna/citologia , Células Ciliadas Auditivas/patologia , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
14.
Hum Mol Genet ; 14(3): 347-56, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15590703

RESUMO

Defects in myosin VIIa, harmonin (a PDZ domain protein), cadherin 23, protocadherin 15 and sans (a putative scaffolding protein), underlie five forms of Usher syndrome type I (USH1). Mouse mutants for all these proteins exhibit disorganization of their hair bundle, which is the mechanotransduction receptive structure of the inner ear sensory cells, the cochlear and vestibular hair cells. We have previously demonstrated that harmonin interacts with cadherin 23 and myosin VIIa. Here we address the extent of interactions between the five known USH1 proteins. We establish the previously suggested sans-harmonin interaction and find that sans also binds to myosin VIIa. We show that sans can form homomeric structures and that harmonin b can interact with all harmonin isoforms. We reveal that harmonin also binds to protocadherin 15. Molecular characterization of these interactions indicates that through its binding to four of the five USH1 proteins, the first PDZ domain (PDZ1) of harmonin plays a central role in this network. We localize sans in the apical region of cochlear and vestibular hair cell bodies underneath the cuticular plate. In contrast to the other four known USH1 proteins, no sans labeling was detected within the stereocilia. We propose that via its binding to myosin VIIa and/or harmonin, sans controls the hair bundle cohesion and proper development by regulating the traffic of USH1 proteins en route to the stereocilia.


Assuntos
Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Dineínas/metabolismo , Miosinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Precursores de Proteínas/metabolismo , Animais , Proteínas Relacionadas a Caderinas , Caderinas/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Dineínas/genética , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/metabolismo , Células HeLa , Perda Auditiva Neurossensorial/genética , Humanos , Camundongos , Mutação , Miosina VIIa , Miosinas/genética , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Precursores de Proteínas/genética , Retinose Pigmentar/genética , Síndrome , Técnicas do Sistema de Duplo-Híbrido
15.
Bioinformatics ; 19 Suppl 1: i222-4, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12855462

RESUMO

MOTIVATION: Despite the numerous available whole-genome mapping resources, no comprehensive, integrated map of the human genome yet exists. RESULTS: GeneLoc, software adjunct to GeneCards and UDB, integrates gene lists by comparing genomic coordinates at the exon level and assigns unique and meaningful identifiers to each gene.


Assuntos
Mapeamento Cromossômico/métodos , Bases de Dados Genéticas , Éxons/genética , Genoma Humano , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Software , Sistemas de Gerenciamento de Base de Dados , Projeto Genoma Humano , Humanos , Armazenamento e Recuperação da Informação/métodos , Homologia de Sequência do Ácido Nucleico , Integração de Sistemas
16.
Hum Mol Genet ; 12(5): 463-71, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12588794

RESUMO

Usher syndrome type I (USH1) is the most frequent cause of hereditary deaf-blindness in humans. Seven genetic loci (USH1A-G) have been implicated in this disease to date, and four of the corresponding genes have been identified: USH1B, C, D and F. We carried out fine mapping of USH1G (chromosome 17q24-25), restricting the location of this gene to an interval of 2.6 Mb and then screened genes present within this interval for mutations. The genes screened included the orthologue of the Sans gene, which is defective in the Jackson shaker deaf mutant and maps to the syntenic region in mice. In two consanguineous USH1G-affected families, we detected two different frameshift mutations in the SANS gene. Two brothers from a German family affected with USH1G were found to be compound heterozygotes for a frameshift and a missense mutation. These results demonstrate that SANS underlies USH1G. The SANS protein contains three ankyrin domains and a sterile alpha motif, and its C-terminal tripeptide presents a class I PDZ-binding motif. We showed, by means of co-transfection experiments, that SANS associates with harmonin, a PDZ domain-containing protein responsible for USH1C. In Jackson shaker mice the hair bundles, the mechanoreceptive structures of inner ear sensory cells, are disorganized. Based on the known interaction between USH1B (myosin VIIa), USH1C (harmonin) and USH1D (cadherin 23) proteins and the results obtained in this study, we suggest that a functional network formed by the USH1B, C, D and G proteins is responsible for the correct cohesion of the hair bundle.


Assuntos
Cegueira/genética , Proteínas de Transporte/metabolismo , Surdez/genética , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Feminino , Humanos , Masculino , Repetições de Microssatélites , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Linhagem
17.
Bioinformatics ; 18(11): 1542-3, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12424129

RESUMO

MOTIVATION: In the post-genomic era, functional analysis of genes requires a sophisticated interdisciplinary arsenal. Comprehensive resources are challenged to provide consistently improving, state-of-the-art tools. RESULTS: GeneCards (Rebhan et al., 1998) has made innovative strides: (a). regular updates and enhancements incorporating new genes enriched with sequences, genomic locations, cDNA assemblies, orthologies, medical information, 3D protein structures, gene expression, and focused SNP summaries; (b). restructured software using object-oriented Perl, migration to schema-driven XML, and (c). pilot studies, introducing methods to produce cards for novel and predicted genes.


Assuntos
Algoritmos , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Genoma Humano , Armazenamento e Recuperação da Informação/métodos , Internet , Mapeamento Cromossômico/métodos , Redes de Comunicação de Computadores , Perfilação da Expressão Gênica/métodos , Humanos , Alinhamento de Sequência/métodos , Análise de Sequência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA