Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Drug Dev Ind Pharm ; 50(2): 173-180, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38265062

RESUMO

OBJECTIVES: Glimepiride Orodispersable Tablets (ODT) were prepared with the goal to have rapid onset of action and higher bioavailability with ease administration to individuals with swallowing difficulty to ameliorate patient compliance. SIGNIFICANCE: Glimepiride is a contemporary hypoglycemic medication that belongs to the family of sulfonylurea derivatives. It is used in type 2 diabetes mellitus. Compliance adherence remains one of the limitations with the conventional drug delivery system especially in pediatric, geriatric, psychiatric, and traveling patients, for such population ODT provides a good alternate dosage form compared with Commercial Tablets. METHOD: The Comparative in vivo pharmacokinetic parameters of the prepared ODT and conventional tablets (CT) were evaluated using an animal model. The plasma concentration of Glimepiride after oral administration of a single dose was determined at predetermined time intervals with HPLC. The pharmacokinetic parameters were calculated using PK Solutions 2.0 from Summit PK® software. RESULTS: The Cmax obtained with ODT (22.08 µg/ml) was significantly (p = 0.006) high, a lower tmax of 3.0 hr was achieved with the orodispersable formulation of the drug. The ODT showed 104.34% relative bioavailability as compared to CT and left shift of tmax as well. CONCLUSION: As per findings of the in vivo investigation, the Glimepiride ODT would be beneficial in terms of patient compliance, quick onset of action, and increased bioavailability.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Criança , Humanos , Coelhos , Idoso , Diabetes Mellitus Tipo 2/tratamento farmacológico , Compostos de Sulfonilureia/farmacocinética , Hipoglicemiantes , Comprimidos , Administração Oral
2.
Semin Cancer Biol ; 86(Pt 3): 693-705, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34118405

RESUMO

Past few years have seen a paradigm shift towards ecofriendly, green and biological fabrication of metal nanoparticles (MNPs) for diverse nanomedicinal applications especially in cancer nanotheranostics. Besides, the well-known green synthesis methods of plant materials, the potential of the microbial world (bacteria, fungi, alga, etc.) in biofabrication is equally realized. Biomolecules and enzymes in the microbial cells are capable of catalyzing the biosynthesis process. These microbial derived inorganic nanoparticles have been frequently evaluated as potential agents in cancer therapies revealing exciting results. Through, cellular and molecular pathways, these microbial derived nanoparticles are capable of killing the cancer cells. Considering the recent developments in the anticancer applications of microbial derived inorganic MNPs, a dire need was felt to bring the available information to a single document. This manuscript reviews not only the mechanistic aspects of the microbial derived MNPs but also include the diverse mechanisms that governs their anticancer potential. Besides, an updated literature review is presented that includes studies of 2019-onwards.


Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Nanopartículas Metálicas/uso terapêutico , Fungos/metabolismo , Bactérias/metabolismo , Neoplasias/tratamento farmacológico
3.
Trends Analyt Chem ; 153: 116659, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35527799

RESUMO

Viral infections have been proven a severe threat to human beings, and the pandemic of Coronavirus Disease 2019 (COVID-19) has become a societal health concern, including mental distress and morbidity. Therefore, the early diagnosis and differentiation of viral infections are the prerequisite for curbing the local and global spread of viruses. To this end, carbon nanotubes (CNTs) based virus detection strategies are developed that provide feasible alternatives to conventional diagnostic techniques. Here in this review, an overview of the design and engineering of CNTs-based sensors for virus detection is summarized, followed by the nano-bio interactions used in developing biosensors. Then, we classify the viral sensors into covalently engineered CNTs, non-covalently engineered CNTs, and size-tunable CNTs arrays for viral detection, based on the type of CNTs-based nano-bio interfaces. Finally, the current challenges and prospects of CNTs-based sensors for virus detection are discussed.

4.
Chem Res Toxicol ; 33(5): 1082-1109, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32302095

RESUMO

The interplay between nanotechnology and pathogens offers a new quest to fight against human infections. Inspiring from their unique thermal, magnetic, optical, or redox potentials, numerous nanomaterials have been employed for bacterial theranostics. The past decade has seen dramatic progress in the development of various nanoantimicrobials, which demands more focus on their safety assessment. The present review critically discusses the toxicity of nanoantimicrobials and the role of key features, including composition, size, surface charge, loading capability, hydrophobicity/philicity, precise release, and functionalization, that can contribute to modulating the effects on microbes. Moreover, how differences in microbe's structure, biofilm formation, persistence cells, and intracellular pathogens bestow resistance or sensitivity toward nanoantimicrobials is broadly investigated. In extension, the most important types of nanoantimicrobial with clinical prospective and their safety assessment are summarized, and finally, based on available evidence, an insight of the principles in designing safer nanoantimicrobials for overcoming pathogens and future challenges in the field is provided.


Assuntos
Antibacterianos/efeitos adversos , Bactérias/efeitos dos fármacos , Nanoestruturas/efeitos adversos , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/química , Propriedades de Superfície
5.
Adv Drug Deliv Rev ; 192: 114634, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503884

RESUMO

The emergence of antibiotic-resistant bacterial strains is seriously endangering the global healthcare system. There is an urgent need for combining imaging with therapies to realize the real-time monitoring of pathological condition and treatment progress. It also provides guidance on exploring new medicines and enhance treatment strategies to overcome the antibiotic resistance of existing conventional antibiotics. In this review, we provide a thorough overview of the most advanced image-guided approaches for bacterial diagnosis (e.g., computed tomography imaging, magnetic resonance imaging, photoacoustic imaging, ultrasound imaging, fluorescence imaging, positron emission tomography, single photon emission computed tomography imaging, and multiple imaging), and therapies (e.g., photothermal therapy, photodynamic therapy, chemodynamic therapy, sonodynamic therapy, immunotherapy, and multiple therapies). This review focuses on how to design and fabricate photo-responsive materials for improved image-guided bacterial theranostics applications. We present a potential application of different image-guided modalities for both bacterial diagnosis and therapies with representative examples. Finally, we highlighted the current challenges and future perspectives image-guided approaches for future clinical translation of nano-theranostics in bacterial infections therapies. We envision that this review will provide for future development in image-guided systems for bacterial theranostics applications.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos/métodos , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada de Emissão de Fóton Único , Imagem Óptica , Antibacterianos/farmacologia , Nanomedicina Teranóstica/métodos
6.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37242460

RESUMO

Microneedles have recently emerged as a promising platform for delivering therapeutic agents by disrupting the skin, resulting in improved and high drug delivery via this route. Ibuprofen is widely used topically and orally for chronic pain conditions; to avoid untoward gastric effects, topical application is preferred over the oral route. This study aimed to enhance the solubility of the poorly water-soluble ibuprofen using Soluplus (SP) as a solubilizer and to fabricate dissolving microneedle patches of the drug. The fabricated patches were compared with marketed oral and topical formulations of ibuprofen. A 432-fold increase was observed in the solubility of the drug at 8% SP. The FTIR studies revealed that the drug and polymers were compatible. MNs were of uniform morphology and released the drug in a predictable manner. The in vivo analysis on healthy human volunteers revealed a Cmax of 28.7 µg/mL ± 0.5 with a Tmax of 24 h and a MRT of 19.5 h, which was significantly higher than that observed for commercially available topical formulations. The prepared ibuprofen microneedles have higher bioavailability and MRT at a lower dose (165 µg) as compared to tablet and cream doses (200 mg).

7.
Biomaterials ; 275: 120951, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34119883

RESUMO

Nanozymes are next-generation artificial enzymes having distinguished features such as cost-effective, enhanced surface area, and high stability. However, limited selectivity and moderate activity of nanozymes in the biochemical environment hindered their usage and encouraged researchers to seek alternative catalytic materials. Recently, metal-organic frameworks (MOFs) characterized by distinct crystalline porous structures with large surface area, tunable pores, and uniformly dispersed active sites emerged, that filled the gap between natural enzymes and nanozymes. Moreover, by selecting suitable metal ions and organic linkers, MOFs can be designed for effective bacterial theranostics. In this review, we briefly presented the design and fabrication of MOFs. Then, we demonstrated the applications of MOFs in bacterial theranostics and their safety considerations. Finally, we proposed the major obstacles and opportunities for further development in research on the interface of nanozymes and MOFs. We expect that MOFs based nanozymes with unique physicochemical and intrinsic enzyme-mimicking properties will gain broad interest in both fundamental research and biomedical applications.


Assuntos
Estruturas Metalorgânicas , Nanoestruturas , Catálise , Medicina de Precisão
8.
Front Chem ; 9: 629054, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34327190

RESUMO

Diverse applications of nanoparticles (NPs) have revolutionized various sectors in society. In the recent decade, particularly magnetic nanoparticles (MNPs) have gained enormous interest owing to their applications in specialized areas such as medicine, cancer theranostics, biosensing, catalysis, agriculture, and the environment. Controlled surface engineering for the design of multi-functional MNPs is vital for achieving desired application. The MNPs have demonstrated great efficacy as thermoelectric materials, imaging agents, drug delivery vehicles, and biosensors. In the present review, first we have briefly discussed main synthetic methods of MNPs, followed by their characterizations and composition. Then we have discussed the potential applications of MNPs in different with representative examples. At the end, we gave an overview on the current challenges and future prospects of MNPs. This comprehensive review not only provides the mechanistic insight into the synthesis, functionalization, and application of MNPs but also outlines the limits and potential prospects.

9.
Biomaterials ; 253: 120124, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32447104

RESUMO

Neutrophil extracellular traps (NETs) stick to bacteria and prevent infections in vivo, whose activation is upon inflammatory stimuli along with the sudden increase of reactive oxygen species (ROS). Nevertheless, the risky over activation in NETosis may result in deleterious outcome. A big challenge in using NETs for therapeutics is to synthesize an artificial system that can function as NETs in vivo. Here, we developed an in vivo supramolecular assembly system to imitate the innate immune process of NETs to inhibit methicillin-resistant staphylococcus epidermidis (MRSE) infection. Our synthesized small molecules undergo oxidation to form supramolecular nanofibers at inflammatory loci. The in situ formed nanofibers network efficiently traps MRSE cells and prevent them from aggressive dissemination. The extended interactions between nanofibers and bacteria directly result in the death of MRSE via the transcriptomes alterations. In clinically relevant models (intraperitoneal infection and catheter implantation), our supramolecular nets show significant antibacterial activity, yielding a three times efficacy comparing to vancomycin. The spontaneous consumption of ROS and the formation of antibacterial networks create a steady negative feedback system to combat bacterial infections.


Assuntos
Armadilhas Extracelulares , Staphylococcus aureus Resistente à Meticilina , Controle de Infecções , Neutrófilos , Staphylococcus epidermidis
10.
IET Nanobiotechnol ; 13(7): 712-719, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31573540

RESUMO

This report investigates the spraying of nano-silica and fullerene on cucumber leaves to expose their ability to reduce the toxicity and uptake of metal(loid)s. Cucumber seedlings were randomly divided into six treatment groups: 10 mg/L nano-SiO2, 20 mg/L nano-SiO2, 10 mg/L Fullerene, 20 mg/L Fullerene, 5 mg/L Fullerene + 5 mg/L nano-SiO2, and 10 mg/L Fullerene + 10 mg/L nano-SiO2. Nano-silica-treated plants exhibited evidence of the potential mitigation of metal(loid)s poisoning. Specifically, results showed that 20 mg/L of nano-silica promoted Cd uptake by plants; comparatively, 10 mg/L of nano-silica did not significantly increase the silicon content in plants. Both low-concentration combined treatment and low-concentration fullerene groups inhibited metal(loid)s uptake by plants. Scanning electron microscopy (SEM) was then used to observe the surface morphology of cucumber leaves. Significant differences were observed on disease resistance in plants across the different nano-material conditions. Collectively, these findings suggest that both nano-silica materials and fullerene have the potential to control metal(loid)s toxicity in plants.


Assuntos
Absorção Fisiológica/efeitos dos fármacos , Aerossóis/farmacologia , Cucumis sativus/metabolismo , Metais Pesados/farmacocinética , Nanoestruturas , Poluentes do Solo/farmacocinética , Arsênio/farmacocinética , Arsênio/toxicidade , Biodegradação Ambiental , Cádmio/farmacocinética , Cádmio/toxicidade , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/crescimento & desenvolvimento , Teste de Materiais , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Desenvolvimento Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Solo/química , Poluentes do Solo/toxicidade
11.
Front Plant Sci ; 8: 1332, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824670

RESUMO

Nanoparticles (NPs) have great potential for use in the fields of biomedicine, building materials, and environmental protection because of their antibacterial properties. However, there are few reports regarding the antifungal activities of NPs on plants. In this study, we evaluated the antifungal roles of NPs against Botrytis cinerea, which is a notorious worldwide fungal pathogen. Three common carbon nanomaterials, multi-walled carbon nanotubes, fullerene, and reduced graphene oxide, and three commercial metal oxidant NPs, copper oxide (CuO) NPs, ferric oxide (Fe2O3) NPs, and titanium oxides (TiO2) NPs, were independently added to water-agar plates at 50 and 200-mg/L concentrations. Detached rose petals were inoculated with spores of B. cinerea and co-cultured with each of the six nanomaterials. The sizes of the lesions on infected rose petals were measured at 72 h after inoculation, and the growth of fungi on the rose petals was observed by scanning electron microscopy. The six NPs inhibited the growth of B. cinerea, but different concentrations had different effects: 50 mg/L of fullerene and CuO NPs showed the strongest antifungal properties among the treatments, while 200 mg/L of CuO and Fe2O3 showed no significant antifungal activities. Thus, NPs may have antifungal activities that prevent B. cinerea infections in plants, and they could be used as antifungal agents during the growth and post-harvesting of roses and other flowers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA