Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305096

RESUMO

AIMS: Gastrointestinal disease is a leading cause of morbidity in bottlenose dolphins (Tursiops truncatus) under managed care. Fecal microbiota transplantation (FMT) holds promise as a therapeutic tool to restore gut microbiota without antibiotic use. This prospective clinical study aimed to develop a screening protocol for FMT donors to ensure safety, determine an effective FMT administration protocol for managed dolphins, and evaluate the efficacy of FMTs in four recipient dolphins. METHODS AND RESULTS: Comprehensive health monitoring was performed on donor and recipient dolphins. Fecal samples were collected before, during, and after FMT therapy. Screening of donor and recipient fecal samples was accomplished by in-house and reference lab diagnostic tests. Shotgun metagenomics was used for sequencing. Following FMT treatment, all four recipient communities experienced engraftment of novel microbial species from donor communities. Engraftment coincided with resolution of clinical signs and a sustained increase in alpha diversity. CONCLUSION: The donor screening protocol proved to be safe in this study and no adverse effects were observed in four recipient dolphins. Treatment coincided with improvement in clinical signs.


Assuntos
Golfinho Nariz-de-Garrafa , Microbioma Gastrointestinal , Animais , Transplante de Microbiota Fecal/métodos , Estudos Prospectivos , Fezes , Resultado do Tratamento
2.
Gastroenterology ; 162(6): 1675-1689.e11, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35032499

RESUMO

BACKGROUND & AIMS: Normal gestation involves a reprogramming of the maternal gut microbiome (GM) that contributes to maternal metabolic changes by unclear mechanisms. This study aimed to understand the mechanistic underpinnings of the GM-maternal metabolism interaction. METHODS: The GM and plasma metabolome of CD1, NIH-Swiss, and C57 mice were analyzed with the use of 16S rRNA sequencing and untargeted liquid chromatography-mass spectrometry throughout gestation. Pharmacologic and genetic knockout mouse models were used to identify the role of indoleamine 2,3-dioxygenase (IDO1) in pregnancy-associated insulin resistance (IR). Involvement of gestational GM was studied with the use of fecal microbial transplants (FMTs). RESULTS: Significant variation in GM alpha diversity occurred throughout pregnancy. Enrichment in gut bacterial taxa was mouse strain and pregnancy time point specific, with the species enriched at gestation day 15/19 (G15/19), a point of heightened IR, being distinct from those enriched before or after pregnancy. Metabolomics revealed elevated plasma kynurenine at G15/19 in all 3 mouse strains. IDO1, the rate-limiting enzyme for kynurenine production, had increased intestinal expression at G15, which was associated with mild systemic and gut inflammation. Pharmacologic and genetic inhibition of IDO1 inhibited kynurenine levels and reversed pregnancy-associated IR. FMT revealed that IDO1 induction and local kynurenine level effects on IR derive from the GM in both mouse and human pregnancy. CONCLUSIONS: GM changes accompanying pregnancy shift IDO1-dependent tryptophan metabolism toward kynurenine production, intestinal inflammation, and gestational IR, a phenotype reversed by genetic deletion or inhibition of IDO1. (Gestational Gut Microbiome-IDO1 Axis Mediates Pregnancy Insulin Resistance; EMBL-ENA ID: PRJEB45047. MetaboLights ID: MTBLS3598).


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Animais , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação , Cinurenina/metabolismo , Camundongos , Gravidez , RNA Ribossômico 16S
3.
Appl Environ Microbiol ; 89(7): e0031823, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37318344

RESUMO

Oysters play an important role in coastal ecology and are a globally popular seafood source. However, their filter-feeding lifestyle enables coastal pathogens, toxins, and pollutants to accumulate in their tissues, potentially endangering human health. While pathogen concentrations in coastal waters are often linked to environmental conditions and runoff events, these do not always correlate with pathogen concentrations in oysters. Additional factors related to the microbial ecology of pathogenic bacteria and their relationship with oyster hosts likely play a role in accumulation but are poorly understood. In this study, we investigated whether microbial communities in water and oysters were linked to accumulation of Vibrio parahaemolyticus, Vibrio vulnificus, or fecal indicator bacteria. Site-specific environmental conditions significantly influenced microbial communities and potential pathogen concentrations in water. Oyster microbial communities, however, exhibited less variability in microbial community diversity and accumulation of target bacteria overall and were less impacted by environmental differences between sites. Instead, changes in specific microbial taxa in oyster and water samples, particularly in oyster digestive glands, were linked to elevated levels of potential pathogens. For example, increased levels of V. parahaemolyticus were associated with higher relative abundances of cyanobacteria, which could represent an environmental vector for Vibrio spp. transport, and with decreased relative abundance of Mycoplasma and other key members of the oyster digestive gland microbiota. These findings suggest that host and microbial factors, in addition to environmental variables, may influence pathogen accumulation in oysters. IMPORTANCE Bacteria in the marine environment cause thousands of human illnesses annually. Bivalves are a popular seafood source and are important in coastal ecology, but their ability to concentrate pathogens from the water can cause human illness, threatening seafood safety and security. To predict and prevent disease, it is critical to understand what causes pathogenic bacteria to accumulate in bivalves. In this study, we examined how environmental factors and host and water microbial communities were linked to potential human pathogen accumulation in oysters. Oyster microbial communities were more stable than water communities, and both contained the highest concentrations of Vibrio parahaemolyticus at sites with warmer temperatures and lower salinities. High oyster V. parahaemolyticus concentrations corresponded with abundant cyanobacteria, a potential vector for transmission, and a decrease in potentially beneficial oyster microbes. Our study suggests that poorly understood factors, including host and water microbiota, likely play a role in pathogen distribution and pathogen transmission.


Assuntos
Bivalves , Ostreidae , Vibrio parahaemolyticus , Vibrio vulnificus , Animais , Humanos , Água , Ostreidae/microbiologia , Bactérias/genética
4.
Environ Sci Technol ; 56(21): 15019-15033, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36194536

RESUMO

Reduced availability of agricultural water has spurred increased interest in using recycled irrigation water for U.S. food crop production. However, there are significant knowledge gaps concerning the microbiological quality of these water sources. To address these gaps, we used 16S rRNA gene and metagenomic sequencing to characterize taxonomic and functional variations (e.g., antimicrobial resistance) in bacterial communities across diverse recycled and surface water irrigation sources. We collected 1 L water samples (n = 410) between 2016 and 2018 from the Mid-Atlantic (12 sites) and Southwest (10 sites) U.S. Samples were filtered, and DNA was extracted. The V3-V4 regions of the 16S rRNA gene were then PCR amplified and sequenced. Metagenomic sequencing was also performed to characterize antibiotic, metal, and biocide resistance genes. Bacterial alpha and beta diversities were significantly different (p < 0.001) across water types and seasons. Pathogenic bacteria, such as Salmonella enterica, Staphylococcus aureus, and Aeromonas hydrophilia were observed across sample types. The most common antibiotic resistance genes identified coded against macrolides/lincosamides/streptogramins, aminoglycosides, rifampin and elfamycins, and their read counts fluctuated across seasons. We also observed multi-metal and multi-biocide resistance across all water types. To our knowledge, this is the most comprehensive longitudinal study to date of U.S. recycled water and surface water used for irrigation. Our findings improve understanding of the potential differences in the risk of exposure to bacterial pathogens and antibiotic resistance genes originating from diverse irrigation water sources across seasons and U.S. regions.


Assuntos
Antibacterianos , Desinfetantes , Estados Unidos , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia , Estudos Longitudinais , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Água , Irrigação Agrícola , Águas Residuárias , Genes Bacterianos
5.
Environ Res ; 205: 112480, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863989

RESUMO

The U.S. Food Safety Modernization Act (FSMA) Produce Safety Rule (PSR) requires that farmers generate a Microbial Water Quality Profile (MWQP) from 20 samples per agricultural water source, taken over 2-4 years and five annual samples thereafter. Farmers must use the MWQP to ascertain a geometric mean (GM) of ≤126 CFU/100 mL and statistical threshold value (STV) of ≤410 CFU/100 mL of generic Escherichia coli. Farmers are responsible for collecting samples and paying for testing, incurring a financial and time burden. To determine if testing frequency can be reduced without compromising accuracy, water samples (n = 279) were collected from twelve sites in the U.S. Mid-Atlantic region from 2016 to 2018 comprising tidal brackish river, non-tidal fresh river, pond, vegetable processing, and reclaimed water. The GM and STV were calculated for all sites and water types using all samples, and for multiple sub-samples of <20 from each site and water type. A Monte Carlo simulation was used to determine the proportion of sub-sample sizes that yielded the same determination as the entire sample size of PSR standard compliance. Four sites, two pond and two reclaimed water sites, complied with PSR GM and STV requirements when using the entire sample set. When a water source's calculated GM and STV using the entire sample set hovered close to the PSR thresholds, sub-sample sizes approached the recommended 20 samples to reach a congruent compliance determination. However, 99% agreement was obtained with a sub-sample of five when the absolute difference between the GM and STV from total samples and the PSR thresholds was ≥2.6 and 4.5 log CFU/100 mL E. coli, respectively. These findings suggest that under certain conditions the MWQP may be generated with well below 20 samples, reducing the economic burden on farmers while still maintaining a representative MWQP.


Assuntos
Irrigação Agrícola , Qualidade da Água , Escherichia coli , Inocuidade dos Alimentos , Microbiologia da Água
6.
Appl Environ Microbiol ; 87(13): e0021121, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33893119

RESUMO

Enteric viruses (EVs) are the largest contributors to foodborne illnesses and outbreaks globally. Their ability to persist in the environment, coupled with the challenges experienced in environmental monitoring, creates a critical aperture through which agricultural crops may become contaminated. This study involved a 17-month investigation of select human EVs and viral indicators in nontraditional irrigation water sources (surface and reclaimed waters) in the Mid-Atlantic region of the United States. Real-time quantitative PCR was used for detection of Aichi virus, hepatitis A virus, and norovirus genotypes I and II (GI and GII, respectively). Pepper mild mottle virus (PMMoV), a common viral indicator of human fecal contamination, was also evaluated, along with atmospheric (air and water temperature, cloud cover, and precipitation 24 h, 7 days, and 14 days prior to sample collection) and physicochemical (dissolved oxygen, pH, salinity, and turbidity) data, to determine whether there were any associations between EVs and measured parameters. EVs were detected more frequently in reclaimed waters (32% [n = 22]) than in surface waters (4% [n = 49]), similar to PMMoV detection frequency in surface (33% [n = 42]) and reclaimed (67% [n = 21]) waters. Our data show a significant correlation between EV and PMMoV (R2 = 0.628, P < 0.05) detection levels in reclaimed water samples but not in surface water samples (R2 = 0.476, P = 0.78). Water salinity significantly affected the detection of both EVs and PMMoV (P < 0.05), as demonstrated by logistic regression analyses. These results provide relevant insights into the extent and degree of association between human (pathogenic) EVs and water quality data in Mid-Atlantic surface and reclaimed waters, as potential sources for agricultural irrigation. IMPORTANCE Microbiological analysis of agricultural waters is fundamental to ensure microbial food safety. The highly variable nature of nontraditional sources of irrigation water makes them particularly difficult to test for the presence of viruses. Multiple characteristics influence viral persistence in a water source, as well as affecting the recovery and detection methods that are employed. Testing for a suite of viruses in water samples is often too costly and labor-intensive, making identification of suitable indicators for viral pathogen contamination necessary. The results from this study address two critical data gaps, namely, EV prevalence in surface and reclaimed waters of the Mid-Atlantic region of the United States and subsequent evaluation of physicochemical and atmospheric parameters used to inform the potential for the use of indicators of viral contamination.


Assuntos
Irrigação Agrícola , Enterovirus/isolamento & purificação , Tobamovirus/isolamento & purificação , Poluentes da Água/análise , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Mid-Atlantic Region , Oxigênio/análise , Salinidade , Microbiologia da Água , Poluição da Água/análise
7.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32769196

RESUMO

As climate change continues to stress freshwater resources, we have a pressing need to identify alternative (nontraditional) sources of microbially safe water for irrigation of fresh produce. This study is part of the center CONSERVE, which aims to facilitate the adoption of adequate agricultural water sources. A 26-month longitudinal study was conducted at 11 sites to assess the prevalence of bacteria indicating water quality, fecal contamination, and crop contamination risk (Escherichia coli, total coliforms [TC], Enterococcus, and Aeromonas). Sites included nontidal freshwater rivers/creeks (NF), a tidal brackish river (TB), irrigation ponds (PW), and reclaimed water sites (RW). Water samples were filtered for bacterial quantification. E. coli, TC, enterococci (∼86%, 98%, and 90% positive, respectively; n = 333), and Aeromonas (∼98% positive; n = 133) were widespread in water samples tested. Highest E. coli counts were in rivers, TC counts in TB, and enterococci in rivers and ponds (P < 0.001 in all cases) compared to other water types. Aeromonas counts were consistent across sites. Seasonal dynamics were detected in NF and PW samples only. E. coli counts were higher in the vegetable crop-growing (May-October) than nongrowing (November-April) season in all water types (P < 0.05). Only one RW and both PW sites met the U.S. Food Safety Modernization Act water standards. However, implementation of recommended mitigation measures of allowing time for microbial die-off between irrigation and harvest would bring all other sites into compliance within 2 days. This study provides comprehensive microbial data on alternative irrigation water and serves as an important resource for food safety planning and policy setting.IMPORTANCE Increasing demands for fresh fruit and vegetables, a variable climate affecting agricultural water availability, and microbial food safety goals are pressing the need to identify new, safe, alternative sources of irrigation water. Our study generated microbial data collected over a 2-year period from potential sources of irrigation (rivers, ponds, and reclaimed water sites). Pond water was found to comply with Food Safety Modernization Act (FSMA) microbial standards for irrigation of fruit and vegetables. Bacterial counts in reclaimed water, a resource that is not universally allowed on fresh produce in the United States, generally met microbial standards or needed minimal mitigation. We detected the most seasonality and the highest microbial loads in river water, which emerged as the water type that would require the most mitigation to be compliant with established FSMA standards. This data set represents one of the most comprehensive, longitudinal analyses of alternative irrigation water sources in the United States.


Assuntos
Aeromonas/isolamento & purificação , Irrigação Agrícola , Enterococcus/isolamento & purificação , Escherichia coli/isolamento & purificação , Lagoas/microbiologia , Rios/microbiologia , Irrigação Agrícola/métodos , Delaware , Estudos Longitudinais , Maryland , Microbiologia da Água
8.
Environ Res ; 172: 296-300, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30822563

RESUMO

A quenching agent is commonly added to chlorinated, reclaimed water during sample collection to prevent chlorine-mediated die-off of viable microbiota. However, the effect of quenching on downstream 16S rRNA-based bacterial community analyses is unclear. We conducted a side-by-side comparison of 16S rRNA sequencing data from reclaimed water samples quenched with sodium thiosulfate and non-quenched samples. Our data showed that 16 S rRNA processing and sequencing methods, and resulting bacterial profiles, were not negatively impacted by quenching.


Assuntos
Microbiota , Tiossulfatos , Microbiologia da Água , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/efeitos dos fármacos , Microbiota/genética , Mid-Atlantic Region , RNA Ribossômico 16S/genética , Tiossulfatos/química , Tiossulfatos/farmacologia , Água/química
9.
Environ Res ; 172: 630-636, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30878734

RESUMO

The microbial quality of irrigation water has increasingly become a concern as a source of contamination for fruits and vegetables. Non-traditional sources of water are being used by more and more growers in smaller, highly diversified farms in the Mid-Atlantic region of the U.S. Shiga-toxigenic E. coli (STEC) have been responsible for several outbreaks of infections associated with the consumption of leafy greens. Our study evaluated the prevalence of the "big seven" STEC serogroups and the associated enterohemorrhagic E. coli (EHEC) virulence factors (VF) genes in conventional and nontraditional irrigation waters in the Mid-Atlantic region of the U.S. Water samples (n = 510) from 170 sampling events were collected from eight untreated surface water sites, two wastewater reclamation facilities, and one vegetable processing plant, over a 12-month period. Ten liters of water were filtered through Modified Moore swabs (MMS); swabs were then enriched into Universal Pre-enrichment Broth (UPB), followed by enrichment into non-O157 STEC R&F broth and isolation on R & F non-O157 STEC chromogenic plating medium. Isolates (n = 2489) from enriched MMS from water samples were screened for frequently reported STEC serogroups that cause foodborne illness: O26, O45, O103, O111, O121, O145, and O157, along with VF genes stx1, stx2, eae, and ehxA. Through this screening process, STEC isolates were found in 2.35% (12/510) of water samples, while 9.0% (46/510) contained an atypical enteropathogenic E. coli (aEPEC) isolate. The eae gene (n = 88 isolates) was the most frequently detected EHEC VF of the isolates screened. The majority of STEC isolates (stx1 or stx2) genes mainly came from either a pond or reclamation pond water site on two specific dates, potentially indicating that these isolates were not spatially or temporally distributed among the sampling sites. STEC isolates at reclaimed water sites may have been introduced after wastewater treatment. None of the isolates containing eae were determined to be Escherichia albertii. Our work showed that STEC prevalence in Mid-Atlantic untreated surface waters over a 12-month period was lower than the prevalence of atypical EPEC.


Assuntos
Irrigação Agrícola , Escherichia coli Enteropatogênica , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Microbiologia da Água , Irrigação Agrícola/estatística & dados numéricos , Carga Bacteriana , Escherichia coli Enteropatogênica/fisiologia , Fezes/microbiologia , Mid-Atlantic Region , Prevalência , Escherichia coli Shiga Toxigênica/fisiologia
10.
Environ Res ; 174: 1-8, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31015109

RESUMO

Agricultural water withdrawals account for the largest proportion of global freshwater use. Increasing municipal water demands and droughts are straining agricultural water supplies. Therefore, alternative solutions to agricultural water crises are urgently needed, including the use of nontraditional water sources such as advanced treated wastewater or reclaimed water, brackish water, return flows, and effluent from produce processing facilities. However, it is critical to ensure that such usage does not compromise soil, crop, and public health. Here, we characterized five different nontraditional water types (n = 357 samples) for the presence of pharmaceuticals, herbicides, and disinfectants using ultra-high-pressure liquid chromatography tandem mass spectrometry based method (UPLC-MS/MS). We then evaluated whether the levels of these contaminants were influenced by season. The highest level of herbicides (atrazine) was detected in untreated pond water (median concentration 135.9 ng/L). Reclaimed water had the highest levels of antibiotics and stimulants including azithromycin (215 ng/L), sulfamethoxazole (232.1 ng/L), and caffeine (89.4 ng/L). Produce processing plant water also tended to have high levels of atrazine (102.7 ng/L) and ciprofloxacin (80.1 ng/L). In addition, we observed seasonal variability across water types, with the highest atrazine concentrations observed during summer months, while the highest median azithromycin concentrations were observed in reclaimed water during the winter season. Further studies are needed to evaluate if economically feasible on-farm water treatment technologies can effectively remove such contaminants from nontraditional irrigation water sources.


Assuntos
Desinfetantes/análise , Herbicidas/análise , Preparações Farmacêuticas , Poluentes Químicos da Água/análise , Cromatografia Líquida , Espectrometria de Massas em Tandem , Águas Residuárias , Água
11.
Appl Environ Microbiol ; 80(13): 3842-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24747888

RESUMO

Recently, tomatoes have been implicated as a primary vehicle in food-borne outbreaks of Salmonella enterica serovar Newport and other Salmonella serovars. Long-term intervention measures to reduce Salmonella prevalence on tomatoes remain elusive for growing and postharvest environments. A naturally occurring bacterium identified by 16S rRNA gene sequencing as Paenibacillus alvei was isolated epiphytically from plants native to the Virginia Eastern Shore tomato-growing region. After initial antimicrobial activity screening against Salmonella and 10 other bacterial pathogens associated with the human food supply, strain TS-15 was further used to challenge an attenuated strain of S. Newport on inoculated fruits, leaves, and blossoms of tomato plants in an insect-screened high tunnel with a split-plot design. Survival of Salmonella after inoculation was measured for groups with and those without the antagonist at days 0, 1, 2, and 3 and either day 5 for blossoms or day 6 for fruits and leaves. Strain TS-15 exhibited broad-range antimicrobial activity against both major food-borne pathogens and major bacterial phytopathogens of tomato. After P. alvei strain TS-15 was applied onto the fruits, leaves, and blossoms of tomato plants, the concentration of S. Newport declined significantly (P ≤ 0.05) compared with controls. Astonishingly, >90% of the plants had no detectable levels of Salmonella by day 5 for blossoms. The naturally occurring antagonist strain TS-15 is highly effective in reducing the carriage of Salmonella Newport on whole tomato plants. The application of P. alvei strain TS-15 is a promising approach for reducing the risk of Salmonella contamination during tomato production.


Assuntos
Antibiose , Paenibacillus/fisiologia , Controle Biológico de Vetores , Salmonella enterica/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Microbiologia de Alimentos , Frutas/microbiologia , Viabilidade Microbiana , Paenibacillus/classificação , Paenibacillus/genética , Paenibacillus/isolamento & purificação , Folhas de Planta/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Virginia
12.
Microbiol Resour Announc ; 13(6): e0008624, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38682777

RESUMO

The genome of "Candidatus Xenohaliotis californiensis" was assembled from shotgun metagenomic sequencing of experimentally infected white abalone. Ninety-one percent genome completeness was achieved with low contamination. Sequencing this genome provides the opportunity to track pathogen evolution over time, conduct gene expression experiments, and study dynamics between this pathogen and its phage.

13.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365248

RESUMO

The microbiome of the built environment comprises bacterial, archaeal, fungal, and viral communities associated with human-made structures. Even though most of these microbes are benign, antibiotic-resistant pathogens can colonize and emerge indoors, creating infection risk through surface transmission or inhalation. Several studies have catalogued the microbial composition and ecology in different built environment types. These have informed in vitro studies that seek to replicate the physicochemical features that promote pathogenic survival and transmission, ultimately facilitating the development and validation of intervention techniques used to reduce pathogen accumulation. Such interventions include using Bacillus-based cleaning products on surfaces or integrating bacilli into printable materials. Though this work is in its infancy, early research suggests the potential to use microbial biocontrol to reduce hospital- and home-acquired multidrug-resistant infections. Although these techniques hold promise, there is an urgent need to better understand the microbial ecology of built environments and to determine how these biocontrol solutions alter species interactions. This review covers our current understanding of microbial ecology of the built environment and proposes strategies to translate that knowledge into effective biocontrol of antibiotic-resistant pathogens.


Assuntos
Bacillus , Microbiota , Humanos , Bactérias/genética , Antibacterianos , Ambiente Construído
14.
Appl Environ Microbiol ; 79(8): 2494-502, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23377940

RESUMO

The consumption of fresh tomatoes has been linked to numerous food-borne outbreaks involving various serovars of Salmonella enterica. Recent advances in our understanding of plant-microbe interactions have shown that human enteric pathogenic bacteria, including S. enterica, are adapted to survive in the plant environment. In this study, tomato plants (Solanum lycopersicum cv. Micro-Tom) grown in sandy loam soil from Virginia's eastern shore (VES) were inoculated with S. enterica serovars to evaluate plausible internalization routes and to determine if there is any niche fitness for certain serovars. Both infested soil and contaminated blossoms can lead to low internal levels of fruit contamination with Salmonella. Salmonella serovars demonstrated a great ability to survive in environments under tomato cultivation, not only in soil but also on different parts of the tomato plant. Of the five serovars investigated, Salmonella enterica serovars Newport and Javiana were dominant in sandy loam soil, while Salmonella enterica serovars Montevideo and Newport were more prevalent on leaves and blossoms. It was also observed that Salmonella enterica serovar Typhimurium had a poor rate of survival in all the plant parts examined here, suggesting that postharvest contamination routes are more likely in S. Typhimurium contamination of tomato fruit. Conversely, S. Newport was the most prevalent serovar recovered in both the tomato rhizosphere and phyllosphere. Plants that were recently transplanted (within 3 days) had an increase in observable internalized bacteria, suggesting that plants were more susceptible to internalization right after transplant. These findings suggest that the particular Salmonella serovar and the growth stage of the plant were important factors for internalization through the root system.


Assuntos
Frutas/microbiologia , Folhas de Planta/microbiologia , Salmonella enterica/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Flores , Microbiologia de Alimentos , Humanos , Tipagem Molecular , Raízes de Plantas/microbiologia , Rizosfera , Salmonella enterica/classificação , Microbiologia do Solo
15.
BMC Microbiol ; 13: 114, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23705801

RESUMO

BACKGROUND: Research to understand and control microbiological risks associated with the consumption of fresh fruits and vegetables has examined many environments in the farm to fork continuum. An important data gap however, that remains poorly studied is the baseline description of microflora that may be associated with plant anatomy either endemically or in response to environmental pressures. Specific anatomical niches of plants may contribute to persistence of human pathogens in agricultural environments in ways we have yet to describe. Tomatoes have been implicated in outbreaks of Salmonella at least 17 times during the years spanning 1990 to 2010. Our research seeks to provide a baseline description of the tomato microbiome and possibly identify whether or not there is something distinctive about tomatoes or their growing ecology that contributes to persistence of Salmonella in this important food crop. RESULTS: DNA was recovered from washes of epiphytic surfaces of tomato anatomical organs; leaves, stems, roots, flowers and fruits of Solanum lycopersicum (BHN602), grown at a site in close proximity to commercial farms previously implicated in tomato-Salmonella outbreaks. DNA was amplified for targeted 16S and 18S rRNA genes and sheared for shotgun metagenomic sequencing. Amplicons and metagenomes were used to describe "native" bacterial microflora for diverse anatomical parts of Virginia-grown tomatoes. CONCLUSIONS: Distinct groupings of microbial communities were associated with different tomato plant organs and a gradient of compositional similarity could be correlated to the distance of a given plant part from the soil. Unique bacterial phylotypes (at 95% identity) were associated with fruits and flowers of tomato plants. These include Microvirga, Pseudomonas, Sphingomonas, Brachybacterium, Rhizobiales, Paracocccus, Chryseomonas and Microbacterium. The most frequently observed bacterial taxa across aerial plant regions were Pseudomonas and Xanthomonas. Dominant fungal taxa that could be identified to genus with 18S amplicons included Hypocrea, Aureobasidium and Cryptococcus. No definitive presence of Salmonella could be confirmed in any of the plant samples, although 16S sequences suggested that closely related genera were present on leaves, fruits and roots.


Assuntos
Bactérias/classificação , Bactérias/genética , Biota , Fungos/classificação , Fungos/genética , Metagenoma , Solanum lycopersicum/microbiologia , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
16.
Environ Microbiome ; 18(1): 10, 2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36805022

RESUMO

BACKGROUND: Microorganisms such as coliform-forming bacteria are commonly used to assess freshwater quality for drinking and recreational use. However, such organisms do not exist in isolation; they exist within the context of dynamic, interactive microbial communities which vary through space and time. Elucidating spatiotemporal microbial dynamics is imperative for discriminating robust community changes from ephemeral ecological trends, and for improving our overall understanding of the relationship between microbial communities and ecosystem health. We conducted a seven-year (2013-2019) microbial time-series investigation in the Chicago Area Waterways (CAWS): an urban river system which, in 2016, experienced substantial upgrades to disinfection processes at two wastewater reclamation plants (WRPs) that discharge into the CAWS and improved stormwater capture, to improve river water quality and reduce flooding. Using culture-independent and culture-dependent approaches, we compared CAWS microbial ecology before and after the intervention. RESULTS: Examinations of time-resolved beta distances between WRP-adjacent sites showed that community similarity measures were often consistent with the spatial orientation of site locations to one another and to the WRP outfalls. Fecal coliform results suggested that upgrades reduced coliform-associated bacteria in the effluent and the downstream river community. However, examinations of whole community changes through time suggest that the upgrades did little to affect overall riverine community dynamics, which instead were overwhelmingly driven by yearly patterns consistent with seasonality. CONCLUSIONS: This study presents a systematic effort to combine 16S rRNA gene amplicon sequencing with traditional culture-based methods to evaluate the influence of treatment innovations and systems upgrades on the microbiome of the Chicago Area Waterway System, representing the longest and most comprehensive characterization of the microbiome of an urban waterway yet attempted. We found that the systems upgrades were successful in improving specific water quality measures immediately downstream of wastewater outflows. Additionally, we found that the implementation of the water quality improvement measures to the river system did not disrupt the overall dynamics of the downstream microbial community, which remained heavily influenced by seasonal trends. Such results emphasize the dynamic nature of microbiomes in open environmental systems such as the CAWS, but also suggest that the seasonal oscillations remain consistent even when perturbed.

17.
Sci Total Environ ; 843: 156976, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35768032

RESUMO

Climate change is stressing irrigation water sources, necessitating the evaluation of alternative waters such as harvested rainwater to determine if they meet water quality and food safety standards. We collected water, soil, and produce samples between June and August 2019 from two vegetable rain garden (VRG) sites in Frederick, Maryland that harvest rainwater using a first flush system, and deliver this water to produce through subsurface irrigation. The raised VRG beds include layers of gravel, sand, and soil that act as filters. We recorded the average surface soil moisture in each bed as well as antecedent precipitation. All water (n = 29), soil (n = 55), and produce (n = 57) samples were tested for generic E. coli using standard membrane filtration, and water samples were also tested for Salmonella spp. and Listeria monocytogenes by selective enrichment. No Salmonella spp. or L. monocytogenes isolates were detected in any water samples throughout the study period. Average E. coli levels from all harvested rainwater samples at both sites (1.2 and 24.4 CFU/100 mL) were well below the Good Agricultural Practices food safety guidelines. Only 7 % (3/44) of produce samples from beds irrigated with harvested rainwater were positive for E. coli. E. coli levels in soil samples were positively associated with average surface soil moisture (r2 = 0.13, p = 0.007). Additionally, E. coli presence in water samples was marginally associated with a shorter length of antecedent dry period (fewer days since preceding rainfall) (p = 0.058). Our results suggest that harvested rainwater collected through a first flush system and applied to produce through subsurface irrigation meets current food safety standards. Soil moisture monitoring could further reduce E. coli contamination risks from harvested rainwater-irrigated produce. First flush and subsurface irrigation systems could help mitigate climate change-related water challenges while protecting food safety and security.


Assuntos
Escherichia coli , Solo , Irrigação Agrícola , Agricultura , Inocuidade dos Alimentos , Microbiologia da Água
18.
Sci Total Environ ; 755(Pt 2): 142552, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33059138

RESUMO

Extreme weather events induced by climate change have potential to impact water quality and have received increasing attention from surface water source management perspectives. However, it remains unclear how such phenomenon may influence concentration of emerging contaminants (ECs) in surface water that are vital source of irrigation. In the present study, we investigated the impact of high precipitation and ambient temperature on the distribution of ECs in surface water samples (N = 250) from Mid-Atlantic region, collected between 2016 and 2018. We analyzed the water samples using a liquid chromatography tandem mass spectrometry (LC-MS/MS) based method. We then investigated how the detection frequencies and concentrations of ten emerging contaminants were influenced by high precipitation and temperature events in the previous day or 7 days prior to the sampling events using a generalized additive model (GAM). We observed that heavy rainfalls occurring within 24 h before sampling increased the concentration/likelihood of detection of the ECs in surface waters, likely due to surface runoffs, remobilization from soil/sediment and sewage overflows. The impact of high precipitation during previous seven days varied across chemicals. Likewise, the detection frequency and concentration of most analytes increased with increasing temperature, in previous day of sampling event, likely due to enhanced solubility in water. Long-term high temperature events appeared to decrease the detection of the most tested ECs probably due to enhanced degradation. However, the potential risk of unknown degradation products cannot be ignored. Our results indicate potential decline of water quality after extreme weather events which may have implications for water source management under changing climate.

19.
Microbiome ; 9(1): 25, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482920

RESUMO

BACKGROUND: Determining the role of fomites in the transmission of SARS-CoV-2 is essential in the hospital setting and will likely be important outside of medical facilities as governments around the world make plans to ease COVID-19 public health restrictions and attempt to safely reopen economies. Expanding COVID-19 testing to include environmental surfaces would ideally be performed with inexpensive swabs that could be transported safely without concern of being a source of new infections. However, CDC-approved clinical-grade sampling supplies and techniques using a synthetic swab are expensive, potentially expose laboratory workers to viable virus and prohibit analysis of the microbiome due to the presence of antibiotics in viral transport media (VTM). To this end, we performed a series of experiments comparing the diagnostic yield using five consumer-grade swabs (including plastic and wood shafts and various head materials including cotton, synthetic, and foam) and one clinical-grade swab for inhibition to RNA. For three of these swabs, we evaluated performance to detect SARS-CoV-2 in twenty intensive care unit (ICU) hospital rooms of patients including COVID-19+ patients. All swabs were placed in 95% ethanol and further evaluated in terms of RNase activity. SARS-CoV-2 was measured both directly from the swab and from the swab eluent. RESULTS: Compared to samples collected in VTM, 95% ethanol demonstrated significant inhibition properties against RNases. When extracting directly from the swab head as opposed to the eluent, RNA recovery was approximately 2-4× higher from all six swab types tested as compared to the clinical standard of testing the eluent from a CDC-approved synthetic (SYN) swab. The limit of detection (LoD) of SARS-CoV-2 from floor samples collected using the consumer-grade plastic (CGp) or research-grade plastic The Microsetta Initiative (TMI) swabs was similar or better than the SYN swab, further suggesting that swab type does not impact RNA recovery as measured by the abundance of SARS-CoV-2. The LoD for TMI was between 0 and 362.5 viral particles, while SYN and CGp were both between 725 and 1450 particles. Lastly microbiome analyses (16S rRNA gene sequencing) of paired samples (nasal and floor from same patient room) collected using different swab types in triplicate indicated that microbial communities were not impacted by swab type, but instead driven by the patient and sample type. CONCLUSIONS: Compared to using a clinical-grade synthetic swab, detection of SARS-CoV-2 from environmental samples collected from ICU rooms of patients with COVID was similar using consumer-grade swabs, stored in 95% ethanol. The yield was best from the swab head rather than the eluent and the low level of RNase activity and lack of antibiotics in these samples makes it possible to perform concomitant microbiome analyses. Video abstract.


Assuntos
Teste de Ácido Nucleico para COVID-19/instrumentação , Teste de Ácido Nucleico para COVID-19/métodos , Microbiota , RNA Viral/análise , SARS-CoV-2/isolamento & purificação , Manejo de Espécimes/métodos , Transporte Biológico , Etanol/química , Estudos de Viabilidade , Humanos , Unidades de Terapia Intensiva , Limite de Detecção , RNA Ribossômico 16S/genética , RNA Viral/genética , Ribonucleases/metabolismo
20.
Microbiome ; 9(1): 132, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103074

RESUMO

BACKGROUND: SARS-CoV-2 is an RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Viruses exist in complex microbial environments, and recent studies have revealed both synergistic and antagonistic effects of specific bacterial taxa on viral prevalence and infectivity. We set out to test whether specific bacterial communities predict SARS-CoV-2 occurrence in a hospital setting. METHODS: We collected 972 samples from hospitalized patients with COVID-19, their health care providers, and hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and used these bacterial profiles to classify SARS-CoV-2 RNA detection with a random forest model. RESULTS: Sixteen percent of surfaces from COVID-19 patient rooms had detectable SARS-CoV-2 RNA, although infectivity was not assessed. The highest prevalence was in floor samples next to patient beds (39%) and directly outside their rooms (29%). Although bed rail samples more closely resembled the patient microbiome compared to floor samples, SARS-CoV-2 RNA was detected less often in bed rail samples (11%). SARS-CoV-2 positive samples had higher bacterial phylogenetic diversity in both human and surface samples and higher biomass in floor samples. 16S microbial community profiles enabled high classifier accuracy for SARS-CoV-2 status in not only nares, but also forehead, stool, and floor samples. Across these distinct microbial profiles, a single amplicon sequence variant from the genus Rothia strongly predicted SARS-CoV-2 presence across sample types, with greater prevalence in positive surface and human samples, even when compared to samples from patients in other intensive care units prior to the COVID-19 pandemic. CONCLUSIONS: These results contextualize the vast diversity of microbial niches where SARS-CoV-2 RNA is detected and identify specific bacterial taxa that associate with the viral RNA prevalence both in the host and hospital environment. Video Abstract.


Assuntos
COVID-19 , SARS-CoV-2 , Hospitais , Humanos , Pandemias , Filogenia , RNA Ribossômico 16S/genética , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA