Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35957295

RESUMO

This study presents an effective artificial neural network (ANN) approach to combine measurements from inertial measurement units (IMUs) and time-of-flight (TOF) measurements from an ultra-wideband (UWB) system with OptiTrack Motion Capture System (OptiT-MCS) data to guarantee the positioning accuracy of motion tracking in indoor environments. The proposed fusion approach unifies the following advantages of both technologies: high data rates from the MCS, and global translational precision from the inertial measurement unit (IMU)/UWB localization system. Consequently, it leads to accurate position estimates when compared with data from the IMU/UWB system relative to the OptiT-MCS reference system. The calibrations of the positioning IMU/UWB and MCS systems are utilized in real-time movement with a diverse set of motion recordings using a mobile robot. The proposed neural network (NN) approach experimentally revealed accurate position estimates, giving an enhancement average mean absolute percentage error (MAPE) of 17.56% and 7.48% in the X and Y coordinates, respectively, and the coefficient of correlation R greater than 99%. Moreover, the experimental results prove that the proposed NN fusion is capable of maintaining high accuracy in position estimates while preventing drift errors from increasing in an unbounded manner, implying that the proposed approach is more effective than the compared approaches.


Assuntos
Robótica , Algoritmos , Movimento (Física) , Movimento , Redes Neurais de Computação
2.
Sensors (Basel) ; 18(8)2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-30081581

RESUMO

This paper presents a novel approach to predicting self-calibration in a pressure sensor using a proposed Levenberg Marquardt Back Propagation Artificial Neural Network (LMBP-ANN) model. The self-calibration algorithm should be able to fix major problems in the pressure sensor such as hysteresis, variation in gain and lack of linearity with high accuracy. The traditional calibration process for this kind of sensor is a time-consuming task because it is usually done through manual and repetitive identification. Furthermore, a traditional computational method is inadequate for solving the problem since it is extremely difficult to resolve the mathematical formula among multiple confounding pressure variables. Accordingly, this paper describes a new self-calibration methodology for nonlinear pressure sensors based on an LMBP-ANN model. The proposed method was achieved using a collected dataset from pressure sensors in real time. The load cell will be used as a reference for measuring the applied force. The proposed method was validated by comparing the output pressure of the trained network with the experimental target pressure (reference). This paper also shows that the proposed model exhibited a remarkable performance than traditional methods with a max mean square error of 0.17325 and an R-value over 0.99 for the total response of training, testing and validation. To verify the proposed model's capability to build a self-calibration algorithm, the model was tested using an untrained input data set. As a result, the proposed LMBP-ANN model for self-calibration purposes is able to successfully predict the desired pressure over time, even the uncertain behaviour of the pressure sensors due to its material creep. This means that the proposed model overcomes the problems of hysteresis, variation in gain and lack of linearity over time. In return, this can be used to enhance the durability of the grasping mechanism, leading to a more robust and secure grasp for paralyzed hands. Furthermore, the exposed analysis approach in this paper can be a useful methodology for the user to evaluate the performance of any measurement system in a real-time environment.

3.
Brain Sci ; 14(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38790441

RESUMO

Electroencephalography (EEG) is effectively employed to describe cognitive patterns corresponding to different tasks of motor functions for brain-computer interface (BCI) implementation. Explicit information processing is necessary to reduce the computational complexity of practical BCI systems. This paper presents an entropy-based approach to select effective EEG channels for motor imagery (MI) classification in brain-computer interface (BCI) systems. The method identifies channels with higher entropy scores, which is an indication of greater information content. It discards redundant or noisy channels leading to reduced computational complexity and improved classification accuracy. High entropy means a more disordered pattern, whereas low entropy means a less disordered pattern with less information. The entropy of each channel for individual trials is calculated. The weight of each channel is represented by the mean entropy of the channel over all the trials. A set of channels with higher mean entropy are selected as effective channels for MI classification. A limited number of sub-band signals are created by decomposing the selected channels. To extract the spatial features, the common spatial pattern (CSP) is applied to each sub-band space of EEG signals. The CSP-based features are used to classify the right-hand and right-foot MI tasks using a support vector machine (SVM). The effectiveness of the proposed approach is validated using two publicly available EEG datasets, known as BCI competition III-IV(A) and BCI competition IV-I. The experimental results demonstrate that the proposed approach surpasses cutting-edge techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA