Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Microbiol ; 114: 104276, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290881

RESUMO

The wine industry has implemented complex starters with multiple yeast species as an efficient method to improve certain wine properties. Strains' competitive fitness becomes essential for its use in such cases. In the present work, we studied this trait in 60 S. cerevisiae strains from different origins, co-inoculated with a S. kudriavzevii strain, and confirmed it to be associated with the strains' origin. To gather deeper knowledge about the characteristics of strains with highly competitive ability versus the rest, microfermentations using representative strains from each group were performed and the carbon and nitrogen sources uptake was analysed. Our results demonstrate that despite wine strains being the subclade with the highest competitive ability, they present a wide range of behaviors as well as nutrient uptake dynamics, which points to a heterogeneous nature of domestication processes. An interesting strategy was observed in the highly competitive strains (GRE and QA23), the nitrogen sources uptake in the competition was accelerated and the sugar fermentation was slowing despite the fermentation finish at the same time. Therefore, this competition study, using particular combinations of strains, expands the knowledge in the field of the usage of mixed starters in wine manufactured products.


Assuntos
Saccharomyces cerevisiae , Vinho , Vinho/análise , Técnicas de Cocultura , Nutrientes , Nitrogênio , Fermentação
2.
Genomics ; 114(4): 110386, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569731

RESUMO

Understanding of thermal adaptation mechanisms in yeast is crucial to develop better-adapted strains to industrial processes, providing more economical and sustainable products. We have analyzed the transcriptomic responses of three Saccharomyces cerevisiae strains, a commercial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and a commercial bioethanol strain, Ethanol Red, grown at non-optimal temperatures under anaerobic chemostat conditions. Transcriptomic analysis of the three strains revealed a huge complexity of cellular mechanisms and responses. Overall, cold exerted a stronger transcriptional response in the three strains comparing with heat conditions, with a higher number of down-regulating genes than of up-regulating genes regardless the strain analyzed. The comparison of the transcriptome at both sub- and supra-optimal temperatures showed the presence of common genes up- or down-regulated in both conditions, but also the presence of common genes up- or down-regulated in the three studied strains. More specifically, we have identified and validated three up-regulated genes at sub-optimal temperature in the three strains, OPI3, EFM6 and YOL014W. Finally, the comparison of the transcriptomic data with a previous proteomic study with the same strains revealed a good correlation between gene activity and protein abundance, mainly at low temperature. Our work provides a global insight into the specific mechanisms involved in temperature adaptation regarding both transcriptome and proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Anaerobiose , Fermentação , Regulação Fúngica da Expressão Gênica , Proteômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Transcriptoma
3.
Food Microbiol ; 92: 103554, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950148

RESUMO

The effect of two commercial formulations (incorporating mepanipyrim and tetraconazole as active substances) on the metabolism of Saccharomyces cerevisiae Lalvin T73™, growing on a synthetic grape must, and their influence on the alcoholic fermentation course and the biosynthesis of volatiles derived from phenylalanine catabolism was studied. No relevant effects were observed for mepanipyrim except for glycerol production. On the contrary, in the presence of tetraconazole many genes and some proteins related to cell cycle progression and mitosis were repressed. This fact could explain the lower biomass concentration and the lower sugar consumption registered for tetraconazole at the end of the study. However, the biomass-to-ethanol yield was higher in connection with the overexpression of the ADH1 gene. The presence of tetraconazole residues seems to accelerate the Ehrlich pathway. These results agree with the overexpression of several genes (BAT1, PDC1, PDC5, ADH1, SFA1, ATF2, PFK1, PFK2 and ARO3) and a higher abundance of two proteins (Gap1p and Atf2p) involved in this metabolic pathway.


Assuntos
Antifúngicos/farmacologia , Fenilalanina/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Biomassa , Clorobenzenos/farmacologia , Etanol/metabolismo , Fermentação/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Pirimidinas/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Triazóis/farmacologia
4.
Environ Microbiol ; 21(5): 1627-1644, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30672093

RESUMO

Grape must is a sugar-rich habitat for a complex microbiota which is replaced by Saccharomyces cerevisiae strains during the first fermentation stages. Interest on yeast competitive interactions has recently been propelled due to the use of alternative yeasts in the wine industry to respond to new market demands. The main issue resides in the persistence of these yeasts due to the specific competitive activity of S. cerevisiae. To gather deeper knowledge of the molecular mechanisms involved, we performed a comparative transcriptomic analysis during fermentation carried out by a wine S. cerevisiae strain and a strain representative of the cryophilic S. kudriavzevii, which exhibits high genetic and physiological similarities to S. cerevisiae, but also differences of biotechnological interest. In this study, we report that transcriptomic response to the presence of a competitor is stronger in S. cerevisiae than in S. kudriavzevii. Our results demonstrate that a wine S. cerevisiae industrial strain accelerates nutrient uptake and utilization to outcompete the co-inoculated yeast, and that this process requires cell-to-cell contact to occur. Finally, we propose that this competitive phenotype evolved recently, during the adaptation of S. cerevisiae to man-manipulated fermentative environments, since a non-wine S. cerevisiae strain, isolated from a North American oak, showed a remarkable low response to competition.


Assuntos
Saccharomyces cerevisiae/metabolismo , Saccharomyces/metabolismo , Vitis/microbiologia , Vinho/microbiologia , Adaptação Fisiológica , Fermentação , Nutrientes/metabolismo , Fenótipo , Saccharomyces/genética , Saccharomyces cerevisiae/genética , Vinho/análise
6.
Microb Biotechnol ; 17(5): e14476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38801338

RESUMO

This study aimed to investigate how parental genomes contribute to yeast hybrid metabolism using a metabolomic approach. Previous studies have explored central carbon and nitrogen metabolism in Saccharomyces species during wine fermentation, but this study analyses the metabolomes of Saccharomyces hybrids for the first time. We evaluated the oenological performance and intra- and extracellular metabolomes, and we compared the strains according to nutrient consumption and production of the main fermentative by-products. Surprisingly, no common pattern was observed for hybrid genome influence; each strain behaved differently during wine fermentation. However, this study suggests that the genome of the S. cerevisiae species may play a more relevant role in fermentative metabolism. Variations in biomass/nitrogen ratios were also noted, potentially linked to S. kudriavzevii and S. uvarum genome contributions. These results open up possibilities for further research using different "omics" approaches to comprehend better metabolic regulation in hybrid strains with genomes from different species.


Assuntos
Fermentação , Nitrogênio , Saccharomyces , Vinho , Vinho/microbiologia , Vinho/análise , Saccharomyces/genética , Saccharomyces/metabolismo , Saccharomyces/classificação , Nitrogênio/metabolismo , Metaboloma , Carbono/metabolismo , Hibridização Genética
7.
bioRxiv ; 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37461527

RESUMO

The Saccharomyces species have diverged in their thermal growth profile. Both S. cerevisiae and S. paradoxus grow at temperatures well above the maximum growth temperature of S. kudriavzevii and S. uvarum, but grow more poorly at lower temperatures. In response to thermal shifts, organisms activate a stress response that includes heat shock proteins involved in protein homeostasis and acquisition of thermal tolerance. To determine whether Saccharomyces species have diverged in their response to temperature we measured changes in gene expression in response to a 12°C increase or decrease in temperature for four Saccharomyces species and their six pairwise hybrids. To ensure coverage of subtelomeric gene families we sequenced, assembled and annotated a complete S. uvarum genome. All the strains exhibited a stronger response to heat than cold treatment. In response to heat, the cryophilic species showed a stronger response than the thermophilic species. The hybrids showed a mixture of parental stress responses depending on the time point. After the initial response, hybrids with a thermophilic parent were more similar to S. cerevisiae and S. paradoxus, and the S. cerevisiae × S. paradoxus hybrid showed the weakest heat shock response. Within the hybrids a small subset of temperature responsive genes showed species specific responses but most were also hybrid specific. Our results show that divergence in the heat shock response is indicative of a strain's thermal tolerance, suggesting that cellular factors that signal heat stress or resolve heat induced changes are relevant to thermal divergence in the Saccharomyces species.

8.
Genome Biol Evol ; 15(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972247

RESUMO

The Saccharomyces species have diverged in their thermal growth profile. Both Saccharomyces cerevisiae and Saccharomyces paradoxus grow at temperatures well above the maximum growth temperature of Saccharomyces kudriavzevii and Saccharomyces uvarum but grow more poorly at lower temperatures. In response to thermal shifts, organisms activate a stress response that includes heat shock proteins involved in protein homeostasis and acquisition of thermal tolerance. To determine whether Saccharomyces species have diverged in their response to temperature, we measured changes in gene expression in response to a 12 °C increase or decrease in temperature for four Saccharomyces species and their six pairwise hybrids. To ensure coverage of subtelomeric gene families, we sequenced, assembled, and annotated a complete S. uvarum genome. In response to heat, the cryophilic species showed a stronger stress response than the thermophilic species, and the hybrids showed a mixture of parental responses that depended on the time point. After an initial strong response indicative of high thermal stress, hybrids with a thermophilic parent resolved their heat shock response to become similar to their thermophilic parent. Within the hybrids, only a small number of temperature-responsive genes showed consistent differences between alleles from the thermophilic and cryophilic species. Our results show that divergence in the heat shock response is mainly a consequence of a strain's thermal tolerance, suggesting that cellular factors that signal heat stress or resolve heat-induced changes are relevant to thermal divergence in the Saccharomyces species.


Assuntos
Saccharomyces , Saccharomyces/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Temperatura , Resposta ao Choque Térmico/genética , Proteínas de Choque Térmico/genética
9.
Microorganisms ; 11(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37317089

RESUMO

Recently, the presence of melatonin in fermented beverages has been correlated with yeast metabolism during alcoholic fermentation. Melatonin, originally considered a unique product of the pineal gland of vertebrates, has been also identified in a wide range of invertebrates, plants, bacteria, and fungi in the last two decades. These findings bring the challenge of studying the function of melatonin in yeasts and the mechanisms underlying its synthesis. However, the necessary information to improve the selection and production of this interesting molecule in fermented beverages is to disclose the genes involved in the metabolic pathway. So far, only one gene has been proposed as involved in melatonin production in Saccharomyces cerevisiae, PAA1, a polyamine acetyltransferase, a homolog of the vertebrate's aralkylamine N-acetyltransferase (AANAT). In this study, we assessed the in vivo function of PAA1 by evaluating the bioconversion of the different possible substrates, such as 5-methoxytryptamine, tryptamine, and serotonin, using different protein expression platforms. Moreover, we expanded the search for new N-acetyltransferase candidates by combining a global transcriptome analysis and the use of powerful bioinformatic tools to predict similar domains to AANAT in S. cerevisiae. The AANAT activity of the candidate genes was validated by their overexpression in E. coli because, curiously, this system evidenced higher differences than the overexpression in their own host S. cerevisiae. Our results confirm that PAA1 possesses the ability to acetylate different aralkylamines, but AANAT activity does not seem to be the main acetylation activity. Moreover, we also prove that Paa1p is not the only enzyme with this AANAT activity. Our search of new genes detected HPA2 as a new arylalkylamine N-acetyltransferase in S. cerevisiae. This is the first report that clearly proves the involvement of this enzyme in AANAT activity.

10.
Microb Genom ; 7(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34448691

RESUMO

During industrial processes, yeasts are exposed to harsh conditions, which eventually lead to adaptation of the strains. In the laboratory, it is possible to use experimental evolution to link the evolutionary biology response to these adaptation pressures for the industrial improvement of a specific yeast strain. In this work, we aimed to study the adaptation of a wine industrial yeast in stress conditions of the high ethanol concentrations present in stopped fermentations and secondary fermentations in the processes of champagne production. We used a commercial Saccharomyces cerevisiae × S. uvarum hybrid and assessed its adaptation in a modified synthetic must (M-SM) containing high ethanol, which also contained metabisulfite, a preservative that is used during wine fermentation as it converts to sulfite. After the adaptation process under these selected stressful environmental conditions, the tolerance of the adapted strain (H14A7-etoh) to sulfite and ethanol was investigated, revealing that the adapted hybrid is more resistant to sulfite compared to the original H14A7 strain, whereas ethanol tolerance improvement was slight. However, a trade-off in the adapted hybrid was found, as it had a lower capacity to ferment glucose and fructose in comparison with H14A7. Hybrid genomes are almost always unstable, and different signals of adaptation on H14A7-etoh genome were detected. Each subgenome present in the adapted strain had adapted differently. Chromosome aneuploidies were present in S. cerevisiae chromosome III and in S. uvarum chromosome VII-XVI, which had been duplicated. Moreover, S. uvarum chromosome I was not present in H14A7-etoh and a loss of heterozygosity (LOH) event arose on S. cerevisiae chromosome I. RNA-sequencing analysis showed differential gene expression between H14A7-etoh and H14A7, which can be easily correlated with the signals of adaptation that were found on the H14A7-etoh genome. Finally, we report alterations in the lipid composition of the membrane, consistent with conserved tolerance mechanisms.


Assuntos
Genoma Fúngico , Saccharomyces/genética , Saccharomyces/metabolismo , Vinho/microbiologia , Adaptação Fisiológica , Etanol/análise , Etanol/metabolismo , Fermentação , Saccharomyces/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Transcriptoma , Vinho/análise
11.
Artigo em Inglês | MEDLINE | ID: mdl-32974297

RESUMO

Mixed culture wine fermentations combining species within the Saccharomyces genus have the potential to produce new market tailored wines. They may also contribute to alleviating the effects of climate change in winemaking. Species, such as S. kudriavzevii, show good fermentative properties at low temperatures and produce wines with lower alcohol content, higher glycerol amounts and good aroma. However, the design of mixed culture fermentations combining S. cerevisiae and S. kudriavzevii species requires investigating their ecological interactions under cold temperature regimes. Here, we derived the first ecological model to predict individual and mixed yeast dynamics in cold fermentations. The optimal model combines the Gilpin-Ayala modification to the Lotka-Volterra competitive model with saturable competition and secondary models that account for the role of temperature. The nullcline analysis of the proposed model revealed how temperature shapes ecological dynamics in mixed co-inoculated cold fermentations. For this particular medium and species, successful mixed cultures can be achieved only at specific temperature ranges or by sequential inoculation. The proposed ecological model can be calibrated for different species and provide valuable insights into the functioning of alternative mixed wine fermentations.

12.
Front Microbiol ; 9: 88, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29456524

RESUMO

Wineries face unprecedented challenges due to new market demands and climate change effects on wine quality. New yeast starters including non-conventional Saccharomyces species, such as S. kudriavzevii, may contribute to deal with some of these challenges. The design of new fermentations using non-conventional yeasts requires an improved understanding of the physiology and metabolism of these cells. Dynamic modeling brings the potential of exploring the most relevant mechanisms and designing optimal processes more systematically. In this work we explore mechanisms by means of a model selection, reduction and cross-validation pipeline which enables to dissect the most relevant fermentation features for the species under consideration, Saccharomyces cerevisiae T73 and Saccharomyces kudriavzevii CR85. The pipeline involved the comparison of a collection of models which incorporate several alternative mechanisms with emphasis on the inhibitory effects due to temperature and ethanol. We focused on defining a minimal model with the minimum number of parameters, to maximize the identifiability and the quality of cross-validation. The selected model was then used to highlight differences in behavior between species. The analysis of model parameters would indicate that the specific growth rate and the transport of hexoses at initial times are higher for S. cervisiae T73 while S. kudriavzevii CR85 diverts more flux for glycerol production and cellular maintenance. As a result, the fermentations with S. kudriavzevii CR85 are typically slower; produce less ethanol but higher glycerol. Finally, we also explored optimal initial inoculation and process temperature to find the best compromise between final product characteristics and fermentation duration. Results reveal that the production of glycerol is distinctive in S. kudriavzevii CR85, it was not possible to achieve the same production of glycerol with S. cervisiae T73 in any of the conditions tested. This result brings the idea that the optimal design of mixed cultures may have an enormous potential for the improvement of final wine quality.

13.
Int J Food Microbiol ; 268: 27-34, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29324287

RESUMO

S. kudriavzevii has potential for fermentations and other biotechnological applications, but is sensitive to many types of stress. We tried to increase its tolerance and performance via the expression of various transporters from different yeast species. Whereas the overexpression of Z. rouxii fructose uptake systems (ZrFfz1 and ZrFsy1) or a glycerol importer (ZrStl1) did not improve the ability of S. kudriavzevii to consume fructose and survive osmotic stress, the expression of alkali-metal-cation exporters (ScEna1, ScNha1, YlNha2) improved S. kudriavzevii salt tolerance, and that of ScNha1 also the fermentation performance. The level of improvement depended on the type and activity of the transporter suggesting that the natural sensitivity of S. kudriavzevii cells to salts is based on a non-optimal functioning of its own transporters.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Transporte de Íons/fisiologia , Pressão Osmótica/fisiologia , Saccharomyces/metabolismo , Tolerância ao Sal/fisiologia , Proteínas de Transporte de Cátions/genética , Fermentação , Frutose/metabolismo , Glicerol/metabolismo , Fermento Seco
14.
Adv Food Nutr Res ; 85: 177-210, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29860974

RESUMO

The most important factor in winemaking is the quality of the final product and the new trends in oenology are dictated by wine consumers and producers. Traditionally the red wine is the most consumed and more popular; however, in the last times, the wine companies try to attract other groups of populations, especially young people and women that prefer sweet, whites or rosé wines, very fruity and with low alcohol content. Besides the new trends in consumer preferences, there are also increased concerns on the effects of alcohol consumption on health and the effects of global climate change on grape ripening and wine composition producing wines with high alcohol content. Although S. cerevisiae is the most frequent species in wines, and the subject of most studies, S. uvarum and hybrids between Saccharomyces species such as S. cerevisiae×S. kudriavzevii and S. cerevisiae×S. uvarum are also involved in wine fermentations and can be preponderant in certain wine regions. New yeast starters of non-cerevisiae strains (S. uvarum) or hybrids (S. cerevisiae×S. uvarum and S. cerevisiae×S. kudriavzevii) can contribute to solve some problems of the wineries. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts, while fulfilling the requirements of the commercial yeasts, such as a good fermentative performance and aromatic profiles that are of great interest for the wine industry. In this review, we will analyze different applications of nonconventional yeasts to solve the current winemaking demands.


Assuntos
Tecnologia de Alimentos , Vinho/análise , Vinho/microbiologia , Leveduras/fisiologia , Mudança Climática , Fermentação , Frutas , Vitis , Leveduras/classificação
15.
Front Microbiol ; 8: 150, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28223968

RESUMO

Saccharomyces cerevisiae is the main microorganism responsible for the fermentation of wine. Nevertheless, in the last years wineries are facing new challenges due to current market demands and climate change effects on the wine quality. New yeast starters formed by non-conventional Saccharomyces species (such as S. uvarum or S. kudriavzevii) or their hybrids (S. cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii) can contribute to solve some of these challenges. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts. However, S. cerevisiae can competitively displace other yeast species from wine fermentations, therefore the use of these new starters requires an analysis of their behavior during competition with S. cerevisiae during wine fermentation. In the present study we analyzed the survival capacity of non-cerevisiae strains in competition with S. cerevisiae during fermentation of synthetic wine must at different temperatures. First, we developed a new method, based on QPCR, to quantify the proportion of different Saccharomyces yeasts in mixed cultures. This method was used to assess the effect of competition on the growth fitness. In addition, fermentation kinetics parameters and final wine compositions were also analyzed. We observed that some cryotolerant Saccharomyces yeasts, particularly S. uvarum, seriously compromised S. cerevisiae fitness during competences at lower temperatures, which explains why S. uvarum can replace S. cerevisiae during wine fermentations in European regions with oceanic and continental climates. From an enological point of view, mixed co-cultures between S. cerevisiae and S. paradoxus or S. eubayanus, deteriorated fermentation parameters and the final product composition compared to single S. cerevisiae inoculation. However, in co-inoculated synthetic must in which S. kudriavzevii or S. uvarum coexisted with S. cerevisiae, there were fermentation performance improvements and the final wines contained less ethanol and higher amounts of glycerol. Finally, it is interesting to note that in co-inoculated fermentations, wine strains of S. cerevisiae and S. uvarum performed better than non-wine strains of the same species.

16.
Front Microbiol ; 8: 2087, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29118746

RESUMO

Saccharomyces cerevisiae is the most widespread microorganism responsible for wine alcoholic fermentation. Nevertheless, the wine industry is currently facing new challenges, some of them associate with climate change, which have a negative effect on ethanol content and wine quality. Numerous and varied strategies have been carried out to overcome these concerns. From a biotechnological point of view, the use of alternative non-Saccharomyces yeasts, yielding lower ethanol concentrations and sometimes giving rise to new and interesting aroma, is one of the trendiest approaches. However, S. cerevisiae usually outcompetes other Saccharomyces species due to its better adaptation to the fermentative environment. For this reason, we studied for the first time the use of a Saccharomyces kudriavzevii strain, CR85, for co-inoculations at increasing proportions and sequential inoculations, as well as the effect of aeration, to improve its fermentation performance in order to obtain wines with an ethanol yield reduction. An enhanced competitive performance of S. kudriavzevii CR85 was observed when it represented 90% of the cells present in the inoculum. Furthermore, airflow supply of 20 VVH to the fermentation synergistically improved CR85 endurance and, interestingly, a significant ethanol concentration reduction was achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA