Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 20(4): 518-524, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33398117

RESUMO

It is commonly assumed that charge-carrier transport in doped π-conjugated polymers is dominated by one type of charge carrier, either holes or electrons, as determined by the chemistry of the dopant. Here, through Seebeck coefficient and Hall effect measurements, we show that mobile electrons contribute substantially to charge-carrier transport in π-conjugated polymers that are heavily p-doped with strong electron acceptors. Specifically, the Seebeck coefficient of several p-doped polymers changes sign from positive to negative as the concentration of the oxidizing agents FeCl3 or NOBF4 increase, and Hall effect measurements for the same p-doped polymers reveal that electrons become the dominant delocalized charge carriers. Ultraviolet and inverse photoelectron spectroscopy measurements show that doping with oxidizing agents results in elimination of the transport gap at high doping concentrations. This approach of heavy p-type doping is demonstrated to provide a promising route to high-performance n-type organic thermoelectric materials.

2.
Nanotechnology ; 30(30): 305301, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30959491

RESUMO

Variable-pressure electron-beam lithography (VP-EBL) employs an ambient gas at subatmospheric pressure to reduce charging of insulating films and substrates during electron exposure. In this work, VP-EBL proves to be an efficient method for patterning a widely used, but challenging to process, fluoropolymer, Teflon AF. However, rather than solely mitigating charging, the ambient gas is found to alter the radiation chemistry of the exposure process. Specifically, irradiating Teflon AF under water vapor increases the dissolution rate of the exposed regions in non-fluorinated solvents and enables complete patterning in a positive tone process. When compared to conventional e-beam resists, the contrast (≈4), clearing dose (<700 µC cm-2), and resolution (≈40 nm half-pitch) of Teflon AF are adequate. However, these figures of merit are quite remarkable when the process is considered as a means for directly patterning a functional material with extremely low surface energy, dielectric constant, and refractive index. Intriguingly, VP-EBL of Teflon AF under water vapor also exhibits non-reciprocity, through dose-rate dependence, and exhibits anomalous proximity effects. Thus, the influence of the ambient gas on radiation chemistry must be considered for VP-EBL, and some of the resulting effects may offer significant benefits for patterning both functional and lithographic materials.

3.
Rev Sci Instrum ; 89(11): 113902, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30501363

RESUMO

A lateral force microscopy (LFM) calibration technique utilizing a random low-profile surface is proposed that is successfully employed in the low-load non-linear frictional regime using a single layer of graphene on a supporting oxide substrate. This calibration at low loads and on low friction surfaces like graphene has the benefit of helping to limit the wear of the LFM tip during the calibration procedure. Moreover, the low-profiles of the calibration surface characteristic of these layered 2D materials, on standard polished oxide substrates, result in a nearly constant frictional, adhesive, and elastic response as the tip slides over the surface, making the determination of the calibration coefficient robust. Through a detailed calibration analysis that takes into account non-linear frictional response, it is found that the adhesion is best described by a nearly constant vertical orientation, rather than the more commonly encountered normally directed adhesion, as the single asperity passes over the low-profile graphene-coated oxide surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA