Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Am J Hum Genet ; 108(1): 100-114, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33352116

RESUMO

Chiari I malformation (CM1), the displacement of the cerebellum through the foramen magnum into the spinal canal, is one of the most common pediatric neurological conditions. Individuals with CM1 can present with neurological symptoms, including severe headaches and sensory or motor deficits, often as a consequence of brainstem compression or syringomyelia (SM). We conducted whole-exome sequencing (WES) on 668 CM1 probands and 232 family members and performed gene-burden and de novo enrichment analyses. A significant enrichment of rare and de novo non-synonymous variants in chromodomain (CHD) genes was observed among individuals with CM1 (combined p = 2.4 × 10-10), including 3 de novo loss-of-function variants in CHD8 (LOF enrichment p = 1.9 × 10-10) and a significant burden of rare transmitted variants in CHD3 (p = 1.8 × 10-6). Overall, individuals with CM1 were found to have significantly increased head circumference (p = 2.6 × 10-9), with many harboring CHD rare variants having macrocephaly. Finally, haploinsufficiency for chd8 in zebrafish led to macrocephaly and posterior hindbrain displacement reminiscent of CM1. These results implicate chromodomain genes and excessive brain growth in CM1 pathogenesis.


Assuntos
Malformação de Arnold-Chiari/genética , Proteínas de Ligação a DNA/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Animais , Malformação de Arnold-Chiari/patologia , Encéfalo/patologia , Estudos de Casos e Controles , Feminino , Haploinsuficiência/genética , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Siringomielia/genética , Sequenciamento do Exoma/métodos , Peixe-Zebra/genética
2.
Clin Orthop Relat Res ; 480(2): 421-430, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34491919

RESUMO

BACKGROUND: Clubfoot, a congenital deformity that presents as a rigid, inward turning of the foot, affects approximately 1 in 1000 infants and occurs as an isolated birth defect in 80% of patients. Despite its high level of heritability, few causative genes have been identified, and mutations in known genes are only responsible for a small portion of clubfoot heritability. QUESTIONS/PURPOSES: (1) Are any rare gene variants enriched (that is, shared) in unrelated patients with isolated clubfoot? (2) Are there other rare variants in the identified gene (Filamin B) in these patients with clubfoot? METHODS: Whole-exome sequence data were generated from a discovery cohort of 183 unrelated probands with clubfoot and 2492 controls. Variants were filtered with minor allele frequency < 0.02 to identify rare variants as well as small insertions and deletions (indels) resulting in missense variants, nonsense or premature truncation, or in-frame deletions. A candidate deletion was then genotyped in another cohort of 974 unrelated patients with clubfoot (a replication cohort). Other rare variants in the candidate gene were also investigated. A segregation analysis was performed in multigenerational families of individuals with clubfoot to see if the genotypes segregate with phenotypes. Single-variant association analysis was performed using the Fisher two-tailed exact test (exact p values are presented to give an indication of the magnitude of the association). RESULTS: There were no recurrent variants in the known genes causing clubfoot in this study. A three-base pair in-frame codon deletion of Filamin B (FLNB) (p.E1792del, rs1470699812) was identified in 1.6% (3 of 183) of probands with clubfoot in the discovery cohort compared with 0% of controls (0 of 2492) (odds ratio infinity (inf) [95% CI 5.64 to inf]; p = 3.18 x 10-5) and 0.0016% of gnomAD controls (2 of 125,709) (OR 1.01 x 103 [95% CI 117.42 to 1.64 x 104]; p = 3.13 x 10-8). By screening a replication cohort (n = 974 patients), we found two probands with the identical FLNB deletion. In total, the deletion was identified in 0.43% (5 of 1157) of probands with clubfoot compared with 0% of controls and 0.0016% of gnomAD controls (OR 268.5 [95% CI 43.68 to 2.88 x 103]; p = 1.43 x 10-9). The recurrent FLNB p.E1792del variant segregated with clubfoot, with incomplete penetrance in two families. Affected individuals were more likely to be male and have bilateral clubfoot. Although most patients had isolated clubfoot, features consistent with Larsen syndrome, including upper extremity abnormalities such as elbow and thumb hypermobility and wide, flat thumbs, were noted in affected members of one family. We identified 19 additional rare FLNB missense variants located throughout the gene in patients with clubfoot. One of these missense variants, FLNB p.G2397D, exhibited incomplete penetrance in one family. CONCLUSION: A recurrent FLNB E1792 deletion was identified in 0.43% of 1157 isolated patients with clubfoot. Given the absence of any recurrent variants in our discovery phase (n = 183) for any of the known genes causing clubfoot, our findings support that novel and rare missense variants in FLNB in patients with clubfoot, although rare, may be among the most commonly known genetic causes of clubfoot. Patients with FLNB variants often have isolated clubfoot, but they and their family members may be at an increased risk of having additional clinical features consistent with Larsen syndrome. CLINICAL RELEVANCE: Identification of FLNB variants may be useful for determining clubfoot recurrence risk and comorbidities.


Assuntos
Pé Torto Equinovaro/genética , Sequenciamento do Exoma , Filaminas/genética , Adolescente , Adulto , Idoso , Criança , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Adulto Jovem
3.
Hum Mutat ; 42(4): 392-407, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33382518

RESUMO

Idiopathic scoliosis (IS) is a spinal disorder affecting up to 3% of otherwise healthy children. IS has a strong familial genetic component and is believed to be genetically complex due to significant variability in phenotype and heritability. Previous studies identified putative loci and variants possibly contributing to IS susceptibility, including within extracellular matrix, cilia, and actin networks, but the genetic architecture and underlying mechanisms remain unresolved. Here, we used whole-exome sequencing from three affected individuals in a multigenerational family with IS and identified 19 uncommon variants (minor allele frequency < 0.05). Genotyping of additional family members identified a candidate heterozygous variant (H1115Q, G>C, rs142032413) within the ciliary gene KIF7, a regulator within the hedgehog (Hh) signaling pathway. Resequencing of the second cohort of unrelated IS individuals and controls identified several severe mutations in KIF7 in affected individuals only. Subsequently, we generated a mutant zebrafish model of kif7 using CRISPR-Cas9. kif7co63/co63 zebrafish displayed severe scoliosis, presenting in juveniles and progressing through adulthood. We observed no deformities in the brain, Reissner fiber, or central canal cilia in kif7co63/co63 embryos, although alterations were seen in Hh pathway gene expression. This study suggests defects in KIF7-dependent Hh signaling, which may drive pathogenesis in a subset of individuals with IS.


Assuntos
Cinesinas , Escoliose , Peixe-Zebra , Animais , Cílios/metabolismo , Humanos , Cinesinas/genética , Mutação , Escoliose/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra
4.
J Med Genet ; 57(12): 851-857, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32518174

RESUMO

INTRODUCTION: Congenital clubfoot is a common birth defect that affects at least 0.1% of all births. Nearly 25% cases are familial and the remaining are sporadic in inheritance. Copy number variants (CNVs) involving transcriptional regulators of limb development, including PITX1 and TBX4, have previously been shown to cause familial clubfoot, but much of the heritability remains unexplained. METHODS: Exome sequence data from 816 unrelated clubfoot cases and 2645 in-house controls were analysed using coverage data to identify rare CNVs. The precise size and location of duplications were then determined using high-density Affymetrix Cytoscan chromosomal microarray (CMA). Segregation in families and de novo status were determined using qantitative PCR. RESULTS: Chromosome Xp22.33 duplications involving SHOX were identified in 1.1% of cases (9/816) compared with 0.07% of in-house controls (2/2645) (p=7.98×10-5, OR=14.57) and 0.27% (38/13592) of Atherosclerosis Risk in Communities/the Wellcome Trust Case Control Consortium 2 controls (p=0.001, OR=3.97). CMA validation confirmed an overlapping 180.28 kb duplicated region that included SHOX exons as well as downstream non-coding regions. In four of six sporadic cases where DNA was available for unaffected parents, the duplication was de novo. The probability of four de novo mutations in SHOX by chance in a cohort of 450 sporadic clubfoot cases is 5.4×10-10. CONCLUSIONS: Microduplications of the pseudoautosomal chromosome Xp22.33 region (PAR1) containing SHOX and downstream enhancer elements occur in ~1% of patients with clubfoot. SHOX and regulatory regions have previously been implicated in skeletal dysplasia as well as idiopathic short stature, but have not yet been reported in clubfoot. SHOX duplications likely contribute to clubfoot pathogenesis by altering early limb development.


Assuntos
Pé Torto Equinovaro/genética , Predisposição Genética para Doença , Fatores de Transcrição Box Pareados/genética , Proteína de Homoeobox de Baixa Estatura/genética , Proteínas com Domínio T/genética , Adolescente , Criança , Pré-Escolar , Duplicação Cromossômica/genética , Pé Torto Equinovaro/patologia , Variações do Número de Cópias de DNA/genética , Duplicação Gênica/genética , Humanos , Lactente , Análise em Microsséries , Pessoa de Meia-Idade , Linhagem , Regiões Pseudoautossômicas/genética , Sequenciamento do Exoma
5.
J Med Genet ; 56(7): 427-433, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30803986

RESUMO

INTRODUCTION: Adolescent idiopathic scoliosis (AIS) is a common musculoskeletal disorder with strong evidence for a genetic contribution. CNVs play an important role in congenital scoliosis, but their role in idiopathic scoliosis has been largely unexplored. METHODS: Exome sequence data from 1197 AIS cases and 1664 in-house controls was analysed using coverage data to identify rare CNVs. CNV calls were filtered to include only highly confident CNVs with >10 average reads per region and mean log-ratio of coverage consistent with single-copy duplication or deletion. The frequency of 55 common recurrent CNVs was determined and correlated with clinical characteristics. RESULTS: Distal chromosome 16p11.2 microduplications containing the gene SH2B1 were found in 0.7% of AIS cases (8/1197). We replicated this finding in two additional AIS cohorts (8/1097 and 2/433), resulting in 0.7% (18/2727) of all AIS cases harbouring a chromosome 16p11.2 microduplication, compared with 0.06% of local controls (1/1664) and 0.04% of published controls (8/19584) (p=2.28×10-11, OR=16.15). Furthermore, examination of electronic health records of 92 455 patients from the Geisinger health system showed scoliosis in 30% (20/66) patients with chromosome 16p11.2 microduplications containing SH2B1 compared with 7.6% (10/132) of controls (p=5.6×10-4, OR=3.9). CONCLUSIONS: Recurrent distal chromosome 16p11.2 duplications explain nearly 1% of AIS. Distal chromosome 16p11.2 duplications may contribute to scoliosis pathogenesis by directly impairing growth or by altering expression of nearby genes, such as TBX6. Individuals with distal chromosome 16p11.2 microduplications should be screened for scoliosis to facilitate early treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Duplicação Cromossômica , Cromossomos Humanos Par 16 , Estudos de Associação Genética , Predisposição Genética para Doença , Escoliose/diagnóstico , Escoliose/genética , Estudos de Casos e Controles , Mapeamento Cromossômico , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Feminino , Estudos de Associação Genética/métodos , Heterozigoto , Humanos , Masculino , Fenótipo , Escoliose/epidemiologia , Deleção de Sequência , Sequenciamento do Exoma
8.
BMC Genomics ; 16: 143, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25765891

RESUMO

BACKGROUND: Identifying insertion/deletion polymorphisms (INDELs) with high confidence has been intrinsically challenging in short-read sequencing data. Here we report our approach for improving INDEL calling accuracy by using a machine learning algorithm to combine call sets generated with three independent methods, and by leveraging the strengths of each individual pipeline. Utilizing this approach, we generated a consensus exome INDEL call set from a large dataset generated by the 1000 Genomes Project (1000G), maximizing both the sensitivity and the specificity of the calls. RESULTS: This consensus exome INDEL call set features 7,210 INDELs, from 1,128 individuals across 13 populations included in the 1000 Genomes Phase 1 dataset, with a false discovery rate (FDR) of about 7.0%. CONCLUSIONS: In our study we further characterize the patterns and distributions of these exonic INDELs with respect to density, allele length, and site frequency spectrum, as well as the potential mutagenic mechanisms of coding INDELs in humans.


Assuntos
Exoma/genética , Mutação INDEL/genética , Mutagênese , Biologia Computacional , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Projeto Genoma Humano , Humanos , Aprendizado de Máquina
9.
Elife ; 122024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277211

RESUMO

Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than fivefold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here, we sought to define the roles of PAX1 and newly identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); p=7.07E-11, OR = 1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wild-type. By genetic targeting we found that wild-type Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, the latter suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2 or tamoxifen treatment significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a PAX1-COL11a1-MMP3 signaling axis in spinal chondrocytes.


Adolescent idiopathic scoliosis (AIS) is a twisting deformity of the spine that occurs during periods of rapid growth in children worldwide. Children with severe cases of AIS require surgery to stop it from getting worse, presenting a significant financial burden to health systems and families. Although AIS is known to cluster in families, its genetic causes and its inheritance pattern have remained elusive. Additionally, AIS is known to be more prevalent in females, a bias that has not been explained. Advances in techniques to study the genetics underlying diseases have revealed that certain variations that increase the risk of AIS affect cartilage and connective tissue. In humans, one such variation is near a gene called Pax1, and it is female-specific. The extracellular matrix is a network of proteins and other molecules in the space between cells that help connect tissues together, and it is particularly important in cartilage and other connective tissues. One of the main components of the extracellular matrix is collagen. Yu, Kanshour, Ushiki et al. hypothesized that changes in the extracellular matrix could affect the cartilage and connective tissues of the spine, leading to AIS. To show this, the scientists screened over 100,000 individuals and found that AIS is associated with variants in two genes coding for extracellular matrix proteins. One of these variants was found in a gene called Col11a1, which codes for one of the proteins that makes up collagen. To understand the relationship between Pax1 and Col11a1, Yu, Kanshour, Ushiki et al. genetically modified mice so that they would lack the Pax1 gene. In these mice, the activation of Col11a1 was reduced in the mouse spine. They also found that the form of Col11a1 associated with AIS could not suppress the activation of a gene called Mmp3 in mouse cartilage cells as effectively as unmutated Col11a1. Going one step further, the researchers found that lowering the levels of an estrogen receptor altered the activation patterns of Pax1, Col11a1, and Mmp3 in mouse cartilage cells. These findings suggest a possible mechanism for AIS, particularly in females. The findings of Yu, Kanshour, Ushiki et al. highlight that cartilage cells in the spine are particularly relevant in AIS. The results also point to specific molecules within the extracellular matrix as important for maintaining proper alignment in the spine when children are growing rapidly. This information may guide future therapies aimed at maintaining healthy spinal cells in adolescent children, particularly girls.


Assuntos
Escoliose , Masculino , Animais , Criança , Camundongos , Humanos , Feminino , Adolescente , Escoliose/genética , Metaloproteinase 3 da Matriz/genética , Coluna Vertebral , Fatores de Transcrição/genética , Colágeno/genética , Variação Genética , Colágeno Tipo XI/genética
10.
J Thromb Haemost ; 21(3): 629-638, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36696180

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with excessive coagulation, thrombosis, and mortality. OBJECTIVE: To provide insight into mechanisms that contribute to excessive coagulation in coronavirus 2019 (COVID-19) disease. PATIENTS/METHODS: Blood from COVID-19 patients was investigated for coagulation-related gene expression and functional activities. RESULTS: Single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells from severe COVID-19 patients revealed a 5.2-fold increase in tissue factor (TF [F3 gene]) transcript expression levels (P < .05), the trigger of extrinsic coagulation; a 7.7-fold increase in C1-inhibitor (SERPING1 gene; P < .01) transcript expression levels, an inhibitor of intrinsic coagulation; and a 4.4-fold increase in anticoagulant thrombomodulin (TM [THBD gene]) transcript expression levels (P < .001). Bulk RNA-seq analysis of sorted CD14+ monocytes on an independent cohort of COVID-19 patients confirmed these findings (P < .05). Indicative of excessive coagulation, 41% of COVID-19 patients' plasma samples contained high D-dimer levels (P < .0001); of these, 19% demonstrated extracellular vesicle TF activity (P = .109). COVID-19 patients' ex vivo plasma-based thrombin generation correlated positively with D-dimer levels (P < .01). Plasma procoagulant extracellular vesicles were elevated ∼9-fold in COVID-19 patients (P < .01). Public scRNA-seq data sets from bronchoalveolar lung fluid and our peripheral blood mononuclear cell scRNA-seq data show CD14+ monocytes/macrophages TF transcript expression levels are elevated in severe but not mild or moderate COVID-19 patients. CONCLUSIONS: Beyond local lung injury, SARS-CoV-2 infection increases systemic TF (F3) transcript levels and elevates circulating extracellular vesicles that likely contribute to disease-associated coagulation, thrombosis, and related mortality.


Assuntos
Transtornos da Coagulação Sanguínea , COVID-19 , Vesículas Extracelulares , Trombose , Humanos , Vesículas Extracelulares/metabolismo , Leucócitos Mononucleares/metabolismo , SARS-CoV-2 , Tromboplastina/metabolismo
11.
Res Pract Thromb Haemost ; 7(7): 102232, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38077814

RESUMO

Background: Genetic analysis for von Willebrand disease (VWD) commonly utilizes DNA sequencing to identify variants in the von Willebrand factor (VWF) gene; however, this technique cannot always detect copy-number variants (CNVs). Additional mapping of CNVs in patients with VWD is needed. Objectives: This study aimed to characterize CNVs in a large sample of VWF mutation-negative VWD patients. Methods: To determine the role of CNVs in VWD, a VWF high-resolution comparative genomic hybridization array was custom-designed to avoid multiple sequence variations, repeated sequences, and the VWF pseudogene. This was performed on 204 mutation-negative subjects for whom clinical variables were also available. Results: Among the 204 patients, 7 unique CNVs were found, with a total of 24 CNVs (12%). Of the 7 unique CNVs, 1 was novel, 1 was found in a VWF database, and 5 were previously reported. All patients with type 1C VWD and a CNV had the same exon 33 and 34 in-frame deletion. Certain clinical variables were also significantly different between those with and without CNVs. Conclusion: The in-frame deletion in patients with type 1C VWD exactly matches the D4N module of the D4 domain, a region where mutations and deletions are known to affect clearance. We observed significantly higher VWF-to-ristocetin cofactor levels in patients with type 1C VWD and a CNV than in patients without a CNV, suggesting a relationship between CNVs and the increased clearance observed in patients with type 1C VWD. Glycoprotein IbM activity was significantly lower in patients with type 1 VWD and a CNV than in patients without a CNV, suggesting that platelet binding is more affected by CNVs than single base pair mutations. This work elucidates some of the underlying genetic mechanisms of CNVs in these patients.

12.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37292598

RESUMO

Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than five-fold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here we sought to define the roles of PAX1 and newly-identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); P=7.07e-11, OR=1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc (IVD)-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wildtype. By genetic targeting we found that wildtype Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, this suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2, or tamoxifen treatment, significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a Pax1-Col11a1-Mmp3 signaling axis in spinal chondrocytes.

13.
EMBO Mol Med ; 12(11): e12356, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33016623

RESUMO

Distal arthrogryposis (DA) is group of syndromes characterized by congenital joint contractures. Treatment development is hindered by the lack of vertebrate models. Here, we describe a zebrafish model in which a common MYH3 missense mutation (R672H) was introduced into the orthologous zebrafish gene smyhc1 (slow myosin heavy chain 1) (R673H). We simultaneously created a smyhc1 null allele (smyhc1- ), which allowed us to compare the effects of both mutant alleles on muscle and bone development, and model the closely related disorder, spondylocarpotarsal synostosis syndrome. Heterozygous smyhc1R673H/+ embryos developed notochord kinks that progressed to scoliosis with vertebral fusions; motor deficits accompanied the disorganized and shortened slow-twitch skeletal muscle myofibers. Increased dosage of the mutant allele in both homozygous smyhc1R673H/R673H and transheterozygous smyhc1R673H/- embryos exacerbated the notochord and muscle abnormalities, causing early lethality. Treatment of smyhc1R673H/R673H embryos with the myosin ATPase inhibitor, para-aminoblebbistatin, which decreases actin-myosin affinity, normalized the notochord phenotype. Our zebrafish model of MYH3-associated DA2A provides insight into pathogenic mechanisms and suggests a beneficial therapeutic role for myosin inhibitors in treating disabling contractures.


Assuntos
Artrogripose , Sinostose , Animais , Artrogripose/genética , Humanos , Mutação , Fenótipo , Peixe-Zebra
14.
Nat Commun ; 9(1): 4171, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301978

RESUMO

Genetic factors predictive of severe adolescent idiopathic scoliosis (AIS) are largely unknown. To identify genetic variation associated with severe AIS, we performed an exome-wide association study of 457 severe AIS cases and 987 controls. We find a missense SNP in SLC39A8 (p.Ala391Thr, rs13107325) associated with severe AIS (P = 1.60 × 10-7, OR = 2.01, CI = 1.54-2.62). This pleiotropic SNP was previously associated with BMI, blood pressure, cholesterol, and blood manganese level. We replicate the association in a second cohort (841 cases and 1095 controls) resulting in a combined P = 7.02 × 10-14, OR = 1.94, CI = 1.63-2.34. Clinically, the minor allele of rs13107325 is associated with greater spinal curvature, decreased height, increased BMI and lower plasma manganese in our AIS cohort. Functional studies demonstrate reduced manganese influx mediated by the SLC39A8 p.Ala391Thr variant and vertebral abnormalities, impaired growth, and decreased motor activity in slc39a8 mutant zebrafish. Our results suggest the possibility that scoliosis may be amenable to dietary intervention.


Assuntos
Proteínas de Transporte de Cátions/genética , Predisposição Genética para Doença , Mutação de Sentido Incorreto/genética , Escoliose/genética , Animais , Osso e Ossos/patologia , Proteínas de Transporte de Cátions/deficiência , Exoma/genética , Estudos de Associação Genética , Células HEK293 , Humanos , Íons , Movimento , Polimorfismo de Nucleotídeo Único/genética , Peixe-Zebra/genética
15.
Rev. bras. colo-proctol ; 30(2): 191-198, abr.-jun. 2010. tab
Artigo em Português | LILACS | ID: lil-555889

RESUMO

A histerectomia é procedimento cirúrgico ginecológico de grande porte mais comum, sendo a maioria das indicações por doença benigna. Dentre as complicações desse procedimento cirúrgico estão a constipação, dispareunia, incontinência para gases e fezes, urgência evacuatória, escapes fecais e distensão abdominal. A constipação tem sido encontrada freqüentemente após a histerectomia principalmente em trabalhos retrospectivos. Objetivo: estudar a incidência de constipação após a histerectomia e as alterações manométricas a ela relacionadas. Métodos: Estudo prospectivo em nove pacientes submetidas à histerectomia total abdominal por mioma. Foi realizado estudo manométrico e aplicação do escore de constipação adotado pela sociedade brasileira de motilidade digestiva no pré e sessenta dias de pós-operatório. Resultados: Os autores encontraram a presença de evacuação incompleta que não ocorria no pós-operatório. Não foram encontradas alterações manométricas e duas pacientes apresentaram dor abdominal à distensão da ampola retal na aferição do volume máximo tolerável. Conclusões: Os achados deste estudo sugerem que alterações intestinais ocorrem após a histerectomia e são principalmente relacionadas ao reto.


Hysterectomy is the most common gynecologic surgical procedure of great bearing being the majority of the indications due to being disease. Among the complications of this surgical procedure are constipation, dyspareunia, gas and feces incontinence, evacuatory urgency, fecal escapes and abdominal distension. Constipation has been frequently found after a hysterectomy, especially in retrospective studies. Objective: Study the incidence of constipation after hysterectomy and the manometrical alterations related to them. Methods: Prospective study in nine patients subjected to total abdominal hysterectomy due to myoma. A manometrical study and application of the constipation score adopted by "Sociedade Brasileira de Motilidade Digestiva" was performed in the pre and sixty days of post-operative. Results: The autors found presence of incomplete evacuation that did not occur in the pre-operative. Manometrical alterations were found and two of the patients presented abdominal pain to the rectal ampule distension in the tolerable maximum volume checking. Conclusions: The findings of this study suggest that intestinal alterations occur after hysterectomy and are specially related to the rectum.


Assuntos
Humanos , Constipação Intestinal , Técnicas e Procedimentos Diagnósticos , Histerectomia , Complicações Pós-Operatórias , Procedimentos Cirúrgicos Operatórios , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA