Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(31): e2203167119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881786

RESUMO

Heparan sulfate proteoglycans (HSPGs) mediate essential interactions throughout the extracellular matrix (ECM), providing signals that regulate cellular growth and development. Altered HSPG composition during tumorigenesis strongly aids cancer progression. Heparanase (HPSE) is the principal enzyme responsible for extracellular heparan sulfate catabolism and is markedly up-regulated in aggressive cancers. HPSE overactivity degrades HSPGs within the ECM, facilitating metastatic dissemination and releasing mitogens that drive cellular proliferation. Reducing extracellular HPSE activity reduces cancer growth, but few effective inhibitors are known, and none are clinically approved. Inspired by the natural glycosidase inhibitor cyclophellitol, we developed nanomolar mechanism-based, irreversible HPSE inhibitors that are effective within physiological environments. Application of cyclophellitol-derived HPSE inhibitors reduces cancer aggression in cellulo and significantly ameliorates murine metastasis. Mechanism-based irreversible HPSE inhibition is an unexplored anticancer strategy. We demonstrate the feasibility of such compounds to control pathological HPSE-driven malignancies.


Assuntos
Glucuronidase , Inibidores de Glicosídeo Hidrolases , Metástase Neoplásica , Animais , Proliferação de Células/efeitos dos fármacos , Glucuronidase/antagonistas & inibidores , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Proteoglicanas de Heparan Sulfato/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Camundongos , Metástase Neoplásica/tratamento farmacológico
2.
J Am Chem Soc ; 146(1): 125-133, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38118176

RESUMO

Siastatin B is a potent and effective iminosugar inhibitor of three diverse glycosidase classes, namely, sialidases, ß-d-glucuronidases, and N-acetyl-glucosaminidases. The mode of inhibition of glucuronidases, in contrast to sialidases, has long been enigmatic as siastatin B appears too bulky and incorrectly substituted to be accommodated within a ß-d-glucuronidase active site pocket. Herein, we show through crystallographic analysis of protein-inhibitor complexes that siastatin B generates both a hemiaminal and a 3-geminal diol iminosugar (3-GDI) that are, rather than the parent compound, directly responsible for enzyme inhibition. The hemiaminal product is the first observation of a natural product that belongs to the noeuromycin class of inhibitors. Additionally, the 3-GDI represents a new and potent class of the iminosugar glycosidase inhibitor. To substantiate our findings, we synthesized both the gluco- and galacto-configured 3-GDIs and characterized their binding both structurally and kinetically to exo-ß-d-glucuronidases and the anticancer target human heparanase. This revealed submicromolar inhibition of exo-ß-d-glucuronidases and an unprecedented binding mode by this new class of inhibitor. Our results reveal the mechanism by which siastatin B acts as a broad-spectrum glycosidase inhibitor, identify a new class of glycosidase inhibitor, and suggest new functionalities that can be incorporated into future generations of glycosidase inhibitors.


Assuntos
Inibidores Enzimáticos , Glucuronidase , Piperidinas , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Glucuronidase/metabolismo , Glicosídeo Hidrolases/metabolismo
3.
J Am Chem Soc ; 145(33): 18568-18577, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37565990

RESUMO

Quantum confinement in two-dimensional (2D) Ruddlesden-Popper (RP) perovskites leads to the formation of stable quasi-particles, including excitons and biexcitons, the latter of which may enable lasing in these materials. Due to their hybrid organic-inorganic structures and the solution phase synthesis, microcrystals of 2D RP perovskites can be quite heterogeneous, with variations in excitonic and biexcitonic properties between crystals from the same synthesis and even within individual crystals. Here, we employ one- and two-quantum two-dimensional white-light microscopy to systematically study the spatial variations of excitons and biexcitons in microcrystals of a series of 2D RP perovskites BA2MAn-1PbnI3n+1 (n = 2-4, BA= butylammonium, MA = methylammonium). We find that the average biexciton binding energy of around 60 meV is essentially independent of the perovskite layer thickness (n). We also resolve spatial variations of the exciton and biexciton energies on micron length scales within individual crystals. By comparing the one-quantum and two-quantum spectra at each pixel, we conclude that biexcitons are more sensitive to their environments than excitons. These results shed new light on the ways disorder can modify the energetic landscape of excitons and biexcitons in RP perovskites and how biexcitons can be used as a sensitive probe of the microscopic environment of a semiconductor.

4.
Chembiochem ; 24(4): e202200619, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36453606

RESUMO

1-Azasugar analogues of l-iduronic acid (l-IdoA) and d-glucuronic acid (d-GlcA) and their corresponding enantiomers have been synthesized as potential pharmacological chaperones for mucopolysaccharidosis I (MPS I), a lysosomal storage disease caused by mutations in the gene encoding α-iduronidase (IDUA). The compounds were efficiently synthesized in nine or ten steps from d- or l-arabinose, and the structures were confirmed by X-ray crystallographic analysis of key intermediates. All compounds were inactive against IDUA, although l-IdoA-configured 8 moderately inhibited ß-glucuronidase (ß-GLU). The d-GlcA-configured 9 was a potent inhibitor of ß-GLU and a moderate inhibitor of the endo-ß-glucuronidase heparanase. Co-crystallization of 9 with heparanase revealed that the endocyclic nitrogen of 9 forms close interactions with both the catalytic acid and catalytic nucleophile.


Assuntos
Iduronidase , Mucopolissacaridose I , Humanos , Iduronidase/química , Iduronidase/genética , Ácidos Urônicos , Glucuronidase/química , Mucopolissacaridose I/genética
5.
J Am Chem Soc ; 144(12): 5552-5561, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35296136

RESUMO

Halide perovskites have the potential to disrupt the photovoltaics market based on their high performance and low cost. However, the decomposition of perovskites under moisture, oxygen, and light raises concerns about service lifetime, especially because degradation mechanisms and the corresponding rate laws that fit the observed data have thus far eluded researchers. Here, we report a water-accelerated photooxidation mechanism dominating the degradation kinetics of archetypal perovskite CH3NH3PbI3 in air under >1% relative humidity at 25 °C. From this mechanism, we develop a kinetic model that quantitatively predicts the degradation rate as a function of temperature, ambient O2 and H2O levels, and illumination. Because water is a possible product of dry photooxidation, these results highlight the need for encapsulation schemes that rigorously block oxygen ingress, as product water may accumulate beneath the encapsulant and initiate the more rapid water-accelerated photooxidative decomposition.

6.
Anal Chem ; 94(36): 12374-12382, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36040762

RESUMO

A time-domain version of photothermal microscopy using an atomic force microscope (AFM) is reported, which we call Fourier transform photothermal (FTPT) spectroscopy, where the delay between two laser pulses is varied and the Fourier transform is computed. An acousto-optic modulator-based pulse shaper sets the delay and phases of the pulses shot-to-shot at 100 kHz, enabling background subtraction and data collection in the rotating frame. The pulse shaper is also used to flatten the pulse spectrum, thereby eliminating the need for normalization by the laser spectrum. We demonstrate the method on 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-Pn) microcrystals and Mn-phthalocyanine islands, confirming subdiffraction spatial resolution, and providing new spectroscopic insights likely linked to structural defects in the crystals.


Assuntos
Lasers , Microscopia , Interferometria , Espectroscopia de Ressonância Magnética , Óptica e Fotônica
7.
Org Biomol Chem ; 20(4): 877-886, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35015006

RESUMO

Exo-ß-mannosidases are a broad class of stereochemically retaining hydrolases that are essential for the breakdown of complex carbohydrate substrates found in all kingdoms of life. Yet the detection of exo-ß-mannosidases in complex biological samples remains challenging, necessitating the development of new methodologies. Cyclophellitol and its analogues selectively label the catalytic nucleophiles of retaining glycoside hydrolases, making them valuable tool compounds. Furthermore, cyclophellitol can be readily redesigned to enable the incorporation of a detection tag, generating activity-based probes (ABPs) that can be used to detect and identify specific glycosidases in complex biological samples. Towards the development of ABPs for exo-ß-mannosidases, we present a concise synthesis of ß-manno-configured cyclophellitol, cyclophellitol aziridine, and N-alkyl cyclophellitol aziridines. We show that these probes covalently label exo-ß-mannosidases from GH families 2, 5, and 164. Structural studies of the resulting complexes support a canonical mechanism-based mode of action in which the active site nucleophile attacks the pseudoanomeric centre to form a stable ester linkage, mimicking the glycosyl enzyme intermediate. Furthermore, we demonstrate activity-based protein profiling using an N-alkyl aziridine derivative by specifically labelling MANBA in mouse kidney tissue. Together, these results show that synthetic manno-configured cyclophellitol analogues hold promise for detecting exo-ß-mannosidases in biological and biomedical research.


Assuntos
Cicloexanóis/química , Sondas Moleculares/química , beta-Manosidase/análise , Cicloexanóis/síntese química , Conformação Molecular , Sondas Moleculares/síntese química , beta-Manosidase/metabolismo
8.
J Biol Chem ; 295(13): 4316-4326, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31871050

RESUMO

Recent work exploring protein sequence space has revealed a new glycoside hydrolase (GH) family (GH164) of putative mannosidases. GH164 genes are present in several commensal bacteria, implicating these genes in the degradation of dietary glycans. However, little is known about the structure, mechanism of action, and substrate specificity of these enzymes. Herein we report the biochemical characterization and crystal structures of the founding member of this family (Bs164) from the human gut symbiont Bacteroides salyersiae. Previous reports of this enzyme indicated that it has α-mannosidase activity, however, we conclusively show that it cleaves only ß-mannose linkages. Using NMR spectroscopy, detailed enzyme kinetics of WT and mutant Bs164, and multiangle light scattering we found that it is a trimeric retaining ß-mannosidase, that is susceptible to several known mannosidase inhibitors. X-ray crystallography revealed the structure of Bs164, the first known structure of a GH164, at 1.91 Å resolution. Bs164 is composed of three domains: a (ß/α)8 barrel, a trimerization domain, and a ß-sandwich domain, representing a previously unobserved structural-fold for ß-mannosidases. Structures of Bs164 at 1.80-2.55 Å resolution in complex with the inhibitors noeuromycin, mannoimidazole, or 2,4-dinitrophenol 2-deoxy-2-fluoro-mannoside reveal the residues essential for specificity and catalysis including the catalytic nucleophile (Glu-297) and acid/base residue (Glu-160). These findings further our knowledge of the mechanisms commensal microbes use for nutrient acquisition.


Assuntos
Glicosídeo Hidrolases/genética , Conformação Proteica , Relação Estrutura-Atividade , beta-Manosidase/genética , Sequência de Aminoácidos/genética , Bacteroides/enzimologia , Bacteroides/ultraestrutura , Catálise , Domínio Catalítico/genética , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/ultraestrutura , Humanos , Cinética , Modelos Moleculares , Especificidade por Substrato , beta-Manosidase/química , beta-Manosidase/ultraestrutura
9.
J Am Chem Soc ; 143(5): 2423-2432, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33497208

RESUMO

Amylases are key enzymes in the processing of starch in many kingdoms of life. They are important catalysts in industrial biotechnology where they are applied in, among others, food processing and the production of detergents. In man amylases are the first enzymes in the digestion of starch to glucose and arguably also the preferred target in therapeutic strategies aimed at the treatment of type 2 diabetes patients through down-tuning glucose assimilation. Efficient and sensitive assays that report selectively on retaining amylase activities irrespective of the nature and complexity of the biomaterial studied are of great value both in finding new and effective human amylase inhibitors and in the discovery of new microbial amylases with potentially advantageous features for biotechnological application. Activity-based protein profiling (ABPP) of retaining glycosidases is inherently suited for the development of such an assay format. We here report on the design and synthesis of 1,6-epi-cyclophellitol-based pseudodisaccharides equipped with a suite of reporter entities and their use in ABPP of retaining amylases from human saliva, murine tissue as well as secretomes from fungi grown on starch. The activity and efficiency of the inhibitors and probes are substantiated by extensive biochemical analysis, and the selectivity for amylases over related retaining endoglycosidases is validated by structural studies.


Assuntos
Ensaios Enzimáticos/métodos , alfa-Amilases/metabolismo , Animais , Humanos , Camundongos , Saliva/enzimologia , alfa-Amilases/sangue
10.
Bioinformatics ; 36(18): 4706-4713, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32637989

RESUMO

MOTIVATION: Microbial communities drive matter and energy transformations integral to global biogeochemical cycles, yet many taxonomic groups facilitating these processes remain poorly represented in biological sequence databases. Due to this missing information, taxonomic assignment of sequences from environmental genomes remains inaccurate. RESULTS: We present the Tree-based Sensitive and Accurate Phylogenetic Profiler (TreeSAPP) software for functionally and taxonomically classifying genes, reactions and pathways from genomes of cultivated and uncultivated microorganisms using reference packages representing coding sequences mediating multiple globally relevant biogeochemical cycles. TreeSAPP uses linear regression of evolutionary distance on taxonomic rank to improve classifications, assigning both closely related and divergent query sequences at the appropriate taxonomic rank. TreeSAPP is able to provide quantitative functional and taxonomic classifications for both assembled and unassembled sequences and files supporting interactive tree of life visualizations. AVAILABILITY AND IMPLEMENTATION: TreeSAPP was developed in Python 3 as an open-source Python package and is available on GitHub at https://github.com/hallamlab/TreeSAPP. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metagenômica , Software , Evolução Biológica , Genoma , Filogenia
11.
J Am Chem Soc ; 142(30): 13021-13029, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32605368

RESUMO

Golgi mannosidase II (GMII) catalyzes the sequential hydrolysis of two mannosyl residues from GlcNAcMan5GlcNAc2 to produce GlcNAcMan3GlcNAc2, the precursor for all complex N-glycans, including the branched N-glycans associated with cancer. Inhibitors of GMII are potential cancer therapeutics, but their usefulness is limited by off-target effects, which produce α-mannosidosis-like symptoms. Despite many structural and mechanistic studies of GMII, we still lack a potent and selective inhibitor of this enzyme. Here, we synthesized manno-epi-cyclophellitol epoxide and aziridines and demonstrate their covalent modification and time-dependent inhibition of GMII. Application of fluorescent manno-epi-cyclophellitol aziridine derivatives enabled activity-based protein profiling of α-mannosidases from both human cell lysate and mouse tissue extracts. Synthesized probes also facilitated a fluorescence polarization-based screen for dGMII inhibitors. We identified seven previously unknown inhibitors of GMII from a library of over 350 iminosugars and investigated their binding modalities through X-ray crystallography. Our results reveal previously unobserved inhibitor binding modes and promising scaffolds for the generation of selective GMII inhibitors.


Assuntos
Cicloexanóis/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Manosidases/antagonistas & inibidores , Cicloexanóis/síntese química , Cicloexanóis/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Manosidases/metabolismo , Estrutura Molecular
12.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32948521

RESUMO

Metagenomics is an exciting alternative to seek carbohydrate-active enzymes from a range of sources. Typically, metagenomics reveals dozens of putative catalysts that require functional characterization for further application in industrial processes. High-throughput screening methods compatible with adequate natural substrates are crucial for an accurate functional elucidation of substrate preferences. Based on DNA sequencer-aided fluorophore-assisted carbohydrate electrophoresis (DSA-FACE) analysis of enzymatic-reaction products, we generated product profiles to consequently infer substrate cleavage positions, resulting in the generation of enzymatic-degradation maps. Product profiles were produced in high throughput for arabinoxylan (AX)-active enzymes belonging to the glycoside hydrolase families GH43 (subfamilies 2 [MG432], 7 [MG437], and 28 [MG4328]) and GH8 (MG8) starting from 12 (arabino)xylo-oligosaccharides. These enzymes were discovered through functional metagenomic studies of feces from the North American beaver (Castor canadensis). This work shows how enzyme loading alters the product profiles of all enzymes studied and gives insight into AX degradation patterns, revealing sequential substrate preferences of AX-active enzymes.IMPORTANCE Arabinoxylan is mainly found in the hemicellulosic fractions of rice straw, corn cobs, and rice husk. Converting arabinoxylan into (arabino)xylo-oligosaccharides as added-value products that can be applied in food, feed, and cosmetics presents a sustainable and economic alternative for the biorefinery industries. Efficient and profitable AX degradation requires a set of enzymes with particular characteristics. Therefore, enzyme discovery and the study of substrate preferences are of utmost importance. Beavers, as consumers of woody biomass, are a promising source of a repertoire of enzymes able to deconstruct hemicelluloses into soluble oligosaccharides. High-throughput analysis of the oligosaccharide profiles produced by these enzymes will assist in the selection of the most appropriate enzymes for the biorefinery.


Assuntos
Bactérias/enzimologia , Fezes/microbiologia , Metagenoma , Roedores/microbiologia , Xilanos/metabolismo , Animais , Ensaios de Triagem em Larga Escala , Análise de Sequência de DNA
13.
J Phys Chem A ; 124(17): 3471-3483, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32255629

RESUMO

Surfaces and interfaces are ubiquitous in nature. From cell membranes, to photovoltaic thin films, surfaces have important function in both biological and materials systems. Spectroscopic techniques have been developed to probe systems like these, such as sum frequency generation (SFG) spectroscopies. The advantage of SFG spectroscopy, a second-order spectroscopy, is that it can distinguish between signals produced from molecules in the bulk versus on the surface. We propose a polarization scheme for third-order spectroscopy experiments, such as pump-probe and 2D spectroscopy, to select for surface signals and not bulk signals. This proposed polarization condition uses one pulse perpendicular compared to the other three to isolate cross-peaks arising from molecules with polar and uniaxial (i.e., biaxial) order at a surface, while removing the signal from bulk isotropic molecules. In this work, we focus on two of these cases: XXXY and YYYX, which differ by the sign of the cross-peak they create. We compare this technique to SFG spectroscopy and vibrational circular dichroism to provide insight to the behavior of the cross-peak signal. We propose that these singularly cross-polarized schemes provide odd-ordered spectroscopies the surface-specificity typically associated with even-ordered techniques.

15.
J Biol Chem ; 287(13): 10623-10630, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22308037

RESUMO

DypB from Rhodococcus jostii RHA1 is a bacterial dye-decolorizing peroxidase (DyP) that oxidizes lignin and Mn(II). Three residues interact with the iron-bound solvent species in ferric DypB: Asn-246 and the conserved Asp-153 and Arg-244. Substitution of either Asp-153 or Asn-246 with alanine minimally affected the second order rate constant for Compound I formation (k(1) ∼ 10(5) M(-1)s(-1)) and the specificity constant (k(cat)/K(m)) for H(2)O(2). Even in the D153A/N246A double variant, these values were reduced less than 30-fold. However, these substitutions dramatically reduced the stability of Compound I (t(1/2) ∼ 0.13 s) as compared with the wild-type enzyme (540 s). By contrast, substitution of Arg-244 with leucine abolished the peroxidase activity, and heme iron of the variant showed a pH-dependent transition from high spin (pH 5) to low spin (pH 8.5). Two variants were designed to mimic the plant peroxidase active site: D153H, which was more than an order of magnitude less reactive with H(2)O(2), and N246H, which had no detectable peroxidase activity. X-ray crystallographic studies revealed that structural changes in the variants are confined to the distal heme environment. The data establish an essential role for Arg-244 in Compound I formation in DypB, possibly through charge stabilization and proton transfer. The principle roles of Asp-153 and Asn-246 appear to be in modulating the subsequent reactivity of Compound I. These results expand the range of residues known to catalyze Compound I formation in heme peroxidases.


Assuntos
Proteínas de Bactérias/química , Heme/química , Peroxidase/química , Rhodococcus/enzimologia , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Catálise , Concentração de Íons de Hidrogênio , Mutação de Sentido Incorreto , Peroxidase/genética , Rhodococcus/genética
16.
Biopolymers ; 99(10): 666-74, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23821499

RESUMO

The synthesis of defined glycans enables us to further understand their roles in a biological context. Although useful chemical methods have been developed for the synthesis of glycans, these typically require complex protection and deprotection steps along with challenging control of anomeric stereochemistry. Enzymatic methods offer an attractive alternative to chemical synthesis. In particular, the use of glycosynthases and thioglycoligases, classes of engineered glycoside hydrolases, offers an enticing approach to the stereo- and regioselective synthesis of glycans without the need for protecting groups. Herein, we describe recent progress in the use of glycosynthases and thioglycoligases for the synthesis of glycans and glycopolymers.


Assuntos
Glicosídeo Hidrolases , Polissacarídeos
17.
ChemMedChem ; 18(4): e202200580, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36533564

RESUMO

Degradation of the extracellular matrix (ECM) supports tissue integrity and homeostasis, but is also a key factor in cancer metastasis. Heparanase (HPSE) is a mammalian ECM-remodeling enzyme with ß-D-endo-glucuronidase activity overexpressed in several malignancies, and is thought to facilitate tumor growth and metastasis. By this virtue, HPSE is considered an attractive target for the development of cancer therapies, yet to date no HPSE inhibitors have progressed to the clinic. Here we report on the discovery of glucurono-configured cyclitol derivatives featuring simple substituents at the 4-O-position as irreversible HPSE inhibitors. We show that these compounds, unlike glucurono-cyclophellitol, are selective for HPSE over ß-D-exo-glucuronidase (GUSB), also in platelet lysate. The observed selectivity is induced by steric and electrostatic interactions of the substituents at the 4-O-position. Crystallographic analysis supports this rationale for HPSE selectivity, and computer simulations provide insights in the conformational preferences and binding poses of the inhibitors, which we believe are good starting points for the future development of HPSE-targeting antimetastatic cancer drugs.


Assuntos
Antineoplásicos , Neoplasias , Animais , Humanos , Glucuronidase/química , Glucuronidase/metabolismo , Antineoplásicos/farmacologia , Mamíferos/metabolismo
18.
Chem Sci ; 14(41): 11429-11440, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37886098

RESUMO

Sulfolactate (SL) is a short-chain organosulfonate that is an important reservoir of sulfur in the biosphere. SL is produced by oxidation of sulfolactaldehyde (SLA), which in turn derives from sulfoglycolysis of the sulfosugar sulfoquinovose, or through oxidation of 2,3-dihydroxypropanesulfonate. Oxidation of SLA is catalyzed by SLA dehydrogenases belonging to the aldehyde dehydrogenase superfamily. We report that SLA dehydrogenase RlGabD from the sulfoglycolytic bacterium Rhizobium leguminsarum SRDI565 can use both NAD+ and NADP+ as cofactor to oxidize SLA, and indicatively operates through a rapid equilibrium ordered mechanism. We report the cryo-EM structure of RlGabD bound to NADH, revealing a tetrameric quaternary structure and supporting proposal of organosulfonate binding residues in the active site, and a catalytic mechanism. Sequence based homology searches identified SLA dehydrogenase homologs in a range of putative sulfoglycolytic gene clusters in bacteria predominantly from the phyla Actinobacteria, Firmicutes, and Proteobacteria. This work provides a structural and biochemical view of SLA dehydrogenases to complement our knowledge of SLA reductases, and provide detailed insights into a critical step in the organosulfur cycle.

19.
ACS Chem Biol ; 18(12): 2564-2573, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38051515

RESUMO

GH127 and GH146 microorganismal retaining ß-l-arabinofuranosidases, expressed by human gut microbiomes, feature an atypical catalytic domain and an unusual mechanism of action. We recently reported that both Bacteroides thetaiotaomicron BtGH146 and Bifidobacterium longum HypBA1 are inhibited by ß-l-arabinofuranosyl cyclophellitol epoxide, supporting the action of a zinc-coordinated cysteine as a catalytic nucleophile, where in most retaining GH families, an aspartate or glutamate is employed. This work presents a panel of ß-l-arabinofuranosyl cyclophellitol epoxides and aziridines as mechanism-based BtGH146/HypBA1 inhibitors and activity-based probes. The ß-l-arabinofuranosyl cyclophellitol aziridines both inhibit and label ß-l-arabinofuranosidase efficiently (however with different activities), whereas the epoxide-derived probes favor BtGH146 over HypBA1. These findings are accompanied by X-ray structural analysis of the unmodified ß-l-arabinofuranosyl cyclophellitol aziridine in complex with both isozymes, which were shown to react by nucleophilic opening of the aziridine, at the pseudoanomeric carbon, by the active site cysteine nucleophile to form a stable thioether bond. Altogether, our activity-based probes may serve as chemical tools for the detection and identification of low-abundance ß-l-arabinofuranosidases in complex biological samples.


Assuntos
Aziridinas , Cisteína , Humanos , Glicosídeo Hidrolases/química , Aziridinas/química , Compostos de Epóxi
20.
J Phys Chem Lett ; 14(50): 11497-11505, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38088867

RESUMO

Materials that undergo singlet fission are of interest for their use in light-harvesting, photocatalysis, and quantum information science, but their ability to undergo fission can be sensitive to local variations in molecular packing. Herein we employ transient absorption microscopy, molecular dynamics simulations, and electronic structure calculations to interrogate how structures found at the edges of orthorhombic rubrene crystals impact singlet fission. Within a micrometer-scale spatial region at the edges of rubrene crystals, we find that the rate of singlet fission increases nearly 4-fold. This observation is consistent with formation of a region at crystal edges with reduced order that accelerates singlet fission by disrupting the symmetry found in rubrene's orthorhombic crystal structure. Our work demonstrates that structural distortions of singlet fission materials can be used to control fission in time and in space, potentially offering a means of controlling this process in light harvesting and quantum information applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA