Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(9): 5811-5822, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38387071

RESUMO

Nucleases present a formidable barrier to the application of nucleic acids in biology, significantly reducing the lifetime of nucleic acid-based drugs. Here, we develop a novel methodology to protect DNA and RNA from nucleases by reconfiguring their supramolecular structure through the addition of a nucleobase mimic, cyanuric acid. In the presence of cyanuric acid, polyadenine strands assemble into triple helical fibers known as the polyA/CA motif. We report that this motif is exceptionally resistant to nucleases, with the constituent strands surviving for up to 1 month in the presence of serum. The conferred stability extends to adjacent non-polyA sequences, albeit with diminishing returns relative to their polyA sections due to hypothesized steric clashes. We introduce a strategy to regenerate stability through the introduction of free polyA strands or positively charged amino side chains, enhancing the stability of sequences of varied lengths. The proposed protection mechanism involves enzyme failure to recognize the unnatural polyA/CA motif, coupled with the motif's propensity to form long, bundling supramolecular fibers. The methodology provides a fundamentally new mechanism to protect nucleic acids from degradation using a supramolecular approach and increases lifetime in serum to days, weeks, or months.


Assuntos
DNA , RNA , RNA/química , DNA/química
2.
J Am Chem Soc ; 145(4): 2142-2151, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651186

RESUMO

A significant barrier to biological applications of DNA structures is their instability to nucleases. UV-mediated thymine dimerization can crosslink and stabilize DNA nanostructures, but its effect on DNA strand hybridization fidelity and function is unclear. In this work, we first compare a number of methods for DNA irradiation with different wavelengths of light and different photosensitizers. We demonstrate that all approaches can achieve nuclease protection; however, the levels of DNA off-target crosslinking and damage vary. We then describe mild irradiation conditions intended to safeguard DNA against nuclease degradation. We demonstrate up to 25× increase in serum stability while minimizing off-target damage and maintaining functions such as hybridization efficiency, gene silencing, aptamer binding, and DNA nanostructure formation. Our methodology requires no complex instruments beyond a UV light source and no synthetic modification of the DNA itself, allowing for applications in numerous areas of nucleic acid therapy and nanotechnology.


Assuntos
DNA , Nanoestruturas , DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Oligonucleotídeos/química , Hibridização de Ácido Nucleico , Conformação de Ácido Nucleico
3.
Angew Chem Int Ed Engl ; 62(51): e202315768, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37905978

RESUMO

Nucleic acid therapeutics (NATs), such as mRNA, small interfering RNA or antisense oligonucleotides are extremely efficient tools to modulate gene expression and tackle otherwise undruggable diseases. Spherical nucleic acids (SNAs) can efficiently deliver small NATs to cells while protecting their payload from nucleases, and have improved biodistribution and muted immune activation. Self-assembled SNAs have emerged as nanostructures made from a single DNA-polymer conjugate with similar favorable properties as well as small molecule encapsulation. However, because they maintain their structure by non-covalent interactions, they might suffer from disassembly in biologically relevant conditions, especially with regard to their interaction with serum proteins. Here, we report a systematic study of the factors that govern the fate of self-assembled SNAs. Varying the core chemistry and using stimuli-responsive disulfide crosslinking, we show that extracellular stability upon binding with serum proteins is important for recognition by membrane receptors, triggering cellular uptake. At the same time, intracellular dissociation is required for efficient therapeutic release. Disulfide-crosslinked SNAs combine these two properties and result in efficient and non-toxic unaided gene silencing therapeutics. We anticipate these investigations will help the translation of promising self-assembled structures towards in vivo gene silencing applications.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos/química , Distribuição Tecidual , DNA/metabolismo , Proteínas Sanguíneas/metabolismo , Dissulfetos
4.
J Biol Chem ; 294(36): 13233-13247, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31324716

RESUMO

Glycoside hydrolase family 74 (GH74) is a historically important family of endo-ß-glucanases. On the basis of early reports of detectable activity on cellulose and soluble cellulose derivatives, GH74 was originally considered to be a "cellulase" family, although more recent studies have generally indicated a high specificity toward the ubiquitous plant cell wall matrix glycan xyloglucan. Previous studies have indicated that GH74 xyloglucanases differ in backbone cleavage regiospecificities and can adopt three distinct hydrolytic modes of action: exo, endo-dissociative, and endo-processive. To improve functional predictions within GH74, here we coupled in-depth biochemical characterization of 17 recombinant proteins with structural biology-based investigations in the context of a comprehensive molecular phylogeny, including all previously characterized family members. Elucidation of four new GH74 tertiary structures, as well as one distantly related dual seven-bladed ß-propeller protein from a marine bacterium, highlighted key structure-function relationships along protein evolutionary trajectories. We could define five phylogenetic groups, which delineated the mode of action and the regiospecificity of GH74 members. At the extremes, a major group of enzymes diverged to hydrolyze the backbone of xyloglucan nonspecifically with a dissociative mode of action and relaxed backbone regiospecificity. In contrast, a sister group of GH74 enzymes has evolved a large hydrophobic platform comprising 10 subsites, which facilitates processivity. Overall, the findings of our study refine our understanding of catalysis in GH74, providing a framework for future experimentation as well as for bioinformatics predictions of sequences emerging from (meta)genomic studies.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Bactérias/enzimologia , Biocatálise , Cristalografia por Raios X , Fungos/enzimologia , Glicosídeo Hidrolases/genética , Cinética , Modelos Moleculares , Conformação Proteica , Estereoisomerismo , Especificidade por Substrato
5.
Biochem J ; 475(24): 3963-3978, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30463871

RESUMO

Paenibacillus odorifer produces a single multimodular enzyme containing a glycoside hydrolase (GH) family 74 module (AIQ73809). Recombinant production and characterization of the GH74 module (PoGH74cat) revealed a highly specific, processive endo-xyloglucanase that can hydrolyze the polysaccharide backbone at both branched and unbranched positions. X-ray crystal structures obtained for the free enzyme and oligosaccharide complexes evidenced an extensive hydrophobic binding platform - the first in GH74 extending from subsites -4 to +6 - and unique mobile active-site loops. Site-directed mutagenesis revealed that glycine-476 was uniquely responsible for the promiscuous backbone-cleaving activity of PoGH74cat; replacement with tyrosine, which is conserved in many GH74 members, resulted in exclusive hydrolysis at unbranched glucose units. Likewise, systematic replacement of the hydrophobic platform residues constituting the positive subsites indicated their relative contributions to the processive mode of action. Specifically, W347 (+3 subsite) and W348 (+5 subsite) are essential for processivity, while W406 (+2 subsite) and Y372 (+6 subsite) are not strictly essential, but aid processivity.


Assuntos
Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Paenibacillus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Paenibacillus/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato/fisiologia
6.
ACS Nano ; 18(5): 3996-4007, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38265027

RESUMO

Spherical nucleic acids─nanospheres with nucleic acids on their corona─have emerged as a promising class of nanocarriers, aiming to address the shortcomings of traditional nucleic therapeutics, namely, their poor stability, biodistribution, and cellular entry. By conjugating hydrophobic monomers to a growing nucleic acid strand in a sequence-defined manner, our group has developed self-assembled spherical nucleic acids (SaSNAs), for unaided, enhanced gene silencing. By virtue of their self-assembled nature, SaSNAs can disassemble under certain conditions in contrast to covalent or gold nanoparticle SNAs. Gene silencing involves multiple steps including cellular uptake, endosomal escape, and therapeutic cargo release. Whether assembly vs disassembly is advantageous to any of these steps has not been previously studied. In this work, we modify the DNA and hydrophobic portions of SaSNAs and examine their effects on stability, cellular uptake, and gene silencing. When the linkages between the hydrophobic units are changed from phosphate to phosphorothioate, we find that the SaSNAs disassemble better in endosomal conditions and exhibit more efficacious silencing, despite having cellular uptake similar to that of their phosphate counterparts. Thus, disassembly in the endolysosomal compartments is advantageous, facilitating the release of the nucleic acid cargo and the interactions between the hydrophobic units and endosomal lipids. We also find that SaSNAs partially disassemble in serum to bind albumin; the disassembled, albumin-bound strands are less efficient at cellular uptake and gene silencing than their assembled counterparts, which can engage scavenger receptors for internalization. When the DNA portion is cross-linked by G-quadruplex formation, disassembly decreases and cellular uptake significantly increases. However, this does not translate to greater gene silencing, again illustrating the need for disassembly of the SaSNAs when they are in the endosome. This work showcases the advantages of the dual nature of SaSNAs for gene silencing, requiring extracellular assembly and disassembly inside the cell compartments.


Assuntos
Nanopartículas Metálicas , Ácidos Nucleicos , Nanopartículas Metálicas/química , Ácidos Nucleicos/química , Ouro/química , Distribuição Tecidual , Inativação Gênica , DNA/metabolismo , Albuminas/metabolismo , Fosfatos/metabolismo
7.
Nucleic Acid Ther ; 33(4): 265-276, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37196168

RESUMO

Antisense oligonucleotides (ASOs) can predictably alter RNA processing and control protein expression; however, challenges in the delivery of these therapeutics to specific tissues, poor cellular uptake, and endosomal escape have impeded progress in translating these agents into the clinic. Spherical nucleic acids (SNAs) are nanoparticles with a DNA external shell and a hydrophobic core that arise from the self-assembly of ASO strands conjugated to hydrophobic polymers. SNAs have recently shown significant promise as vehicles for improving the efficacy of ASO cellular uptake and gene silencing. However, to date, no studies have investigated the effect of the hydrophobic polymer sequence on the biological properties of SNAs. In this study, we created a library of ASO conjugates by covalently attaching polymers with linear or branched [dodecanediol phosphate] units and systematically varying polymer sequence and composition. We show that these parameters can significantly impact encapsulation efficiency, gene silencing activity, SNA stability, and cellular uptake, thus outlining optimized polymer architectures for gene silencing.


Assuntos
Nanopartículas , Ácidos Nucleicos , Inativação Gênica , Nanopartículas/química , Ácidos Nucleicos/genética , Ácidos Nucleicos/química , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Polímeros
8.
Methods Mol Biol ; 2657: 3-14, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37149519

RESUMO

The quantitation of liberated reducing sugars by the copper-bicinchoninic acid (BCA) assay provides a highly sensitive method for the measurement of glycoside hydrolase (GH) activity, particularly on soluble polysaccharide substrates. Here we describe a straightforward method adapted to low-volume polymerase chain reaction (PCR) tubes that enables the rapid, parallel determination of GH kinetics in applications ranging from initial activity screening and assay optimization to precise Michaelis-Menten analysis.


Assuntos
Glicosídeo Hidrolases , Quinolinas , Cobre , Polissacarídeos
9.
Adv Sci (Weinh) ; 10(12): e2205713, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36752390

RESUMO

Deoxyribonucleic acid (DNA) hydrogels are a unique class of programmable, biocompatible materials able to respond to complex stimuli, making them valuable in drug delivery, analyte detection, cell growth, and shape-memory materials. However, unmodified DNA hydrogels in the literature are very soft, rarely reaching a storage modulus of 103  Pa, and they lack functionality, limiting their applications. Here, a DNA/small-molecule motif to create stiff hydrogels from unmodified DNA, reaching 105  Pa in storage modulus is used. The motif consists of an interaction between polyadenine and cyanuric acid-which has 3-thymine like faces-into multimicrometer supramolecular fibers. The mechanical properties of these hydrogels are readily tuned, they are self-healing and thixotropic. They integrate a high density of small, nontoxic molecules, and are functionalized simply by varying the molecule sidechain. They respond to three independent stimuli, including a small molecule stimulus. These stimuli are used to integrate and release DNA wireframe and DNA origami nanostructures within the hydrogel. The hydrogel is applied as an injectable delivery vector, releasing an antisense oligonucleotide in cells, and increasing its gene silencing efficacy. This work provides tunable, stimuli-responsive, exceptionally stiff all-DNA hydrogels from simple sequences, extending these materials' capabilities.


Assuntos
Nanoestruturas , Ácidos Nucleicos , Hidrogéis/química , Nanoestruturas/química , DNA/química , Inativação Gênica
10.
Methods Mol Biol ; 1588: 3-14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28417356

RESUMO

The quantitation of liberated reducing sugars by the copper-bicinchoninic acid (BCA) assay provides a highly sensitive method for the measurement of glycoside hydrolase (GH) activity, particularly on soluble polysaccharide substrates. Here, we describe a straightforward method adapted to low-volume polymerase chain reaction (PCR) tubes which enables the rapid, parallel determination of GH kinetics in applications ranging from initial activity screening and assay optimization, to precise Michaelis-Menten analysis.


Assuntos
Cobre/química , Ensaios Enzimáticos/métodos , Glicosídeo Hidrolases/química , Quinolinas/química , Glicosídeo Hidrolases/metabolismo , Cinética , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA