Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Stroke ; 53(3): e79-e84, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35135320

RESUMO

BACKGROUND: Stable atherosclerotic plaques are characterized by thick fibrous caps of smooth muscle cells, collagen, and macrocalcifications. Identifying factors of plaque stability is necessary to design drugs to prevent plaque rupture and symptoms. Osteomodulin, originally identified in bones, is expressed by bone synthesizing osteoblasts and involved in mineralization. In the present study, we analyzed osteomodulin expression in human carotid plaques, its link with plaque phenotype, calcification, and future cardiovascular events. METHODS: Osteomodulin gene expression (OMD; n=82) was determined by RNA sequencing and osteomodulin protein levels by immunohistochemistry (n=45) in carotid plaques obtained by endarterectomy from patients with or without cerebrovascular symptoms from the CPIP (Carotid Plaque Imaging Project) cohort, Skåne University Hospital, Sweden. Plaque components were assessed by immunohistochemistry, RNA sequencing, and multiplex analysis. Patients were followed for cardiovascular events or cardiovascular death during a median of 57 or 70 months, respectively, using national registers. RESULTS: OMD levels were increased in plaques from asymptomatic patients compared to symptomatics. High OMD levels were associated with fewer cardiovascular events during follow-up. OMD correlated positively with smooth muscle α-actin (ACTA2; r=0.73, P=10-13) and collagen (COL1A2; r=0.4, P=0.0002), but inversely with CD68 gene expression (r=-0.67, P=10-11), lipids (r=-0.37, P=0.001), intraplaque hemorrhage (r=-0.32, P=0.010), inflammatory cytokine, and matrix metalloproteinase plaque contents. OMD was positively associated with MSX2 (Msh Homeobox 2) (r=0.32, P=0.003), a marker of preosteoblast differentiation, BMP4 (bone morphogenetic protein) (r=0.50, P=0.000002) and BMP6 (r=0.47, P=0.000007), plaque calcification (r=0.35, P=0.016), and was strongly upregulated in osteogenically stimulated smooth muscle cells, which was further increased upon BMP stimulation. Osteomodulin protein was present in calcified regions. Osteomodulin protein levels were associated with plaque calcification (r=0.41, P=0.006) and increased in macrocalcified plaques. CONCLUSIONS: These data show that osteomodulin mRNA and protein levels are associated with plaque calcification in human atherosclerosis. Furthermore, osteomodulin mRNA, but not protein levels, is associated with plaque stability.


Assuntos
Doenças Cardiovasculares/epidemiologia , Proteínas da Matriz Extracelular/genética , Placa Aterosclerótica/genética , Proteoglicanas/genética , Calcificação Vascular/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Expressão Gênica , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Osteoblastos/metabolismo , Placa Aterosclerótica/metabolismo , Proteoglicanas/metabolismo , Suécia/epidemiologia , Calcificação Vascular/metabolismo
2.
J Immunol ; 196(3): 1249-58, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26712944

RESUMO

Moraxella catarrhalis is a respiratory tract pathogen commonly causing otitis media in children and acute exacerbations in patients suffering from chronic obstructive pulmonary disease. Cartilage oligomeric matrix protein (COMP) functions as a structural component in cartilage, as well as a regulator of complement activity. Importantly, COMP is detected in resident macrophages and monocytes, alveolar fluid, and the endothelium of blood vessels in lung tissue. We show that the majority of clinical isolates of M. catarrhalis (n = 49), but not other tested bacterial pathogens, bind large amounts of COMP. COMP interacts directly with the ubiquitous surface protein A2 of M. catarrhalis. Binding of COMP correlates with survival of M. catarrhalis in human serum by inhibiting bactericidal activity of the complement membrane attack complex. Moreover, COMP inhibits phagocytic killing of M. catarrhalis by human neutrophils. We further observed that COMP reduces bacterial adhesion and uptake by human lung epithelial cells, thus protecting M. catarrhalis from intracellular killing by epithelial cells. Taken together, our findings uncover a novel mechanism that M. catarrhalis uses to evade host innate immunity.


Assuntos
Proteína de Matriz Oligomérica de Cartilagem/imunologia , Evasão da Resposta Imune/imunologia , Imunidade Inata/imunologia , Moraxella catarrhalis/imunologia , Infecções por Moraxellaceae/imunologia , Aderência Bacteriana/imunologia , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Linhagem Celular , Citometria de Fluxo , Humanos , Moraxella catarrhalis/metabolismo , Infecções por Moraxellaceae/metabolismo
3.
J Biol Chem ; 291(45): 23744-23755, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27634037

RESUMO

Small leucine-rich proteoglycans interact with other extracellular matrix proteins and are important regulators of matrix assembly. Fibromodulin has a key role in connective tissues, binding collagen through two identified binding sites in its leucine-rich repeat domain and regulating collagen fibril formation in vitro and in vivo Some nine tyrosine residues in the fibromodulin N-terminal domain are O-sulfated, a posttranslational modification often involved in protein interactions. The N-terminal domain mimics heparin, binding proteins with clustered basic amino acid residues. Because heparin affects collagen fibril formation, we investigated whether tyrosine sulfate is involved in fibromodulin interactions with collagen. Using full-length fibromodulin and its N-terminal tyrosine-sulfated domain purified from tissue, as well as recombinant fibromodulin fragments, we found that the N-terminal domain binds collagen. The tyrosine-sulfated domain and the leucine-rich repeat domain both bound to three specific sites along the collagen type I molecule, at the N terminus and at 100 and 220 nm from the N terminus. The N-terminal domain shortened the collagen fibril formation lag phase and tyrosine sulfation was required for this effect. The isolated leucine-rich repeat domain inhibited the fibril formation rate, and full-length fibromodulin showed a combination of these effects. The fibrils formed in the presence of fibromodulin or its fragments showed more organized structure. Fibromodulin and its tyrosine sulfate domain remained bound on the formed fiber. Taken together, this suggests a novel, regulatory function for tyrosine sulfation in collagen interaction and control of fibril formation.


Assuntos
Colágeno Tipo I/metabolismo , Fibromodulina/metabolismo , Tirosina/análogos & derivados , Animais , Bovinos , Linhagem Celular , Fibromodulina/química , Humanos , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tirosina/química , Tirosina/metabolismo
4.
Biochem J ; 473(9): 1153-64, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26920026

RESUMO

PRELP (proline/arginine-rich end leucine-rich repeat protein) is a member of the leucine-rich repeat (LRR) family of extracellular matrix proteins in connective tissue. In contrast with other members of the family, the N-terminal domain of PRELP has a high content of proline and positively charged amino acids. This domain has previously been shown to bind chondrocytes and to inhibit osteoclast differentiation. In the present study, we show that PRELP mediates cell adhesion by binding to cell-surface glycosaminoglycans (GAGs). Thus, rat skin fibroblasts (RSFs) bound to full-length PRELP and to the N-terminal part of PRELP alone, but not to truncated PRELP lacking the positively charged N-terminal region. Cell attachment to PRELP was inhibited by addition of soluble heparin or heparan sulfate (HS), by blocking sulfation of the fibroblasts or by treating the cells with a combination of chondroitinase and heparinase. Using affinity chromatography, we identified syndecan-1, syndecan-4 and glypican-1 as cell-surface proteoglycans (PGs) binding to the N-terminal part of PRELP. Finally, we show that the N-terminal domain of PRELP in combination with the integrin-binding domain of fibronectin, but neither of the fragments alone, induced fibroblast focal adhesion formation. These findings provide support for a role of the N-terminal region of PRELP as an important regulator of cell adhesion and behaviour, which may be of importance in pathological conditions.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Adesões Focais/metabolismo , Glicoproteínas/metabolismo , Proteoglicanas/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Proteínas da Matriz Extracelular/genética , Adesões Focais/genética , Glicoproteínas/genética , Células HEK293 , Heparina/genética , Heparina/metabolismo , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Humanos , Domínios Proteicos , Proteoglicanas/genética , Ratos
5.
Cell Physiol Biochem ; 36(1): 111-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25925201

RESUMO

BACKGROUND/AIMS: Altered expression of the integrin family of cell adhesion receptors has been associated with initiation, progression, and metastasis of solid tumors as well as in the development of chemoresistance. Here, we investigated the role of integrins, in particular integrin ß1, in cell volume regulation and drug-induced apoptosis in adherent and non-adherent Ehrlich ascites cell lines. METHODS: Adhesion phenotypes were verified by colorimetric cell-adhesion-assay. Quantitative real-time PCR and western blot were used to compare expression levels of integrin subunits. Small interfering RNA was used to silence integrin ß1 expression. Regulatory volume decrease (RVD) after cell swelling was studied with calcein-fluorescence-self-quenching and Coulter counter analysis. Taurine efflux was estimated with tracer technique. Caspase assay was used to determine apoptosis. RESULTS: We show that adherent cells have stronger fibronectin binding and a significantly increased expression of integrin α5, αv, and ß1 at mRNA and protein level, compared to non-adherent cells. Knockdown of integrin ß1 reduced RVD of the adherent but not of the non-adherent cells. Efflux of taurine was unaffected. In contrast to non-adherent, adherent cells exhibited chemoresistance to chemotherapeutic drugs (cisplatin and gemcitabine). However, knockdown of integrin ß1 promoted cisplatin-induced caspase activity in adherent cells. CONCLUSION: Our data identifies integrin ß1 as a part of the osmosensing machinery and regulator of cisplatin resistance in adherent Ehrlich cells.


Assuntos
Carcinoma de Ehrlich/metabolismo , Resistencia a Medicamentos Antineoplásicos , Integrina beta1/genética , Integrina beta1/metabolismo , Osmose , Animais , Antineoplásicos/farmacologia , Apoptose , Carcinoma de Ehrlich/genética , Carcinoma de Ehrlich/patologia , Caspases/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Cisplatino/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Fibronectinas/metabolismo , Camundongos , Taurina/metabolismo , Gencitabina
6.
Am J Hum Genet ; 86(2): 126-37, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20137779

RESUMO

Osteochondritis dissecans is a disorder in which fragments of articular cartilage and subchondral bone dislodge from the joint surface. We analyzed a five-generation family in which affected members had autosomal-dominant familial osteochondritis dissecans. A genome-wide linkage analysis identified aggrecan (ACAN) as a prime candidate gene for the disorder. Sequence analysis of ACAN revealed heterozygosity for a missense mutation (c.6907G > A) in affected individuals, resulting in a p.V2303M amino acid substitution in the aggrecan G3 domain C-type lectin, which mediates interactions with other proteins in the cartilage extracellular matrix. Binding studies with recombinant mutated and wild-type G3 proteins showed loss of fibulin-1, fibulin-2, and tenascin-R interactions for the V2303M protein. Mass spectrometric analyses of aggrecan purified from patient cartilage verified that V2303M aggrecan is produced and present in the tissue. Our results provide a molecular mechanism for the etiology of familial osteochondritis dissecans and show the importance of the aggrecan C-type lectin interactions for cartilage function in vivo.


Assuntos
Agrecanas/química , Agrecanas/genética , Matriz Extracelular/metabolismo , Genes Dominantes/genética , Lectinas Tipo C/química , Mutação de Sentido Incorreto/genética , Osteocondrite Dissecante/genética , Adolescente , Sequência de Aminoácidos , Sequência de Bases , Cromossomos Humanos Par 15/genética , Análise Mutacional de DNA , Ligação Genética , Humanos , Ligantes , Masculino , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Osteocondrite Dissecante/diagnóstico por imagem , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Radiografia
7.
Front Bioeng Biotechnol ; 11: 1128587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937743

RESUMO

Aggrecan (ACAN) is localized in the intervertebral disc (IVD) in unique compartment-specific patterns where it contributes to the tissue structure and mechanical function together with collagens. The extracellular matrix (ECM) of the IVD undergoes degenerative changes during aging, misuse or trauma, which inevitably alter the biochemical and biomechanical properties of the tissue. A deeper understanding of these processes can be achieved in genetically engineered mouse models, taking into account the multifaceted aspects of IVD development. In this study, we generated aggrecan insertion mutant mice (Acan iE5/iE5 ) by interrupting exon 5 coding for the G1 domain of ACAN, and analyzed the morphological and mechanical properties of the different IVD compartments during embryonic development. Western blotting using an antibody against the total core protein failed to detect ACAN in cartilage extracts, whereas immunohistochemistry by a G1-specific antibody showed weak signals in vertebral tissues of Acan iE5/iE5 mice. Homozygous mutant mice are perinatally lethal and characterized by short snout, cleft palate and disproportionate dwarfism. Whole-mount skeletal staining and µ-CT analysis of Acan iE5/iE5 mice at embryonic day 18.5 revealed compressed vertebral bodies with accelerated mineralization compared to wild type controls. In Acan iE5/iE5 mice, histochemical staining revealed collapsed extracellular matrix with negligible sulfated glycosaminoglycan content accompanied by a high cellular density. Collagen type II deposition was not impaired in the IVD of Acan iE5/iE5 mice, as shown by immunohistochemistry. Mutant mice developed a severe IVD phenotype with deformed nucleus pulposus and thinned cartilaginous endplates accompanied by a disrupted growth plate structure in the vertebral body. Atomic force microscopy (AFM) imaging demonstrated a denser collagen network with thinner fibrils in the mutant IVD zones compared to wild type. Nanoscale AFM indentation revealed bimodal stiffness distribution attributable to the softer proteoglycan moiety and harder collagenous fibrils of the wild type IVD ECM. In Acan iE5/iE5 mice, loss of aggrecan resulted in a marked shift of the Young's modulus to higher values in all IVD zones. In conclusion, we demonstrated that aggrecan is pivotal for the determination and maintenance of the proper stiffness of IVD and vertebral tissues, which in turn could play an essential role in providing developmental biomechanical cues.

8.
J Orthop Res ; 41(12): 2765-2778, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37218349

RESUMO

Degenerative meniscus lesions have been associated with both osteoarthritis etiology and its progression. We, therefore, sought to establish a human meniscus ex vivo model to study the meniscal response to cytokine treatment using a proteomics approach. Lateral menisci were obtained from five knee-healthy donors. The meniscal body was cut into vertical slices and further divided into an inner (avascular) and outer region. Explants were either left untreated (controls) or stimulated with cytokines. Medium changes were conducted every 3 days up to Day 21 and liquid chromatography-mass spectrometry was performed at all the time points for the identification and quantification of proteins. Mixed-effect linear regression models were used for statistical analysis to estimate the effect of treatments versus control on protein abundance. Treatment by IL1ß increased release of cytokines such as interleukins, chemokines, and matrix metalloproteinases but a limited catabolic effect in healthy human menisci explants. Further, we observed an increased release of matrix proteins (collagens, integrins, prolargin, tenascin) in response to oncostatin M (OSM) + tumor necrosis factor (TNF) and TNF+interleukin-6 (IL6) + sIL6R treatments, and analysis of semitryptic peptides provided additional evidence of increased catabolic effects in response to these treatments. The induced activation of catabolic processes may play a role in osteoarthritis development.


Assuntos
Menisco , Osteoartrite , Humanos , Proteômica , Osteoartrite/metabolismo , Citocinas/metabolismo , Meniscos Tibiais/patologia , Fator de Necrose Tumoral alfa/metabolismo
9.
JCI Insight ; 8(17)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37561588

RESUMO

Inadequate adaption to mechanical forces, including blood pressure, contributes to development of arterial aneurysms. Recent studies have pointed to a mechanoprotective role of YAP and TAZ in vascular smooth muscle cells (SMCs). Here, we identified reduced expression of YAP1 in human aortic aneurysms. Vascular SMC-specific knockouts (KOs) of YAP/TAZ were thus generated using the integrin α8-Cre (Itga8-Cre) mouse model (i8-YT-KO). i8-YT-KO mice spontaneously developed aneurysms in the abdominal aorta within 2 weeks of KO induction and in smaller arteries at later times. The vascular specificity of Itga8-Cre circumvented gastrointestinal effects. Aortic aneurysms were characterized by elastin disarray, SMC apoptosis, and accumulation of proteoglycans and immune cell populations. RNA sequencing, proteomics, and myography demonstrated decreased contractile differentiation of SMCs and impaired vascular contractility. This associated with partial loss of myocardin expression, reduced blood pressure, and edema. Mediators in the inflammatory cGAS/STING pathway were increased. A sizeable increase in SOX9, along with several direct target genes, including aggrecan (Acan), contributed to proteoglycan accumulation. This was the earliest detectable change, occurring 3 days after KO induction and before the proinflammatory transition. In conclusion, Itga8-Cre deletion of YAP and TAZ represents a rapid and spontaneous aneurysm model that recapitulates features of human abdominal aortic aneurysms.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma Aórtico , Animais , Humanos , Camundongos , Aorta Abdominal , Aneurisma Aórtico/genética , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Modelos Animais de Doenças , Músculo Liso Vascular/metabolismo
10.
Front Pharmacol ; 13: 953771, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120350

RESUMO

Dipeptidyl peptidase 4 (DPP4) has been proposed as a marker for activated fibroblasts in fibrotic disease. We aimed to investigate whether a profibrotic DPP4 phenotype is present in lung tissue from patients with idiopathic pulmonary fibrosis (IPF). The presence of DPP4+ fibroblasts in normal and IPF lung tissue was investigated using flow cytometry and immunohistology. In addition, the involvement of DPP4 in fibroblast activation was examined in vitro, using CRISPR/Cas9 mediated genetic inactivation to generate primary DPP4 knockout lung fibroblasts. We observed a reduced frequency of primary DPP4+ fibroblasts in IPF tissue using flow cytometry, and an absence of DPP4+ fibroblasts in pathohistological features of IPF. The in vivo observations were supported by results in vitro showing a decreased expression of DPP4 on normal and IPF fibroblasts after profibrotic stimuli (transforming growth factor ß) and no effect on the expression of activation markers (α-smooth muscle actin, collagen I and connective tissue growth factor) upon knockout of DPP4 in lung fibroblasts with or without activation with profibrotic stimuli.

11.
Sci Rep ; 12(1): 5215, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338222

RESUMO

The cartilage aggrecan proteoglycan is crucial for both skeletal growth and articular cartilage function. A number of aggrecan (ACAN) gene variants have been linked to skeletal disorders, ranging from short stature to severe chondrodyplasias. Osteochondritis dissecans is a disorder where articular cartilage and subchondral bone fragments come loose from the articular surface. We previously reported a missense ACAN variant linked to familial osteochondritis dissecans, with short stature and early onset osteoarthritis, and now describe three novel ACAN gene variants from additional families with this disorder. Like the previously described variant, these are autosomal dominant missense variants, resulting in single amino acid residue substitutions in the C-type lectin repeat of the aggrecan G3 domain. Functional studies showed that neither recombinant variant proteins, nor full-length variant aggrecan proteoglycan from heterozygous patient cartilage, were secreted to the same level as wild-type aggrecan. The variant proteins also showed decreased binding to known cartilage extracellular matrix ligands. Mapping these and other ACAN variants linked to hereditary skeletal disorders showed a clustering of osteochondritis dissecans-linked variants to the G3 domain. Taken together, this supports a link between missense ACAN variants affecting the aggrecan G3 domain and hereditary osteochondritis dissecans.


Assuntos
Nanismo , Osteocondrite Dissecante , Agrecanas/genética , Agrecanas/metabolismo , Nanismo/genética , Humanos , Mutação de Sentido Incorreto , Osteocondrite Dissecante/congênito , Osteocondrite Dissecante/genética
12.
Arthritis Rheum ; 62(12): 3574-83, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20737467

RESUMO

OBJECTIVE: Cartilage oligomeric matrix protein (COMP) is a structural component of cartilage, where it catalyzes collagen fibrillogenesis. Elevated amounts of COMP are found in serum during increased turnover of cartilage associated with active joint disease, such as rheumatoid arthritis (RA) and osteoarthritis (OA). This study was undertaken to investigate the ability of COMP to regulate complement, a capacity that has previously been shown for some other cartilage proteins. METHODS: Regulation of complement by COMP was studied using functional in vitro assays. Inter-actions between complement proteins and COMP were investigated by direct binding assay and electron microscopy. Circulating COMP and COMP-C3b complexes in serum and synovial fluid from RA and OA patients and healthy controls were measured with a novel enzyme-linked immunosorbent assay. RESULTS: We found in vivo evidence of complement activation by released COMP in the general circulation of patients with RA, but not patients with OA. COMP induced activation and deposition of C3b and C9 specifically via the alternative pathway of complement, which was attributable to direct interaction between COMP and properdin. Furthermore, COMP inhibited the classical and the lectin complement pathways due to direct interaction with the stalk region of C1q and mannose-binding lectin, respectively. CONCLUSION: COMP is the first extracellular matrix protein for which an active role in inflammation has been demonstrated in vivo. It can activate one complement pathway at the same time as it has the potential to inhibit another. The net outcome of these interactions is most likely determined by the type of released COMP fragments, which may be disease specific.


Assuntos
Artrite Reumatoide/diagnóstico , Artrite Reumatoide/metabolismo , Proteínas do Sistema Complemento/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Osteoartrite/diagnóstico , Osteoartrite/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Proteína de Matriz Oligomérica de Cartilagem , Estudos de Casos e Controles , Complemento C1q/metabolismo , Complemento C3b/metabolismo , Complemento C9/metabolismo , Feminino , Humanos , Masculino , Lectina de Ligação a Manose/metabolismo , Proteínas Matrilinas , Pessoa de Meia-Idade , Properdina/metabolismo , Líquido Sinovial/metabolismo
13.
Biochem J ; 423(1): 53-9, 2009 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-19589127

RESUMO

The interactions of the ECM (extracellular matrix) protein asporin with ECM components have previously not been investigated. Here, we show that asporin binds collagen type I. This binding is inhibited by recombinant asporin fragment LRR (leucine-rich repeat) 10-12 and by full-length decorin, but not by biglycan. We demonstrate that the polyaspartate domain binds calcium and regulates hydroxyapatite formation in vitro. In the presence of asporin, the number of collagen nodules, and mRNA of osteoblastic markers Osterix and Runx2, were increased. Moreover, decorin or the collagen-binding asporin fragment LRR 10-12 inhibited the pro-osteoblastic activity of full-length asporin. Our results suggest that asporin and decorin compete for binding to collagen and that the polyaspartate in asporin directly regulates collagen mineralization. Therefore asporin has a role in osteoblast-driven collagen biomineralization activity. We also show that asporin can be expressed in Escherichia coli (Rosetta-gami) with correctly positioned cysteine bridges, and a similar system can possibly be used for the expression of other SLRPs (small LRR proteoglycans/proteins).


Assuntos
Calcificação Fisiológica , Cálcio/metabolismo , Colágeno/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/fisiologia , Osteoblastos/metabolismo , Proteoglicanas/metabolismo , Sequência de Aminoácidos , Ligação Competitiva/fisiologia , Calcificação Fisiológica/fisiologia , Células Cultivadas , Cisteína/metabolismo , Decorina , Dissulfetos/química , Dissulfetos/metabolismo , Proteínas da Matriz Extracelular/química , Colágenos Fibrilares/metabolismo , Humanos , Ligação Proteica
14.
BMC Rheumatol ; 4: 30, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426694

RESUMO

BACKGROUND: Osteoarthritis (OA) is a progressive, chronic disease characterized by articular cartilage destruction. The pro-inflammatory cytokine IL-17 levels have been reported elevated in serum and synovial fluid of OA patients and correlated with increased cartilage defects and bone remodeling. The aim of this study was to characterize an IL-17-mediated articular cartilage degradation ex-vivo model and to investigate IL-17 effect on cartilage extracellular matrix protein turnover. METHODS: Full-depth bovine femoral condyle articular cartilage explants were cultured in serum-free medium for three weeks in the absence, or presence of cytokines: IL-17A (100 ng/ml or 25 ng/ml), or 10 ng OSM combined with 20 ng/ml TNFα (O + T). RNA isolation and PCR analysis were performed on tissue lysates to confirm IL-17 receptor expression. GAG and ECM-turnover biomarker release into conditioned media was assessed with dimethyl methylene blue and ELISA assays, respectively. Gelatin zymography was used for matrix metalloproteinase (MMP) 2 and MMP9 activity assessment in conditioned media, and shotgun LC-MS/MS for identification and label-free quantification of proteins and protein fragments in conditioned media. Western blotting was used to validate MS results. RESULTS: IL-17RA mRNA was expressed in bovine full-depth articular cartilage and the treatment with IL-17A did not interfere with metabolic activity of the model. IL-17A induced cartilage breakdown; conditioned media GAG levels were 3.6-fold-elevated compared to untreated. IL-17A [100 ng/ml] induced ADAMTS-mediated aggrecan degradation fragment release (14-fold increase compared to untreated) and MMP-mediated type II collagen fragment release (6-fold-change compared to untreated). MS data analysis revealed 16 differentially expressed proteins in IL-17A conditioned media compared to untreated, and CHI3L1 upregulation in conditioned media in response to IL-17 was confirmed by Western blotting. CONCLUSIONS: We showed that IL-17A has cartilage modulating potential. It induces collagen and aggrecan degradation indicating an upregulation of MMPs. This was confirmed by zymography and mass spectrometry data. We also showed that the expression of other cytokines is induced by IL-17A, which provide further insight to the pathways that are active in response to IL-17A. This exploratory study confirms that IL-17A may play a role in cartilage pathology and that the applied model may be a good tool to further investigate it.

15.
Sci Rep ; 10(1): 13541, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782251

RESUMO

Psoriatic arthritis (PsA) is a chronic musculoskeletal inflammatory disease found in up to 30% of psoriasis patients. Prolargin-an extracellular matrix (ECM) protein present in cartilage and tendon-has been previously shown elevated in serum of patients with psoriasis. ECM protein fragments can reflect tissue turnover and pathological changes; thus, this study aimed to develop, validate and characterize a novel biomarker PROM targeting a matrix metalloproteinase (MMP)-cleaved prolargin neo-epitope, and to evaluate it as a biomarker for PsA. A competitive ELISA was developed with a monoclonal mouse antibody; dilution- and spiking-recovery, inter- and intra-variation, and accuracy were evaluated. Serum levels were evaluated in 55 healthy individuals and 111 patients diagnosed with PsA by the CASPAR criteria. Results indicated that the PROM assay was specific for the neo-epitope. Inter- and intra- assay variations were 11% and 4%, respectively. PROM was elevated (p = 0.0003) in patients with PsA (median: 0.24, IQR: 0.19-0.31) compared to healthy controls (0.18; 0.14-0.23) at baseline. AUROC for separation of healthy controls from PsA patients was 0.674 (95% CI 0.597-0.744, P < 0.001). In conclusion, MMP-cleaved prolargin can be quantified in serum by the PROM assay and has the potential to separate patients with PsA from healthy controls.


Assuntos
Artrite Psoriásica/diagnóstico , Biomarcadores/sangue , Proteínas da Matriz Extracelular/sangue , Glicoproteínas/sangue , Metaloproteinases da Matriz/metabolismo , Antígeno AC133/metabolismo , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Formação de Anticorpos , Artrite Psoriásica/sangue , Estudos de Casos e Controles , Estudos de Coortes , Ensaio de Imunoadsorção Enzimática , Proteínas da Matriz Extracelular/imunologia , Feminino , Glicoproteínas/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Curva ROC
16.
Matrix Biol ; 27(1): 22-33, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17825545

RESUMO

In this study, we demonstrate that articular cartilage chondrocytes are surrounded by the defining basement membrane proteins laminin, collagen type IV, nidogen and perlecan, and suggest that these form the functional equivalent of a basement membrane. We found by real-time PCR that mouse chondrocytes express these four cardinal components of basement membranes and demonstrated by immunohistochemistry that the proteins are present in bovine and mouse cartilage tissues and are deposited in a thin pericellular structure. Immunoelectron microscopy confirmed high laminin concentration in the pericellular matrix. In cartilage from newborn mice, basement membrane components are widespread in the territorial and interterritorial matrix, while in mature cartilage of adult mice the basement membrane components are localized mainly to a narrow pericellular zone. With progression into old age, this layer becomes less distinct, especially in areas of obvious mechanical attrition. Interestingly, individual laminin subunits were located in different zones of the cartilage, with laminin alpha1 showing preferential localization around a select population of superficial layer chondrocytes. We propose that the chondrocyte, like several other cell types of mesenchymal origin, is surrounded by the functional equivalent of a basement membrane. This structure is presumably involved in maintaining chondrocyte phenotype and viability and may well allow a new understanding of cartilage development and provide clues to the progression of degenerative joint disorders.


Assuntos
Membrana Basal/química , Cartilagem Articular/citologia , Condrócitos/química , Condrócitos/citologia , Animais , Membrana Basal/metabolismo , Cartilagem Articular/química , Cartilagem Articular/fisiologia , Bovinos , Condrócitos/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Fêmur/anatomia & histologia , Proteoglicanas de Heparan Sulfato/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Laminina/genética , Laminina/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos
17.
Mol Neurobiol ; 55(3): 2196-2213, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28290150

RESUMO

Following stroke, complete cellular death in the ischemic brain area may ensue, with remaining brain areas undergoing tissue remodelling to various degrees. Experience-dependent brain plasticity exerted through an enriched environment (EE) promotes remodelling after central nervous system injury, such as stroke. Post-stroke tissue reorganization is modulated by growth inhibitory molecules differentially expressed within the ischemic hemisphere, like chondroitin sulfate proteoglycans found in perineuronal nets (PNNs). PNNs in the neocortex predominantly enwrap parvalbumin-containing GABAergic (PV/GABA) neurons, important in sensori-information processing. Here, we investigate how extracellular matrix (ECM) proteases and their inhibitors may participate in the regulation of PNN integrity during stroke recovery. Rats were subjected to photothrombotic stroke in the motor cortex, and functional deficits were assessed at 7 days of recovery. Sham and stroked rats were housed in either standard or EE conditions for 5 days, and infarct volumes were calculated. PNNs were visualized by immunohistochemistry and counted in the somatosensory cortex of both hemispheres. mRNA expression levels of ECM proteases and protease inhibitors were assessed by RT-qPCR and their activity analyzed by gel zymography. PNNs and protease activity were also studied in brains from stroke patients where similar results were observed. EE starting 2 days after stroke and continuing for 5 days stimulated behavioral recovery of limb-placement ability without affecting infarct size. EE promoted a decrease of PNNs around PV/GABA neurons and a concomitant modulation of the proteolytic activity and mRNA expression of ECM proteases and protease inhibitors in the somatosensory cortex. This study provides molecular targets for novel therapies that could support rehabilitation of stroke patients.


Assuntos
Meio Ambiente , Matriz Extracelular/metabolismo , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Ratos , Acidente Vascular Cerebral/patologia , Reabilitação do Acidente Vascular Cerebral/tendências
18.
Cardiovasc Res ; 69(3): 755-63, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16409997

RESUMO

OBJECTIVE: The vascular extracellular matrix (ECM) can affect smooth muscle cell (SMC) adhesion, migration and proliferation-events that are important during the atherosclerotic process. Fibulin-2 is a member of the ECM protein family of fibulins and has been found to cross-link versican/hyaluronan complexes, an ECM network that has been suggested to be important during tissue repair. In this study we have analysed the presence of fibulin-2 in two different models of murine vascular lesions. We have also examined how the fibulin-2/versican network influences SMC migration. METHODS: Presence of fibulin-2 was analysed by immunohistochemistry in atherosclerotic aortas and in mechanically injured carotid arteries from mice. Fibulin-2 protein levels were also studied by Western blotting during rat aortic SMC phenotypic modulation in vitro. The importance of a fibulin-2/versican interaction for SMC migration was studied in the presence of two inhibiting peptides (FN III 3-5 and aggrecan C-type lectin-like domain). RESULTS: Fibulin-2 is expressed in SMC rich regions of atherosclerotic lesions where it colocalises with versican and hyaluronan. It is also present in injury-induced vascular lesions and is upregulated during SMC phenotypic modulation in cell culture. Moreover, treatments with peptides that block the interaction between versican and fibulin-2 inhibit SMC migration in vitro. CONCLUSIONS: Fibulin-2 can be produced by SMC as a response to injury and may participate in the ECM organisation that regulates SMC migration during vessel wall repair.


Assuntos
Aterosclerose/metabolismo , Proteínas de Ligação ao Cálcio/análise , Proteínas da Matriz Extracelular/análise , Músculo Liso Vascular/metabolismo , Agrecanas , Animais , Apolipoproteínas E/genética , Aterosclerose/patologia , Western Blotting/métodos , Proteínas de Ligação ao Cálcio/metabolismo , Movimento Celular , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/análise , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/farmacologia , Ácido Hialurônico/análise , Ácido Hialurônico/metabolismo , Lectinas Tipo C/análise , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Peptídeos/farmacologia , Ratos , Receptores de LDL/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Versicanas
19.
Acta Crystallogr D Struct Biol ; 73(Pt 1): 53-63, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28045385

RESUMO

Chondroadherin (CHAD) is a cartilage matrix protein that mediates the adhesion of isolated chondrocytes. Its protein core is composed of 11 leucine-rich repeats (LRR) flanked by cysteine-rich domains. CHAD makes important interactions with collagen as well as with cell-surface heparin sulfate proteoglycans and α2ß1 integrins. The integrin-binding site is located in a region of hitherto unknown structure at the C-terminal end of CHAD. Peptides based on the C-terminal human CHAD (hCHAD) sequence have shown therapeutic potential for treating osteoporosis. This article describes a still-unconventional structure solution by phasing with de novo models, the first of a ß-rich protein. Structure determination of hCHAD using traditional, though nonsystematic, molecular replacement was unsuccessful in the hands of the authors, possibly owing to a combination of low sequence identity to other LRR proteins, four copies in the asymmetric unit and weak translational pseudosymmetry. However, it was possible to solve the structure by generating a large number of de novo models for the central LRR domain using Rosetta and multiple parallel molecular-replacement attempts using AMPLE. The hCHAD structure reveals an ordered C-terminal domain belonging to the LRRCT fold, with the integrin-binding motif (WLEAK) being part of a regular α-helix, and suggests ways in which experimental therapeutic peptides can be improved. The crystal structure itself and docking simulations further support that hCHAD dimers form in a similar manner to other matrix LRR proteins.

20.
Structure ; 12(8): 1495-506, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15296743

RESUMO

The C-terminal G3 domains of lecticans mediate crosslinking to diverse extracellular matrix (ECM) proteins during ECM assembly, through their C-type lectin (CLD) subdomains. The structure of the rat aggrecan CLD in a Ca(2+)-dependent complex with fibronectin type III repeats 3-5 of rat tenascin-R provides detailed support for such crosslinking. The CLD loops bind Ca2+ like other CLDs, but no carbohydrate binding is observed or possible. This is thus the first example of a direct Ca(2+)-dependent protein-protein interaction of a CLD. Surprisingly, tenascin-R does not coordinate the Ca2+ ions directly. Electron microscopy confirms that full-length tenascin-R and tenascin-C crosslink hyaluronan-aggrecan complexes. The results are significant for the binding of all lectican CLDs to tenascin-R and tenascin-C. Comparison of the protein interaction surface with that of P-selectin in complex with the PGSL-1 peptide suggests that direct protein-protein interactions of Ca(2+)-binding CLDs may be more widespread than previously appreciated.


Assuntos
Cálcio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Lectinas Tipo C/metabolismo , Modelos Moleculares , Proteoglicanas/metabolismo , Tenascina/metabolismo , Agrecanas , Sequência de Aminoácidos , Animais , Metabolismo dos Carboidratos , Reagentes de Ligações Cruzadas/química , Ácido Hialurônico/metabolismo , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Selectina-P/metabolismo , Ligação Proteica , Ratos , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA