RESUMO
Humans are considered as the main host for Mycobacterium leprae1, the aetiological agent of leprosy, but spillover has occurred to other mammals that are now maintenance hosts, such as nine-banded armadillos and red squirrels2,3. Although naturally acquired leprosy has also been described in captive nonhuman primates4-7, the exact origins of infection remain unclear. Here we describe leprosy-like lesions in two wild populations of western chimpanzees (Pan troglodytes verus) in Cantanhez National Park, Guinea-Bissau and Taï National Park, Côte d'Ivoire, West Africa. Longitudinal monitoring of both populations revealed the progression of disease symptoms compatible with advanced leprosy. Screening of faecal and necropsy samples confirmed the presence of M. leprae as the causative agent at each site and phylogenomic comparisons with other strains from humans and other animals show that the chimpanzee strains belong to different and rare genotypes (4N/O and 2F). These findings suggest that M. leprae may be circulating in more wild animals than suspected, either as a result of exposure to humans or other unknown environmental sources.
Assuntos
Hanseníase/veterinária , Pan troglodytes/microbiologia , Animais , Autopsia/veterinária , Côte d'Ivoire , Fezes/microbiologia , Genótipo , Guiné-Bissau , Humanos , Hanseníase/microbiologia , Mycobacterium leprae/genética , Mycobacterium leprae/isolamento & purificação , FilogeniaRESUMO
The covalent modification of bacterial (lipo)polysaccharides with discrete substituents may impact their biosynthesis, export and/or biological activity. Whether mycobacteria use a similar strategy to control the biogenesis of its cell envelope polysaccharides and modulate their interaction with the host during infection is unknown despite the report of a number of tailoring substituents modifying the structure of these glycans. Here, we show that discrete succinyl substituents strategically positioned on Mycobacterium tuberculosis (Mtb) lipoarabinomannan govern the mannose-capping of this lipoglycan and, thus, much of the biological activity of the entire molecule. We further show that the absence of succinyl substituents on the two main cell envelope glycans of Mtb, arabinogalactan and lipoarabinomannan, leads to a significant increase of pro-inflammatory cytokines and chemokines in infected murine and human macrophages. Collectively, our results validate polysaccharide succinylation as a critical mechanism by which Mtb controls inflammation.
Assuntos
Lipopolissacarídeos , Tuberculose , Humanos , Animais , Camundongos , Manose , InflamaçãoRESUMO
We examined armadillos from museum collections in the United States using molecular assays to detect leprosy-causing bacilli. We found Mycobacterium leprae bacilli in samples from the United States, Bolivia, and Paraguay; prevalence was 14.8% in nine-banded armadillos. US isolates belonged to subtype 3I-2, suggesting long-term circulation of this genotype.
Assuntos
Hanseníase , Mycobacterium leprae , Humanos , Estados Unidos , Animais , Tatus/microbiologia , Hanseníase/microbiologia , Museus , GenótipoRESUMO
Transcriptional profiling is a powerful tool to investigate and detect human diseases. In this study, we used bulk RNA-sequencing (RNA-Seq) to compare the transcriptomes in skin lesions of leprosy patients or controls affected by other dermal conditions such as granuloma annulare, a confounder for paucibacillary leprosy. We identified five genes capable of accurately distinguishing multibacillary and paucibacillary leprosy from other skin conditions. Indoleamine 2,3-dioxygenase 1 (IDO1) expression alone was highly discriminatory, followed by TLR10, BLK, CD38, and SLAMF7, whereas the HS3ST2 and CD40LG mRNA separated multi- and paucibacillary leprosy. Finally, from the main differentially expressed genes (DEG) and enriched pathways, we conclude that paucibacillary disease is characterized by epithelioid transformation and granuloma formation, with an exacerbated cellular immune response, while multibacillary leprosy features epithelial-mesenchymal transition with phagocytic and lipid biogenesis patterns in the skin. These findings will help catalyze the development of better diagnostic tools and potential host-based therapeutic interventions. Finally, our data may help elucidate host-pathogen interplay driving disease clinical manifestations.
Assuntos
Marcadores Genéticos/genética , Hanseníase/diagnóstico , Hanseníase/genética , Transcriptoma , Perfilação da Expressão Gênica , Humanos , RNA Mensageiro/análise , RNA-SeqRESUMO
Nine-banded armadillos (Dasypus novemcinctus) are naturally infected with Mycobacterium leprae and are implicated in the zoonotic transmission of leprosy in the United States. In Mexico, the existence of such a reservoir remains to be characterized. We describe a wild armadillo infected by M. leprae in the state of Nuevo León, Mexico.
Assuntos
Tatus , Hanseníase , Animais , Tatus/microbiologia , Reservatórios de Doenças/microbiologia , Hanseníase/diagnóstico , Hanseníase/epidemiologia , Hanseníase/veterinária , México/epidemiologia , Mycobacterium leprae/genéticaRESUMO
BACKGROUND: Hansen's disease (leprosy), widespread in medieval Europe, is today mainly prevalent in tropical and subtropical regions with around 200,000 new cases reported annually. Despite its long history and appearance in historical records, its origins and past dissemination patterns are still widely unknown. Applying ancient DNA approaches to its major causative agent, Mycobacterium leprae, can significantly improve our understanding of the disease's complex history. Previous studies have identified a high genetic continuity of the pathogen over the last 1500 years and the existence of at least four M. leprae lineages in some parts of Europe since the Early Medieval period. RESULTS: Here, we reconstructed 19 ancient M. leprae genomes to further investigate M. leprae's genetic variation in Europe, with a dedicated focus on bacterial genomes from previously unstudied regions (Belarus, Iberia, Russia, Scotland), from multiple sites in a single region (Cambridgeshire, England), and from two Iberian leprosaria. Overall, our data confirm the existence of similar phylogeographic patterns across Europe, including high diversity in leprosaria. Further, we identified a new genotype in Belarus. By doubling the number of complete ancient M. leprae genomes, our results improve our knowledge of the past phylogeography of M. leprae and reveal a particularly high M. leprae diversity in European medieval leprosaria. CONCLUSIONS: Our findings allow us to detect similar patterns of strain diversity across Europe with branch 3 as the most common branch and the leprosaria as centers for high diversity. The higher resolution of our phylogeny tree also refined our understanding of the interspecies transfer between red squirrels and humans pointing to a late antique/early medieval transmission. Furthermore, with our new estimates on the past population diversity of M. leprae, we gained first insights into the disease's global history in relation to major historic events such as the Roman expansion or the beginning of the regular transatlantic long distance trade. In summary, our findings highlight how studying ancient M. leprae genomes worldwide improves our understanding of leprosy's global history and can contribute to current models of M. leprae's worldwide dissemination, including interspecies transmissions.
Assuntos
Mycobacterium leprae , Europa (Continente) , Genoma Bacteriano/genética , Humanos , Hanseníase/genética , Mycobacterium leprae/genética , Dinâmica PopulacionalRESUMO
Biofilm growth is thought to be a significant obstacle to the successful treatment of Mycobacterium abscessus infections. A search for agents capable of inhibiting M. abscessus biofilms led to our interest in 2-aminoimidazoles and related scaffolds, which have proven to display antibiofilm properties against a number of Gram-negative and Gram-positive bacteria, including Mycobacterium tuberculosis and Mycobacterium smegmatis. The screening of a library of 30 compounds led to the identification of a compound, AB-2-29, which inhibits the formation of M. abscessus biofilms with an IC50 (the concentration required to inhibit 50% of biofilm formation) in the range of 12.5 to 25 µM. Interestingly, AB-2-29 appears to chelate zinc, and its antibiofilm activity is potentiated by the addition of zinc to the culture medium. Preliminary mechanistic studies indicate that AB-2-29 acts through a distinct mechanism from those reported to date for 2-aminoimidazole compounds.
Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Antibacterianos/farmacologia , Biofilmes , Humanos , Imidazóis/farmacologia , Testes de Sensibilidade Microbiana , Zinco/farmacologiaRESUMO
BACKGROUND: Recent advances in sequencing have facilitated large-scale analyses of the metagenomic composition of different samples, including the environmental microbiome of air, water, and soil, as well as the microbiome of living humans and other animals. Analyses of the microbiome of ancient human samples may provide insights into human health and disease, as well as pathogen evolution, but the field is still in its very early stages and considered highly challenging. RESULTS: The metagenomic and pathogen content of Egyptian mummified individuals from different time periods was investigated via genetic analysis of the microbial composition of various tissues. The analysis of the dental calculus' microbiome identified Red Complex bacteria, which are correlated with periodontal diseases. From bone and soft tissue, genomes of two ancient pathogens, a 2200-year-old Mycobacterium leprae strain and a 2000-year-old human hepatitis B virus, were successfully reconstructed. CONCLUSIONS: The results show the reliability of metagenomic studies on Egyptian mummified individuals and the potential to use them as a source for the extraction of ancient pathogen DNA.
Assuntos
Genoma Bacteriano , Genoma Viral , Vírus da Hepatite B/genética , Múmias/microbiologia , Mycobacterium leprae/genética , DNA Antigo/análise , Egito , Humanos , Metagenômica , Microbiota , Múmias/virologia , Análise de Sequência de DNARESUMO
A case of Mycobacterium leprae rifampin resistance after irregular antileprosy treatments since 1971 is reported. Whole-genome sequencing from four longitudinal samples indicated relapse due to acquired rifampin resistance and not to reinfection with another strain. A putative compensatory mutation in rpoC was also detected. Clinical improvement was achieved using an alternative therapy.
Assuntos
Hanseníase , Mycobacterium leprae , Humanos , Hanseníase/tratamento farmacológico , Mutação , Mycobacterium leprae/genética , Recidiva , Rifampina/farmacologiaRESUMO
Studying ancient DNA allows us to retrace the evolutionary history of human pathogens, such as Mycobacterium leprae, the main causative agent of leprosy. Leprosy is one of the oldest recorded and most stigmatizing diseases in human history. The disease was prevalent in Europe until the 16th century and is still endemic in many countries with over 200,000 new cases reported annually. Previous worldwide studies on modern and European medieval M. leprae genomes revealed that they cluster into several distinct branches of which two were present in medieval Northwestern Europe. In this study, we analyzed 10 new medieval M. leprae genomes including the so far oldest M. leprae genome from one of the earliest known cases of leprosy in the United Kingdom-a skeleton from the Great Chesterford cemetery with a calibrated age of 415-545 C.E. This dataset provides a genetic time transect of M. leprae diversity in Europe over the past 1500 years. We find M. leprae strains from four distinct branches to be present in the Early Medieval Period, and strains from three different branches were detected within a single cemetery from the High Medieval Period. Altogether these findings suggest a higher genetic diversity of M. leprae strains in medieval Europe at various time points than previously assumed. The resulting more complex picture of the past phylogeography of leprosy in Europe impacts current phylogeographical models of M. leprae dissemination. It suggests alternative models for the past spread of leprosy such as a wide spread prevalence of strains from different branches in Eurasia already in Antiquity or maybe even an origin in Western Eurasia. Furthermore, these results highlight how studying ancient M. leprae strains improves understanding the history of leprosy worldwide.
Assuntos
Hanseníase/história , Mycobacterium leprae/genética , DNA Bacteriano/genética , DNA Bacteriano/história , Europa (Continente)/epidemiologia , Evolução Molecular , Variação Genética , Genoma Bacteriano , História Medieval , Interações Hospedeiro-Patógeno/genética , Humanos , Hanseníase/epidemiologia , Hanseníase/microbiologia , Mycobacterium leprae/classificação , Mycobacterium leprae/patogenicidade , Filogenia , Filogeografia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Mycobacterium lepromatosis is an uncultured human pathogen associated with diffuse lepromatous leprosy and a reactional state known as Lucio's phenomenon. By using deep sequencing with and without DNA enrichment, we obtained the near-complete genome sequence of M. lepromatosis present in a skin biopsy from a Mexican patient, and compared it with that of Mycobacterium leprae, which has undergone extensive reductive evolution. The genomes display extensive synteny and are similar in size (â¼3.27 Mb). Protein-coding genes share 93% nucleotide sequence identity, whereas pseudogenes are only 82% identical. The events that led to pseudogenization of 50% of the genome likely occurred before divergence from their most recent common ancestor (MRCA), and both M. lepromatosis and M. leprae have since accumulated new pseudogenes or acquired specific deletions. Functional comparisons suggest that M. lepromatosis has lost several enzymes required for amino acid synthesis whereas M. leprae has a defective heme pathway. M. lepromatosis has retained all functions required to infect the Schwann cells of the peripheral nervous system and therefore may also be neuropathogenic. A phylogeographic survey of 227 leprosy biopsies by differential PCR revealed that 221 contained M. leprae whereas only six, all from Mexico, harbored M. lepromatosis. Phylogenetic comparisons indicate that M. lepromatosis is closer than M. leprae to the MRCA, and a Bayesian dating analysis suggests that they diverged from their MRCA approximately 13.9 Mya. Thus, despite their ancient separation, the two leprosy bacilli are remarkably conserved and still cause similar pathologic conditions.
Assuntos
Evolução Molecular , Genoma Bacteriano , Hanseníase/microbiologia , Mycobacterium/genética , Biópsia , Mapeamento Cromossômico/métodos , Mapeamento de Sequências Contíguas , DNA Bacteriano/genética , Genômica , Geografia , Humanos , México , Dados de Sequência Molecular , Filogenia , Filogeografia , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
Molecular drug susceptibility testing was performed on skin biopsies from 24 leprosy patients from Guinea-Conakry for the first time. We identified primary drug resistance in 4 cases and a dapsone-resistant cluster caused by the same strain. Primary transmission of drug-resistant Mycobacterium leprae, including a rifampicin-resistant strain, is reported.
Assuntos
Antibióticos Antituberculose/farmacologia , Antituberculosos/farmacologia , Resistência Microbiana a Medicamentos , Hanseníase/microbiologia , Hanseníase/transmissão , Mycobacterium leprae/efeitos dos fármacos , Antibióticos Antituberculose/uso terapêutico , Antituberculosos/uso terapêutico , Biópsia , DNA Bacteriano/genética , Dapsona/farmacologia , Dapsona/uso terapêutico , Feminino , Genoma Bacteriano , Guiné/epidemiologia , Humanos , Hanseníase/epidemiologia , Masculino , Mycobacterium leprae/genética , Mycobacterium leprae/isolamento & purificação , Rifampina/farmacologia , Rifampina/uso terapêutico , Análise de Sequência de DNA , Pele/microbiologia , Pele/patologiaRESUMO
The frequency of infection caused by the recently described pathogen Mycobacterium lepromatosis is unknown. Here, we describe the demographics, clinical characteristics, and therapeutic outcomes of five lepromatous leprosy patients suffering from M. lepromatosis infection in Nuevo Léon, Mexico. Diagnosis was facilitated by a new highly specific PCR procedure.
Assuntos
Hanseníase Virchowiana/microbiologia , Mycobacterium/isolamento & purificação , Idoso , Estudos de Coortes , Feminino , Mãos/patologia , Humanos , Hansenostáticos/administração & dosagem , Hansenostáticos/uso terapêutico , Hanseníase Virchowiana/tratamento farmacológico , Hanseníase Virchowiana/patologia , Masculino , México , Pessoa de Meia-Idade , Mycobacterium/genética , Pele/patologiaRESUMO
Leprosy, one of the oldest recorded diseases in human history, remains prevalent in Asia, Africa, and South America, with over 200,000 cases every year.1,2 Although ancient DNA (aDNA) approaches on the major causative agent, Mycobacterium leprae, have elucidated the disease's evolutionary history,3,4,5 the role of animal hosts and interspecies transmission in the past remains unexplored. Research has uncovered relationships between medieval strains isolated from archaeological human remains and modern animal hosts such as the red squirrel in England.6,7 However, the time frame, distribution, and direction of transmissions remains unknown. Here, we studied 25 human and 12 squirrel samples from two archaeological sites in Winchester, a medieval English city well known for its leprosarium and connections to the fur trade. We reconstructed four medieval M. leprae genomes, including one from a red squirrel, at a 2.2-fold average coverage. Our analysis revealed a phylogenetic placement of all strains on branch 3 as well as a close relationship between the squirrel strain and one newly reconstructed medieval human strain. In particular, the medieval squirrel strain is more closely related to some medieval human strains from Winchester than to modern red squirrel strains from England, indicating a yet-undetected circulation of M. leprae in non-human hosts in the Middle Ages. Our study represents the first One Health approach for M. leprae in archaeology, which is centered around a medieval animal host strain, and highlights the future capability of such approaches to understand the disease's zoonotic past and current potential.
Assuntos
Genoma Bacteriano , Hanseníase , Mycobacterium leprae , Filogenia , Sciuridae , Animais , Mycobacterium leprae/genética , Mycobacterium leprae/isolamento & purificação , Sciuridae/microbiologia , Hanseníase/microbiologia , Hanseníase/história , Humanos , Inglaterra , DNA Antigo/análise , Arqueologia , História MedievalRESUMO
This study investigates the efficacy of proteomic analysis of human remains to identify active infections in the past through the detection of pathogens and the host response to infection. We advance leprosy as a case study due to the sequestering of sufferers in leprosaria and the suggestive skeletal lesions that can result from the disease. Here we present a sequential enzyme extraction protocol, using trypsin followed by ProAlanase, to reduce the abundance of collagen peptides and in so doing increase the detection of non-collagenous proteins. Through our study of five individuals from an 11th to 18th century leprosarium, as well as four from a contemporaneous non-leprosy associated cemetery in Barcelona, we show that samples from 2 out of 5 leprosarium individuals extracted with the sequential digestion methodology contain numerous host immune proteins associated with modern leprosy. In contrast, individuals from the non-leprosy associated cemetery and all samples extracted with a trypsin-only protocol did not. Through this study, we advance a palaeoproteomic methodology to gain insights into the health of archaeological individuals and take a step toward a proteomics-based method to study immune responses in past populations.
RESUMO
Accelerated SuFEx Click Chemistry (ASCC) is a powerful method for coupling aryl and alkyl alcohols with SuFEx-compatible functional groups. With its hallmark favorable kinetics and exceptional product yields, ASCC streamlines the synthetic workflow, simplifies the purification process, and is ideally suited for discovering functional molecules. We showcase the versatility and practicality of the ASCC reaction as a tool for the late-stage derivatization of bioactive molecules and in the array synthesis of sulfonate-linked, high-potency, microtubule targeting agents (MTAs) that exhibit nanomolar anticancer activity against multidrug-resistant cancer cell lines. These findings underscore ASCC's promise as a robust platform for drug discovery.
RESUMO
Coupled with its rarity in non-endemic areas, the clinical heterogeneity of leprosy makes diagnosis very challenging. We report a diagnosis of multibacillary leprosy in a 22-year-old Indian woman, adopted at the age of 10 and living in Italy. The patient presented with painful skin lesions on the face, trunk, and lower and upper extremities, associated with dysesthesia and a motor deficit in her left leg following corticosteroid therapy interruption. Histopathology results from the skin lesions suggested leprosy, but no acid-fast bacilli were identified. Molecular biology in a center specializing in tropical diseases confirmed the diagnosis, allowing prompt and adequate treatment. Genotype analysis allowed the identification of a genotype 1D of M. leprae, facilitating the epidemiological investigation of the plausible infection origin. No resistances to rifampicin, dapsone, or ofloxacin were detected. Leprosy will continue to exist in high-income nations, and the incidence may rise over time due to increasing migration and globalization. CARE guidelines were followed.
RESUMO
Bacteria from the genus Mycobacterium include pathogens that cause serious diseases in humans and remain as difficult infectious agents to treat. Central to these challenges are the composition and organization of the mycobacterial cell envelope, which includes unique and complex glycans. Inositol is an essential metabolite for mycobacteria due to its presence in the structural core of the immunomodulatory cell envelope glycolipids phosphatidylinositol mannoside (PIM) and PIM-anchored lipomannan (LM) and lipoarabinomannan (LAM). Despite their importance to mycobacterial physiology and pathogenesis, many aspects of PIM, LM, and LAM construction and dynamics remain poorly understood. Recently, probes that allow metabolic labeling and detection of specific mycobacterial glycans have been developed to investigate cell envelope assembly and dynamics. However, these tools have been limited to peptidoglycan, arabinogalactan, and mycolic acid-containing glycolipids. Herein, we report the development of synthetic azido inositol (InoAz) analogues as probes that can metabolically label PIMs, LM, and LAM in intact mycobacteria. Additionally, we leverage an InoAz probe to discover an inositol importer and catabolic pathway in Mycobacterium smegmatis. We anticipate that in the future, InoAz probes, in combination with bioorthogonal chemistry, will provide a valuable tool for investigating PIM, LM, and LAM biosynthesis, transport, and dynamics in diverse mycobacterial organisms.
Assuntos
Mycobacterium tuberculosis , Mycobacterium , Humanos , Mycobacterium/química , Lipopolissacarídeos/metabolismo , Polissacarídeos/metabolismo , Fosfatidilinositóis/metabolismo , Inositol/química , Glicolipídeos/metabolismo , Mycobacterium tuberculosis/metabolismoRESUMO
The new world was considered free of leprosy before the arrival of Europeans. In Suriname, historical migration routes suggest that leprosy could have been introduced from West Africa by the slave trade, from Asia by indentured workers, from Europe by the colonizers, and more recently by Brazilian gold miners. Previous molecular studies on environmental and ancient samples suggested a high variability of the strains circulating in the country, possibly resulting from the various migration waves. However, a current overview of such diversity in humans still needs to be explored. The origin and spread of leprosy in Suriname are investigated from a historical point of view and by strain genotyping of Mycobacterium leprae from skin biopsies of 26 patients with multibacillary leprosy using PCR-genotyping and whole-genome sequencing. Moreover, molecular signs of resistance to the commonly used anti-leprosy drugs i.e. dapsone, rifampicin and ofloxacin, were investigated. Molecular detection was positive for M. leprae in 25 out of 26 patient samples, while M. lepromatosis was not found in any of the samples. The predominant M. leprae strain in our sample set is genotype 4P (n=8) followed by genotype 1D-2 (n=3), 4N (n=2), and 4O/P (n=1). Genotypes 4P, 4N, 4O/P are predominant in West Africa and Brazil, and could have been introduced in Suriname by the slave trade from West Africa, and more recently by gold miners from Brazil. The presence of the Asian strains 1D-2 probably reflects an introduction by contract workers from India, China and Indonesia during the late 19th and early 20th century after the abolition of slavery. There is currently no definite evidence for the occurrence of the European strain 3 in the 26 patients. Geoplotting reflects internal migration, and also shows that most patients live in and around Paramaribo. A biopsy of one patient harbored two M. leprae genotypes, 1D-2 and 4P, suggesting co-infection. A mutation in the dapsone resistance determining region of folP1 was detected in two out of 13 strains for which molecular drug susceptibility was obtained, suggesting the circulation of dapsone resistant strains.
RESUMO
IMPORTANCE: Difficult-to-treat pulmonary infections caused by nontuberculous mycobacteria of the Mycobacterium abscessus group have been steadily increasing in the USA and globally. Owing to the relatively recent recognition of M. abscessus as a human pathogen, basic and translational research to address critical gaps in diagnosis, treatment, and prevention of diseases caused by this microorganism has been lagging behind that of the better-known mycobacterial pathogen, Mycobacterium tuberculosis. To begin unraveling the molecular mechanisms of pathogenicity of M. abscessus, we here focus on the study of a two-component regulator known as PhoPR which we found to be under strong evolutionary pressure during human lung infection. We show that PhoPR is activated at acidic pH and serves to regulate a defined set of genes involved in host adaptation. Accordingly, clinical isolates from chronically infected human lungs tend to hyperactivate this regulator enabling M. abscessus to escape macrophage killing.