Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microvasc Res ; 142: 104375, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35577615

RESUMO

The present study considers the mathematical modelling of unsteady non-Newtonian hydro-magnetic nano-hemodynamics through a rigid cylindrical artery featuring two different stenoses (composite and irregular). The Ostwald-De Waele power-law fluid model is adopted to simulate the non-Newtonian characteristics of blood. Inspired by drug delivery applications for cardiovascular treatments, blood is considered doped with a homogenous suspension of biocompatible nanoparticles. The arterial vessel exhibits the permeability effect (lateral influx/efflux), and an external magnetic field is also applied in the radial direction to the flow. A combination of the Buongiorno and Tiwari-Das nanoscale models is adopted. The strongly nonlinear nature of the governing equations requires a robust numerical method, and therefore the finite difference technique is deployed to solve the resulting equations. Validation of solutions for the pure blood case (absence of nanoparticles) is included. Comprehensive solutions are presented for shear-thickening (n = 1.5) and shear-thinning (n = 0.5) blood flow for the effects of crucial nanoscale thermophysical, solutal parameters, and hydrodynamic parameters. Comparison of profiles (velocity, temperature, wall shear stress, and flow rate) is also made for composite and irregular stenosis. Colour visualization of streamline plots is included for pure blood and nano mediated blood both with and without applied magnetic field. The inclusion of nanoparticles (Cu/blood) within blood increases the axial velocity of blood. By applying external magnetic field in the radial direction, axial velocity is significantly damped whereas much less dramatic alterations are computed in blood temperature and concentration profiles. The simulations are relevant to the diffusion of nano-drugs in magnetic targeted treatment of stenosed arterial diseases.

2.
Microvasc Res ; 139: 104241, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508788

RESUMO

The present study considers the mathematical modeling of unsteady non-Newtonian hydro-magnetic nano-hemodynamics through a rigid cylindrical artery featuring two different stenoses (composite and irregular). The Ostwald-De Waele power-law fluid model is adopted to simulate the non-Newtonian characteristics of blood. Inspired by drug delivery applications for cardiovascular treatments, blood is considered doped with a homogenous suspension of biocompatible nanoparticles. The arterial vessel exhibits the permeability effect (lateral influx/efflux), and an external magnetic field is also applied in the radial direction to the flow. A combination of the Buongiorno and Tiwari-Das nanoscale models is adopted. The strongly nonlinear nature of the governing equations requires a robust numerical method, and therefore the finite difference technique is deployed to solve the resulting equations. Validation of solutions for the pure blood case (absence of nanoparticles) is included. Comprehensive solutions are presented for shear-thickening (n = 1.5) and shear-thinning (n = 0.5) blood flow for the effects of crucial nanoscale thermophysical, solutal parameters, and hydrodynamic parameters. Comparison of profiles (velocity, temperature, wall shear stress, and flow rate) is also made for composite and irregular stenosis. Colour visualization of streamline plots is included for pure blood and nano mediated blood both with and without applied magnetic field. The inclusion of nanoparticles (Cu/blood) within blood increases the axial velocity of blood. By applying external magnetic field in the radial direction, axial velocity is significantly damped whereas much less dramatic alterations are computed in blood temperature and concentration profiles. The simulations are relevant to the diffusion of nano-drugs in magnetic targeted treatment of stenosed arterial diseases.


Assuntos
Artérias/fisiopatologia , Portadores de Fármacos , Hemodinâmica , Modelos Cardiovasculares , Nanopartículas , Análise Numérica Assistida por Computador , Preparações Farmacêuticas/sangue , Doenças Vasculares/tratamento farmacológico , Artérias/patologia , Simulação por Computador , Constrição Patológica , Composição de Medicamentos , Análise de Elementos Finitos , Humanos , Permeabilidade , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Doenças Vasculares/patologia , Doenças Vasculares/fisiopatologia
3.
Microvasc Res ; 138: 104221, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34271062

RESUMO

"Existing computational fluid dynamics studies of blood flows have demonstrated that the lower wall stress and higher oscillatory shear index might be the cause of acceleration in atherogenesis of vascular walls in hemodynamics. To prevent the chances of aneurysm wall rupture in the saccular aneurysm at distal aortic bifurcation, clinical biomagnetic studies have shown that extra-corporeal magnetic fields can be deployed to regulate the blood flow. Motivated by these developments, in the current study a finite element computational fluid dynamics simulation has been conducted of unsteady two-dimensional non-Newtonian magneto-hemodynamic heat transfer in electrically conducting blood flow in a bifurcated artery featuring a saccular aneurysm. The fluid flow is assumed to be pulsatile, non-Newtonian and incompressible. The Carreau-Yasuda model is adopted for blood to mimic non-Newtonian characteristics. The transformed equations with appropriate boundary conditions are solved numerically by employing the finite element method with the variational approach in the FreeFEM++ code. Hydrodynamic and thermal characteristics are elucidated in detail for the effects of key non-dimensional parameters i.e. Reynolds number (Re = 14, 21, 100, 200), Prandtl number (Pr = 14, 21) and magnetic body force parameter (Hartmann number) (M = 0.6, 1.2, 1.5) at the aneurysm and throughout the arterial domain. The influence of vessel geometry on blood flow characteristics i.e. velocity, pressure and temperature fields are also visualized through instantaneous contour patterns. It is found that an increase in the magnetic parameter reduces the pressure but increases the skin-friction coefficient in the domain. The temperature decreases at the parent artery (inlet) and both the distant and prior artery with the increment in the Prandtl number. A higher Reynolds number also causes a reduction in velocity as well as in pressure. The blood flow shows different characteristic contours with time variation at the aneurysm as well as in the arterial segment. The novelty of the current research is therefore to present a combined approach amalgamating the Carreau-Yasuda model, heat transfer and magnetohydrodynamics with complex geometric features in realistic arterial hemodynamics with extensive visualization and interpretation, in order to generalize and extend previous studies. In previous studies these features have been considered separately and not simultaneously as in the current study. The present simulations reveal some novel features of biomagnetic hemodynamics in bifurcated arterial transport featuring a saccular aneurysm which are envisaged to be of relevance in furnishing improved characterization of the rheological biomagnetic hemodynamics of realistic aneurysmic bifurcations in clinical assessment, diagnosis and magnetic-assisted treatment of cardiovascular disease."


Assuntos
Aorta/fisiopatologia , Aneurisma Aórtico/fisiopatologia , Hemorreologia , Campos Magnéticos , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Condutividade Elétrica , Transferência de Energia , Análise de Elementos Finitos , Temperatura Alta , Humanos , Fluxo Pulsátil , Fluxo Sanguíneo Regional , Estresse Mecânico , Fatores de Tempo
4.
Microvasc Res ; 114: 65-83, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28619665

RESUMO

A theoretical study is presented here for the electro-osmosis modulated peristaltic three-layered capillary flow of viscous fluids with different viscosities in the layers. The layers considered here are the core layer, the intermediate layer and the peripheral layer. The analysis has been carried out under a number of physical restrictions viz. Debye-Hückel linearization (i.e. wall zeta potential ≤25mV) is assumed sufficiently small, thin electric double layer limit (i.e. the peripheral layer is much thicker than the electric double layer thickness), low Reynolds number and large wavelength approximations. A non-dimensional analysis is used to linearize the boundary value problem. Fluid-fluid interfaces, peristaltic pumping characteristics, and trapping phenomenon are simulated. Present study also evaluates the responses of interface, pressure rise, time-averaged volume flow rate, maximum pressure rise, and the influence of Helmholtz-Smoluchowski velocity on the mechanical efficiency (with two different cases of the viscosity of fluids between the intermediate and the peripheral layer). Trapping phenomenon along with bolus dynamics evolution with thin EDL effects are analyzed. The findings of this study may ultimately be useful to control the microvascular flow during the fractionation of blood into plasma (in the peripheral layer), buffy coat (intermediate layer) and erythrocytes (core layer). This work may also contributes in electrophoresis, hematology, electrohydrodynamic therapy and, design and development of biomimetic electro-osmotic pumps.


Assuntos
Simulação por Computador , Eletro-Osmose , Microcirculação , Microvasos/fisiologia , Modelos Cardiovasculares , Fluxo Pulsátil , Animais , Biomimética/métodos , Viscosidade Sanguínea , Humanos , Microvasos/anatomia & histologia , Fatores de Tempo
5.
Sci Rep ; 13(1): 10972, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414803

RESUMO

Modern smart coating systems are increasingly exploiting functional materials which combine multiple features including rheology, electromagnetic properties and nanotechnological capabilities and provide a range of advantages in diverse operations including medical, energy and transport designs (aerospace, marine, automotive). The simulation of the industrial synthesis of these multi-faceted coatings (including stagnation flow deposition processes) requires advanced mathematical models which can address multiple effects simultaneously. Inspired by these requests, this study investigates the interconnected magnetohydrodynamic non-Newtonian movement and thermal transfer in the Hiemenz plane's stagnation flow. Additionally, it explores the application of a transverse static magnetic field to a ternary hybrid nanofluid coating through theoretical and numerical analysis. The base fluid (polymeric) considered is engine-oil (EO) doped with graphene [Formula: see text], gold [Formula: see text] and Cobalt oxide [Formula: see text] nanoparticles. The model includes the integration of non-linear radiation, heat source, convective wall heating, and magnetic induction effects. For non-Newtonian characteristics, the Williamson model is utilized, while the Rosseland diffusion flux model is used for radiative transfer. Additionally, a non-Fourier Cattaneo-Christov heat flux model is utilized to include thermal relaxation effects. The governing partial differential conservation equations for mass, momentum, energy and magnetic induction are rendered into a system of coupled self-similar and non-linear ordinary differential equations (ODEs) with boundary restrictions using appropriate scaling transformations. The dimensionless boundary value problem that arises is solved using the bvp4c built-in function in MATLAB software, which employs the fourth-order Runge-Kutta (RK-4) method. An extensive examination is conducted to evaluate the impact of essential control parameters on the velocity [Formula: see text], induced magnetic field stream function gradient [Formula: see text] and temperature [Formula: see text] is conducted. The relative performance of ternary, hybrid binary and unitary nanofluids for all transport characteristics is evaluated. The inclusion of verification of the MATLAB solutions with prior studies is incorporated. Fluid velocity is observed to be minimized for the ternary [Formula: see text]-[Formula: see text]-[Formula: see text] nanofluid whereas the velocity is maximized for the unitary cobalt oxide [Formula: see text] nanofluid with increasing magnetic parameter ([Formula: see text] Temperatures are elevated with increment in thermal radiation parameter (Rd). Streamlines are strongly modified in local regions with greater viscoelasticity i.e. higher Weissenberg number [Formula: see text]. Dimensionless skin friction is significantly greater for the ternary hybrid [Formula: see text]-[Formula: see text]-[Formula: see text] nanofluid compared with binary hybrid or unitary nanofluid cases.


Assuntos
Temperatura Alta , Óxidos , Fenômenos Físicos , Condutividade Elétrica
6.
Sci Rep ; 13(1): 20931, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38017058

RESUMO

Measurement errors play an important role in the development of goniometric equipment, devices used to measure range of motion. Reasonable validity and reliability are critical for both the device and examiner before and after to testing in human subjects. The objective is to evaluate the concurrent validity and reliability of five different clinical goniometric devices for the purpose of establishing an acceptable measurement error margin for a novel device. We explored the validity and inter- and intrarater reliability scores of five goniometric devices namely (i) the universal goniometer (UG), a two-armed hand-held goniometer, (ii) the inclinometer (IC), featuring a single base, fluid level, and gravity-weighted inclinometer, (iii) the digital inclinometer (DI), functioning as both a DI and dynamometer, (iv) the smartphone application (SA), employing gyroscope-based technology within a smartphone platform application and (v) the modified inclinometer (MI), a gravity pendulum-based inclinometer equipped with a specialized fixing apparatus. Measurements were obtained at 12 standard angles and 8 human shoulder flexion angles ranging from 0° to 180°. Over two testing sessions, 120 standardized angle measurements and 160 shoulder angle measurements from 20 shoulders were repetitively taken by three examiners for each device. The intraclass correlation coefficient (ICC), standard error of measurement (SEM), and minimal detectable change (MDC) were calculated to assess reliability and validity. Concurrent validity was also evaluated through the execution of the 95% limit of agreement (95% LOA) and Bland-Altman plots, with comparisons made to the UG. The concurrent validity for all device pairs was excellent in both study phases (ICC > 0.99, 95% LOA - 4.11° to 4.04° for standard angles, and - 10.98° to 11.36° for human joint angles). Inter- and intrarater reliability scores for standard angles were excellent across all devices (ICC > 0.98, SEM 0.59°-1.75°, MDC 1°-4°), with DI showing superior reliability. For human joint angles, device reliability ranged from moderate to excellent (ICC 0.697-0.975, SEM 1.93°-4.64°, MDC 5°-11° for inter-rater reliability; ICC 0.660-0.996, SEM 0.77°-4.06°, MDC 2°-9° for intra-rater reliability), with SA demonstrating superior reliability. Wider angle measurement however resulted in reduced device reliability. In conclusion, our study demonstrates that it is essential to assess measurement errors independently for standard and human joint angles. The DI is the preferred reference for standard angle testing, while the SA is recommended for human joint angle testing. Separate evaluations across the complete 0°-180° range offer valuable insights.


Assuntos
Artrometria Articular , Aplicativos Móveis , Humanos , Artrometria Articular/métodos , Reprodutibilidade dos Testes , Amplitude de Movimento Articular , Sujeitos da Pesquisa
7.
Proc Inst Mech Eng H ; 226(8): 631-44, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23057236

RESUMO

Magnetohydrodynamic peristaltic flows arise in controlled magnetic drug targeting, hybrid haemodynamic pumps and biomagnetic phenomena interacting with the human digestive system. Motivated by the objective of improving an understanding of the complex fluid dynamics in such flows, we consider in the present article the transient magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping. Reynolds number is small enough and the wavelength to diameter ratio is large enough to negate inertial effects. Analytical solutions for temperature field, axial velocity, transverse velocity, pressure gradient, local wall shear stress, volume flowrate and averaged volume flowrate are obtained. The effects of the transverse magnetic field, Grashof number and thermal conductivity on the flow patterns induced by peristaltic waves (sinusoidal propagation along the length of channel) are studied using graphical plots. The present study identifies that greater pressure is required to propel the magneto-fluid by peristaltic pumping in comparison to a non-conducting Newtonian fluid, whereas, a lower pressure is required if heat transfer is effective. The analytical solutions further provide an important benchmark for future numerical simulations.


Assuntos
Líquidos Corporais/fisiologia , Modelos Biológicos , Peristaltismo/fisiologia , Fluxo Pulsátil/fisiologia , Reologia/métodos , Animais , Simulação por Computador , Humanos , Campos Magnéticos
8.
Proc Inst Mech Eng H ; 236(6): 848-859, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35379035

RESUMO

The heat-conducting nature of blood is critical in the human circulatory system and features also in important thermal regulation and blood processing systems in biomedicine. Motivated by these applications, in the present investigation, the classical Graetz problem in heat transfer is extended to the case of a bio-rheological fluid model. The Quemada bio-rheological fluid model is selected since it has been shown to be accurate in mimicking physiological flows (blood) at different shear rates and hematocrits. The steady two-dimensional energy equation without viscous dissipation in stationary regime is tackled via a separation of variables approach for the isothermal wall temperature case. Following the introduction of transformation variables, the ensuing dimensionless boundary value problem is solved numerically via MATLAB based algorithm known as bvp5c (a finite difference code that implements the four-stage Lobatto IIIa collocation formula). Numerical validation is also presented against two analytical approaches namely, series solutions and Kummer function techniques. Axial conduction in terms of Péclet number is also considered. Typical values of Reynolds number and Prandtl number are used to categorize the vascular regions. The graphical representation of mean temperature, temperature gradient, and Nusselt numbers along with detail discussions are presented for the effects of Quemada non-Newtonian parameters and Péclet number. The current analysis may also have potential applications for the development of microfluidic and biofluidic devices particularly which are used in the diagnosis of diseases in addition to blood oxygenation technologies.


Assuntos
Algoritmos , Hemodinâmica , Temperatura Alta , Humanos , Reologia , Viscosidade
9.
J Phys Condens Matter ; 34(17)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35078162

RESUMO

Modern lubrication systems are increasingly deploying smart (functional) materials. These respond to various external stimuli including electrical and magnetic fields, acoustics, light etc. Motivated by such developments, in the present article unsteady electro-magnetohydrodynamics squeezing flow and heat transfer in a smart ionic viscous fluid intercalated between parallel plates with zeta potential effects is examined. The proposed mathematical model of problem is formulated as a system of partial differential equations (continuity, momenta and energy). Viscous dissipation and variable thermal conductivity effects are included. Axial electrical distribution is also addressed. The governing equations are converted into ordinary differential equations via similarity transformations and then solved numerically with MATLAB software. The transport phenomena are scrutinized for both when the plates move apart or when they approach each other. Also, the impact of different parameters such squeezing number, variable thermal conductivity parameter, Prandtl number, Hartmann number, Eckert number, zeta potential parameter, electric field parameter and electroosmosis parameter on the axial velocity and fluid temperature are analysed. For varied intensities of applied plate motion, the electro-viscous effects derived from electric double-capacity flow field distortions are thoroughly studied. It has been shown that the results from the current model differ significantly from those achieved by using a standard Poisson-Boltzmann equation model. Axial velocity acceleration is induced with negative squeeze number (plates approaching,S< 0) in comparison to that of positive squeeze number (plates separating,S> 0). Velocity enhances with increasing electroosmosis parameter and zeta potential parameter. With rising values of zeta potential and electroosmosis parameter, there is a decrease in temperatures forUe> 0 for both approaching i.e. squeezing plates (S< 0) and separating (S> 0) cases. The simulations provide novel insights into smart squeezing lubrication with thermal effects and also a solid benchmark for further computational fluid dynamics investigations.

10.
Sci Rep ; 12(1): 10451, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729202

RESUMO

Hybrid nanofluids (HNFs) comprise combinations of different nanoparticles suspended in base fluid. Applications of such nanofluids are rising in the areas of energy and biomedical engineering including smart (functional) coatings. Motivated by these developments, the present article examines theoretically the magnetohydrodynamic coating boundary layer flow of HNFs from a stretching sheet under the transverse magnetic field in porous media with chemically reactive nanoparticles. Darcy's law is deployed. Momentum slips of both first and second order are included as is solutal slip. The transformed boundary value problem is solved analytically. Closed form solutions for velocity are derived in terms of exponential functions and for the concentration field in terms of incomplete Gamma functions by the application of the Laplace transformation technique. The influence of selected parameters e.g. suction/injection, magnetic field and slips on velocity and concentration distributions are visualized graphically. Concentration magnitudes are elevated with stronger magnetic field whereas they are suppressed with greater wall solutal slip. Magnetic field suppresses velocity and increases the thickness of the hydrodynamic boundary layer. The flow is accelerated with reduction in inverse Darcy number and stronger suction direct to reduce in skin friction. The concentration magnitudes are boosted with magnetic field whereas they are depleted with increasing solutal slip. The analysis provides a good foundation for further investigations using numerical methods.

11.
Micromachines (Basel) ; 13(12)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36557495

RESUMO

Motivated by emerging high-temperature manufacturing processes deploying nano-polymeric coatings, the present study investigates nonlinear thermally radiative Oldroyd-B viscoelastic nanoliquid stagnant-point flow from a heated vertical stretching permeable surface. Robin (mixed derivative) conditions were utilized in order to better represent coating fabrication conditions. The nanoliquid analysis was based on Buongiorno's two-component model, which features Brownian movement and thermophoretic attributes. Nonlinear buoyancy force and thermal radiation formulations are included. Chemical reactions (constructive and destructive) were also considered since coating synthesis often features reactive transport phenomena. An ordinary differential equation model was derived from the primitive partial differential boundary value problem using a similarity approach. The analytical solutions were achieved by employing a homotopy analysis scheme. The influence of the emerging dimensionless quantities on the transport characteristics was comprehensively explained using appropriate data. The obtained analytical outcomes were compared with the literature and good correlation was achieved. The computations show that the velocity profile was diminished with an increasing relaxation parameter, whereas it was enhanced when the retardation parameter was increased. A larger thermophoresis parameter induces an increase in temperature and concentration. The heat and mass transfer rates at the wall were increased with incremental increases in the temperature ratio and first order chemical reaction parameters, whereas contrary effects were observed for larger thermophoresis, fluid relaxation and Brownian motion parameters. The simulations can be applied to the stagnated nano-polymeric coating of micromachines, robotic components and sensors.

12.
Comput Biol Med ; 130: 104213, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33535145

RESUMO

This article examines theoretically and numerically the unsteady two-dimensional blood flow through a diseased artery featuring an irregular stenosis. An appropriate geometric model is adopted to simulate the irregular stenotic artery. Inspired by drug delivery applications for blood vessels, the impact of hybrid nanoparticles on blood flow using a modified Tiwari-Das model is discussed. The blood is examined to have a homogenous suspension of hybrid nanoparticles. Reynolds' viscosity model is applied in the formulation to represent the temperature dependency of blood. The two-dimensional governing conservation equations for momentum and heat transfer with buoyancy effect are simplified by considering the mild stenotic approximation. A finite-difference technique is deployed to numerically discretize the transformed non-dimensional model. Extensive graphical results for blood flow characteristics are obtained by MATLAB code. Comprehensive visualization of the effects of hemodynamic, geometric and nanoscale parameters on transport characteristics is provided. The problem is conducted for silver and silver-gold hybrid mediated blood flow models, and experimental values of blood and these biocompatible metallic nanoparticles. A comparison between silver and hybrid nanofluid is obtained which promotes the use of hybrid nanoparticles in successfully achieving clinically more beneficial results associated with nano-drug delivery in diseased hemodynamics. Enhancement in viscosity parameter induces axial flow acceleration in the stenotic region while lower thermal conductivity decreases the temperature magnitudes. Furthermore, with time variation, the pressure gradient is found to be lower in coronary arteries comparatively to femoral arteries. The simulations are relevant to transport phenomenon in nano-drug targeted delivery in haematology.


Assuntos
Modelos Cardiovasculares , Prata , Simulação por Computador , Constrição Patológica , Hemodinâmica , Humanos
13.
Comput Biol Med ; 139: 105009, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34775156

RESUMO

Influenced by nano-drug delivery applications, the present article considers the collective effects of hybrid biocompatible metallic nanoparticles (Silver and Copper), a stenosis and an aneurysm on the unsteady blood flow characteristics in a catheterized tapered inclined artery. The non-Newtonian Carreau fluid model is deployed to represent the hemorheological characteristics in the arterial region. A modified Tiwari-Das volume fraction model is adopted for nanoscale effects. The permeability of the arterial wall and the inclination of the diseased artery are taken into account. The nanoparticles are also considered to have various shapes (bricks, cylinders, platelets, blades) and therefore the influence of different shape parameters is discussed. The conservation equations for mass, linear momentum and energy are normalized by employing suitable non-dimensional variables. The transformed equations with associated boundary conditions are solved numerically using the FTCS method. Key hemodynamic characteristics i.e. velocity, temperature, flow rate, wall shear stress (WSS) in stenotic and aneurysm region for a particular critical height of the stenosis, are computed. Hybrid nanoparticles (Ag-Cu/Blood) accelerate the axial flow and increase temperatures significantly compared with unitary nanoparticles (Ag/blood), at both the stenosis and aneurysm segments. Axial velocity, temperature and flow rate are all enhanced with greater nanoparticle shape factor. Axial velocity, temperature, wall shear stress and flow rate magnitudes are always comparatively higher at the aneurysm region compared with the stenotic segment. The simulations provide novel insights into the performance of different nanoparticle geometries and also rheological behaviour in realistic nano-pharmaco-dynamic transport and percutaneous coronary intervention (PCI).


Assuntos
Nanopartículas Metálicas , Intervenção Coronária Percutânea , Artérias , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Constrição Patológica , Hemodinâmica , Humanos , Modelos Cardiovasculares , Estresse Mecânico
14.
Sci Rep ; 11(1): 9877, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972577

RESUMO

A mathematical model is developed for stagnation point flow toward a stretching or shrinking sheet of liquid nano-biofilm containing spherical nano-particles and bioconvecting gyrotactic micro-organisms. Variable transport properties of the liquid (viscosity, thermal conductivity, nano-particle species diffusivity) and micro-organisms (species diffusivity) are considered. Buongiorno's two-component nanoscale model is deployed and spherical nanoparticles in a dilute nanofluid considered. Using a similarity transformation, the nonlinear systems of partial differential equations is converted into nonlinear ordinary differential equations. These resulting equations are solved numerically using a central space finite difference method in the CodeBlocks Fortran platform. Graphical plots for the distribution of reduced skin friction coefficient, reduced Nusselt number, reduced Sherwood number and the reduced local density of the motile microorganisms as well as the velocity, temperature, nanoparticle volume fraction and the density of motile microorganisms are presented for the influence of wall velocity power-law index (m), viscosity parameter [Formula: see text], thermal conductivity parameter (c4), nano-particle mass diffusivity (c6), micro-organism species diffusivity (c8), thermophoresis parameter [Formula: see text], Brownian motion parameter [Formula: see text], Lewis number [Formula: see text], bioconvection Schmidt number [Formula: see text], bioconvection constant (σ) and bioconvection Péclet number [Formula: see text]. Validation of the solutions via comparison related to previous simpler models is included. Further verification of the general model is conducted with the Adomian decomposition method (ADM). Extensive interpretation of the physics is included. Skin friction is elevated with viscosity parameter ([Formula: see text] whereas it is suppressed with greater Lewis number and thermophoresis parameter. Temperatures are elevated with increasing thermal conductivity parameter ([Formula: see text] whereas Nusselt numbers are reduced. Nano-particle volume fraction (concentration) is enhanced with increasing nano-particle mass diffusivity parameter ([Formula: see text]) whereas it is markedly reduced with greater Lewis number (Le) and Brownian motion parameter (Nb). With increasing stretching/shrinking velocity power-law exponent ([Formula: see text] skin friction is decreased whereas Nusselt number and Sherwood number are both elevated. Motile microorganism density is boosted strongly with increasing micro-organism diffusivity parameter ([Formula: see text]) and Brownian motion parameter (Nb) but reduced considerably with greater bioconvection Schmidt number (Sc) and bioconvection Péclet number (Pe). The simulations find applications in deposition processes in nano-bio-coating manufacturing processes.

15.
Comput Biol Med ; 126: 104025, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33074112

RESUMO

Two-dimensional rheological laminar hemodynamics through a diseased tapered artery with a mild stenosis present is simulated theoretically and computationally. The effect of different metallic nanoparticles homogeneously suspended in the blood is considered, motivated by drug delivery (pharmacology) applications. The Eringen micropolar model has been discussed for hemorheological characteristics in the whole arterial region. The conservation equations for mass, linear momentum, angular momentum (micro-rotation), and energy and nanoparticle species are normalized by employing suitable non-dimensional variables. The transformed equations are solved numerically subject to physically appropriate boundary conditions using the finite element method with the variational formulation scheme available in the FreeFEM++ code. A good correlation is achieved between the FreeFEM++ computations and existing results. The effect of selected parameters (taper angle, Prandtl number, Womersley parameter, pulsatile constants, and volumetric concentration) on velocity, temperature, and micro-rotational (Eringen angular) velocity has been calculated for a stenosed arterial segment. Wall shear stress, volumetric flow rate, and hemodynamic impedance of blood flow are also computed. Colour contours and graphs are employed to visualize the simulated blood flow characteristics. It is observed that by increasing Prandtl number (Pr), the micro-rotational velocity decreases i.e., microelement (blood cell) spin is suppressed. Wall shear stress decreases with the increment in pulsatile parameters (B and e), whereas linear velocity increases with a decrement in these parameters. Furthermore, the velocity decreases in the tapered region with elevation in the Womersley parameter (α). The simulations are relevant to transport phenomena in pharmacology and nano-drug targeted delivery in hematology.


Assuntos
Modelos Cardiovasculares , Nanopartículas , Artérias , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Hemodinâmica , Fluxo Pulsátil , Estresse Mecânico
16.
Comput Methods Biomech Biomed Engin ; 22(7): 685-695, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30829056

RESUMO

Bionic systems frequently feature electromagnetic pumping and offer significant advantages over conventional designs via intelligent bio-inspired properties. Complex wall features observed in nature also provide efficient mechanisms which can be utilized in biomimetic designs. The characteristics of biological fluids are frequently non-Newtonian in nature. In many natural systems super-hydrophobic slip is witnessed. Motivated by these phenomena, in this paper, we discussed a mathematical model for the cilia-generated propulsion of an electrically-conducting viscoelastic physiological fluid in a ciliated channel under the action of magnetic field. The rheological behavior of the fluid is simulated with the Johnson-Segalman constitutive model which allows internal wall slip. The regular or coordinated movement of the ciliated edges (which line the internal walls of the channel) is represented by a metachronal wave motion in the horizontal direction which generates a two-dimensional velocity profile. This mechanism is imposed by a periodic boundary condition which generates propulsion in the channel flow. Under the classical lubrication approximation, the boundary value problem is non-dimensionalized and solved analytically with a perturbation technique. The influence of the geometric, rheological (slip and Weissenberg number) and magnetic parameters on velocity, pressure gradient and the pressure rise (evaluated via the stream function in symbolic software) are presented graphically and interpreted at length.


Assuntos
Líquidos Corporais/química , Cílios/fisiologia , Modelos Teóricos , Condutividade Elétrica , Reologia
17.
Int J Nanomedicine ; 13: 6429-6440, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30410329

RESUMO

BACKGROUND: Controlled inhibition of kinesin motor proteins is highly desired in the field of oncology. Among other interventions, there exists "targeted chemotherapeutic regime/options" of selective Eg5 competitive and allosteric inhibitors, inducing cancer cell apoptosis and tumor regression with improved safety profiles. RESEARCH QUESTION: Though promising, such studies are still under clinical trials, for the discovery of efficient and least harmful Eg5 inhibitors. The aim of this research was to bridge the computational modeling approach with drug design and therapy of cancer cells. METHODS: A computational model, interfaced with the clinical data of "Eg5 dynamics" and "inhibitors" via special functions, is presented in this article. Comparisons are made for the drug efficacy, and the threshold values are predicted through numerical simulations. RESULTS: Results are obtained to depict the dynamics induced by ispinesib, when used as an inhibitor of kinesin Eg5, on cancer cell lines.


Assuntos
Modelos Biológicos , Proteínas Motores Moleculares/metabolismo , Nanopartículas/química , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Probabilidade , Processos Estocásticos
18.
Math Biosci ; 301: 121-128, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29630907

RESUMO

In this paper, we present an analytical study of pressure-driven flow of micropolar non-Newtonian physiological fluids through a channel comprising two parallel oscillating walls. The cilia are arranged at equal intervals and protrude normally from both walls of the infinitely long channel. A metachronal wave is generated due to natural beating of cilia and the direction of wave propagation is parallel to the direction of fluid flow. Appropriate expressions are presented for deformation via longitudinal and transverse velocity components induced by the ciliary beating phenomenon with cilia assumed to follow elliptic trajectories. The conservation equations for mass, longitudinal and transverse (linear) momentum and angular momentum are reduced in accordance with the long wavelength and creeping Stokesian flow approximations and then normalized with appropriate transformations. The resulting non-linear moving boundary value problem is solved analytically for constant micro-inertia density, subject to physically realistic boundary conditions. Closed-form expressions are derived for axial velocity, angular velocity, volumetric flow rate and pressure rise. The transport phenomena are shown to be dictated by several non-Newtonian parameters, including micropolar material parameter and Eringen coupling parameter, and also several geometric parameters, viz eccentricity parameter, wave number and cilia length. The influence of these parameters on streamline profiles (with a view to addressing trapping features via bolus formation and evolution), pressure gradient and other characteristics are evaluated graphically. Both axial and angular velocities are observed to be substantially modified with both micropolar rheological parameters and furthermore are significantly altered with increasing volumetric flow rate. Free pumping is also examined. An inverse relationship between pressure rise and flow rate is computed which is similar to that observed in Newtonian fluids. The study is relevant to hemodynamics in narrow capillaries and also bio-inspired micro-fluidic devices.


Assuntos
Cílios/fisiologia , Modelos Biológicos , Fenômenos Biofísicos , Simulação por Computador , Humanos , Hidrodinâmica , Conceitos Matemáticos , Microfluídica/estatística & dados numéricos , Movimento/fisiologia , Dinâmica não Linear , Pressão , Reologia/estatística & dados numéricos
19.
Math Biosci ; 283: 155-168, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27913147

RESUMO

Analytical solutions are developed for the electro-kinetic flow of a viscoelastic biological liquid in a finite length cylindrical capillary geometry under peristaltic waves. The Jefferys' non-Newtonian constitutive model is employed to characterize rheological properties of the fluid. The unsteady conservation equations for mass and momentum with electro-kinetic and Darcian porous medium drag force terms are reduced to a system of steady linearized conservation equations in an axisymmetric coordinate system. The long wavelength, creeping (low Reynolds number) and Debye-Hückel linearization approximations are utilized. The resulting boundary value problem is shown to be controlled by a number of parameters including the electro-osmotic parameter, Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity), and Jefferys' first parameter (ratio of relaxation and retardation time), wave amplitude. The influence of these parameters and also time on axial velocity, pressure difference, maximum volumetric flow rate and streamline distributions (for elucidating trapping phenomena) is visualized graphically and interpreted in detail. Pressure difference magnitudes are enhanced consistently with both increasing electro-osmotic parameter and Helmholtz-Smoluchowski velocity, whereas they are only elevated with increasing Jefferys' first parameter for positive volumetric flow rates. Maximum time averaged flow rate is enhanced with increasing electro-osmotic parameter, Helmholtz-Smoluchowski velocity and Jefferys' first parameter. Axial flow is accelerated in the core (plug) region of the conduit with greater values of electro-osmotic parameter and Helmholtz-Smoluchowski velocity whereas it is significantly decelerated with increasing Jefferys' first parameter. The simulations find applications in electro-osmotic (EO) transport processes in capillary physiology and also bio-inspired EO pump devices in chemical and aerospace engineering.


Assuntos
Capilares/fisiologia , Eletro-Osmose , Modelos Teóricos , Cinética
20.
Bull Cancer ; 104(5): 452-461, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28385267

RESUMO

Hyperthermia treatment, generated by magnetic nanoparticles (MNPs) is promising since it is tumour-focused, minimally invasive and uniform. The most unique feature of magnetic nanoparticles is its reaction and modulation by a magnetic force basically responsible for enabling its potential as heating mediators for cancer therapy. In magnetic nanoparticle hyperthermia, a tumour is preferentially loaded with systemically administered nanoparticles with high-absorption cross-section for transduction of an extrinsic energy source to heat. To maximize the energy deposited in the tumour while limiting the exposure to healthy tissues, the heating is achieved by exposing the region of tissue containing magnetic nanoparticles to an alternating magnetic field. The magnetic nanoparticles dissipate heat from relaxation losses thereby heating localized tissue above normal physiological ranges. Besides thermal efficiency, the biocompatibility of magnetite nanoparticles assisted its deployment as efficient drug carrier for targeted therapeutic regimes. In the present article, we provide a state-of-the-art review focused on progress in nanoparticle induced hyperthermia treatments that have several potential advantages over both global and local hyperthermia treatments achieved without nanoparticles. Green bio-nanotechnology has attracted substantial attention and has demonstrable abilities to improve cancer therapy. Furthermore, we have listed the challenges associated with this treatment along with future prospective that could attract the interest of biomedical engineers, biomaterials scientists, medical researchers and pharmacological research groups.


Assuntos
Hipertermia Induzida/métodos , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/terapia , Animais , Materiais Biocompatíveis/uso terapêutico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA