Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Environ Manage ; 363: 121332, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850906

RESUMO

This paper presents the synthesis of visible light-responsive ternary nanocomposites composed of cuprous oxide (Cu2O), tungsten trioxide (WO3), and titanium dioxide (TiO2) with varying weight percentages (wt.%) of the Cu2O. The resulting Cu2O/WO3/TiO2 (CWT) nanocomposites exhibited band gap energy ranging from 2.35 to 2.90 eV. Electrochemical and photoelectrochemical (PEC) studies confirmed a reduced recombination rate of photoexcited charge carriers in the CWT nanocomposites, facilitated by a direct Z-scheme heterojunction. The 0.50CWT nanocomposite demonstrated superior photodegradation activity (2.29 × 10-2 min-1) against Reactive Black 5 (RB5) dye under visible light activation. Furthermore, the 0.50CWT nanocomposite exhibited excellent stability with 80.51% RB5 photodegradation retention after five cycles. The 0.50CWT electrode achieved a maximum specific capacitance of 66.32 F/g at 10 mA/g current density, with a capacitance retention of 95.17% after 1000 charge-discharge cycles, affirming its stable and efficient supercapacitor performance. This was supported by well-defined peaks in cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) curves, indicating pseudocapacitive properties.


Assuntos
Cobre , Eletrodos , Luz , Nanocompostos , Titânio , Tungstênio , Nanocompostos/química , Titânio/química , Tungstênio/química , Cobre/química , Catálise , Óxidos/química
2.
Int J Environ Health Res ; : 1-65, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385569

RESUMO

The Coronavirus Disease 2019 (COVID-19) has caused massive losses for the global economy. Scholars have used different methods to study the transmission mode and influencing factors of the virus to find effective methods to provide people with a healthy built environment. However, these studies arrived at different or even contradictory conclusions. This review presents the main research methodologies utilized in this field, summarizes the main investigation methods, and critically discusses their related conclusions. Data statistical analysis, sample collection, simulation models, and replication transmission scenarios are the main research methods. The summarized conclusion for prevention from all reviewed papers are: adequate ventilation and proper location of return air vents, proper use of personal protective equipment, as well as the reasonable and strict enforcement of policies are the main methods for reducing the transmission. Recommendations including standardized databases, causation clarification, rigorous experiment design, improved simulation accuracy and verification are provided.

3.
Molecules ; 28(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37764415

RESUMO

In this research, activated carbon (AC) was synthesized from ligno-cellulosic residues of Adansonia kilima (Baobab) wood chips (AKTW) using two-step semi-carbonization and subsequent pyrolysis using microwave-induced heating (MWP) in the presence of a mild activating agent of K2CO3. The influence of process input variables of microwave power (x1), residence time (y1), and amount of K2CO3 (z1) were analysed to yield superior quality carbon having maximum removal efficiencies (R1) for lead (II) cations from waste effluents, fixed carbon percentages (R2), and carbon yield percentages (R3). Analysis of variance (ANOVA) was used to develop relevant mathematical models, with an appropriate statistical assessment of errors. Level factorial response surface methodology (RSM) relying on the Box-Behnken design (BBD) was implemented for the experimental design. The surface area and porous texture of the samples were determined using Brunauer, Emmett, and Teller (BET) adsorption/desorption curves based on the N2 isotherm. Surface morphological structure was observed using field emission scanning electron microscopic (FESEM) analysis. Thermogravimetric analysis (TGA) was carried out to observe the thermal stability of the sample. Change in the carbon content of the samples was determined using ultimate analysis. X-ray diffraction (XRD) analysis was performed to observe the crystalline and amorphous texture of the samples. The retention of a higher proportion of fixed carbon (80.01%) ensures that the synthesized adsorbent (AKTWAC) will have a greater adsorption capacity while avoiding unwanted catalytic activity for our synthesized final sample.

4.
Molecules ; 27(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35164054

RESUMO

Functionalized magnetite nanoparticles (Fe3O4) were prepared using the coprecipitation method followed by functionalization with a multipotent antioxidant (MPAO). The MPAO was synthesized and analyzed using FTIR and NMR techniques. In this study, the functionalized nanoparticles (IONP@AO) were produced and evaluated using the FTIR, XRD, Raman, HRTEM, FESEM, VSM, and EDX techniques. The average determined particle size of IONP@AO was 10 nanometers. In addition, it demonstrated superparamagnetic properties. The magnitude of saturation magnetization value attained was 45 emu g-1. Virtual screenings of the MPAO's potential bioactivities and safety profile were performed using PASS analysis and ADMET studies before the synthesis step. For the DPPH test, IONP@AO was found to have a four-fold greater ability to scavenge free radicals than unfunctional IONP. The antimicrobial properties of IONP@AO were also demonstrated against a variety of bacteria and fungi. The interaction of developed nanoantioxiants with biomolecules makes it a broad-spectrum candidate in biomedicine and nanomedicine.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Nanopartículas de Magnetita/química , Propriedades de Superfície
5.
Environ Dev Sustain ; : 1-39, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35530442

RESUMO

Abstract: The global market for fuel pellets (FPs) has been steadily growing because of a shift to coal substitutes. However, sustainability and the availability of biomass are the main issues. Various kinds of bio-wastes can be valorized through cutting-edge technologies. In the coffee industry, a valuable organic waste called spent coffee grounds (SCGs) is generated in bulk. SCG can be divided into two components, namely spent coffee ground oil and defatted spent coffee grounds (DSCG). SCG and DSCG can be used to produce FPs with excellent higher heating values. This review highlights that burning FPs composed of 100% SCG is not feasible due to the high emission of NOx. Moreover, the combustion is accompanied by a rapid temperature drop due to incomplete combustion which leads to lower boiler combustion efficiencies and increased carbon monoxide emissions. This was because of the low pellet strength and bulk density of the FP. Mixing SCG with other biomass offers improved boiler efficiency and emissions. Some of the reported optimized FPs include 75% SCG + 20% coffee silverskin, 30% SCG + 70% pine sawdust, 90% SCG + 10% crude glycerol, 32% SCG + 23% coal fines + 11% sawdust + 18% mielie husks + 10% waste paper + 6% paper pulp, and 50% SCG + 50% pine sawdust. This review noted the absence of combustion and emissions analyses of DSCG and the need for their future assessment. Valorization of DSCG offers a good pathway to improve the economics of an SCG-based biorefinery where the extracted SCGO can be valorized in other applications. The combustion and emissions of DSCG were not previously reported in detail. Therefore, future investigation of DSCG in boilers is essential to assess the potential of this industry and improve its economics. Supplementary Information: The online version contains supplementary material available at 10.1007/s10668-022-02361-z.

6.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669883

RESUMO

This study deals with the preparation of activated carbon (CDSP) from date seed powder (DSP) by chemical activation to eliminate polyaromatic hydrocarbon-PAHs (naphthalene-C10H8) from synthetic wastewater. The chemical activation process was carried out using a weak Lewis acid of zinc acetate dihydrate salt (Zn(CH3CO2)2·2H2O). The equilibrium isotherm and kinetics analysis was carried out using DSP and CDSP samples, and their performances were compared for the removal of a volatile organic compound-naphthalene (C10H8)-from synthetic aqueous effluents or wastewater. The equilibrium isotherm data was analyzed using the linear regression model of the Langmuir, Freundlich and Temkin equations. The R2 values for the Langmuir isotherm were 0.93 and 0.99 for naphthalene (C10H8) adsorption using DSP and CDSP, respectively. CDSP showed a higher equilibrium sorption capacity (qe) of 379.64 µg/g. DSP had an equilibrium sorption capacity of 369.06 µg/g for C10H8. The rate of reaction was estimated for C10H8 adsorption using a pseudo-first order, pseudo-second order and Elovich kinetic equation. The reaction mechanism for both the sorbents (CDSP and DSP) was studied using the intraparticle diffusion model. The equilibrium data was well-fitted with the pseudo-second order kinetics model showing the chemisorption nature of the equilibrium system. CDSP showed a higher sorption performance than DSP due to its higher BET surface area and carbon content. Physiochemical characterizations of the DSP and CDSP samples were carried out using the BET surface area analysis, Fourier-scanning microscopic analysis (FSEM), energy-dispersive X-ray (EDX) analysis and Fourier-transform spectroscopic analysis (FTIR). A thermogravimetric and ultimate analysis was also carried out to determine the carbon content in both the sorbents (DSP and CDSP) here. This study confirms the potential of DSP and CDSP to remove C10H8 from lab-scale synthetic wastewater.


Assuntos
Ácidos de Lewis/química , Modelos Moleculares , Naftalenos/análise , Temperatura , Compostos Orgânicos Voláteis/análise , Poluentes Químicos da Água/análise , Adsorção , Difusão , Cinética , Modelos Lineares , Nitrogênio/química , Espectrometria por Raios X , Termogravimetria , Fatores de Tempo
7.
Entropy (Basel) ; 23(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34441209

RESUMO

This article presents an investigation of heat transfer in a porous medium adjacent to a vertical plate. The porous medium is subjected to a magnetohydrodynamic effect and suction velocity. The governing equations are nondepersonalized and converted into ordinary differential equations. The resulting equations are solved with the help of the finite difference method. The impact of various parameters, such as the Prandtl number, Grashof number, permeability parameter, radiation parameter, Eckert number, viscous dissipation parameter, and magnetic parameter, on fluid flow characteristics inside the porous medium is discussed. Entropy generation in the medium is analyzed with respect to various parameters, including the Brinkman number and Reynolds number. It is noted that the velocity profile decreases in magnitude with respect to the Prandtl number, but increases with the radiation parameter. The Eckert number has a marginal effect on the velocity profile. An increased radiation effect leads to a reduced thermal gradient at the hot surface.

8.
ScientificWorldJournal ; 2014: 354946, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25258722

RESUMO

The present study deals with the functional severity of a coronary artery stenosis assessed by the fractional flow reserve (FFR). The effects of different geometrical shapes of lesion on the diagnostic parameters are unknown. In this study, 3D computational simulation of blood flow in three different geometrical shapes of stenosis (triangular, elliptical, and trapezium) is considered in steady and transient conditions for 70% (moderate), 80% (intermediate), and 90% (severe) area stenosis (AS). For a given percentage AS, the variation of diagnostic parameters which are derived from pressure drop across the stenosis was found in three different geometrical shapes of stenosis and it was observed that FFR is higher in triangular shape and lower in trapezium shape. The pressure drop coefficient (CDP) was higher in trapezium shape and lower in triangular model whereas the LFC shows opposite trend. From the clinical perspective, the relationship between percentage AS and FFR is linear and inversely related in all the three models. A cut-off value of 0.75 for FFR was observed at 76.5% AS in trapezium model, 79.5% in elliptical model, and 82.7% AS for the triangular shaped model. The misinterpretation of the functional severity of the stenosis is in the region of 76.5%-82.7 % AS from different shapes of stenosis models.


Assuntos
Algoritmos , Estenose Coronária/patologia , Estenose Coronária/fisiopatologia , Modelos Anatômicos , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Simulação por Computador , Estenose Coronária/diagnóstico , Vasos Coronários/patologia , Vasos Coronários/fisiopatologia , Humanos , Índice de Gravidade de Doença
9.
Environ Sci Pollut Res Int ; 31(16): 23802-23821, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430436

RESUMO

Biodiesel production through the synthesis of Datura stramonium L. oil is studied to explore the most efficient approaches to suggest an alternate feedstock for biodiesel production. The main objective of this work is to optimize the process variables of biodiesel synthesis by using some statistical approach (Taguchi method, grey relational analysis (GRA), and response surface methodology (RSM) analyzing three parameters, i.e., alcohol-to-oil molar ratio, catalyst (NaOH) concentration, and process temperature for achieving maximum biodiesel derived from Datura stramonium L. oil. The transesterification process is applied by using an ultrasonic-assisted technique. Grey relational analysis (GRA) was successfully applied with the Taguchi method resulting in the optimum combination of A2B1C1. Based on the findings, the best operating conditions for transesterifying are attained with the RSM approach consisting of a 5.697:1 molar ratio (level 2), 0.3 (wt.%) NaOH concentration (level 1), and 70 °C process temperature (level 1). With a value of 87.02%, these ideal operating conditions produce the maximum yield as compared to grey relational analysis (GRA) yields 83.99%. The obtained results have been verified through the characterization of oil and biodiesel as well. Also, the fuel qualities of DSL biodiesel were identified and assessed. DSL oil was found 137.6 degrees of unsaturation during fatty acid profile analysis. DSL biodiesel was found the best kinematic viscosity (4.2 mm2/s) and acid value (0.49) when compared to Karanja and palm biodiesel. D. stramonium L. was recognized as a suitable species for biodiesel feedstock according to the findings.


Assuntos
Datura stramonium , Biocombustíveis , Hidróxido de Sódio , Esterificação , Ácidos Graxos , Catálise
10.
Biomed Mater Eng ; 35(2): 191-204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38143334

RESUMO

BACKGROUND: This study explores the dynamics of a mathematical model, utilizing ordinary differential equations (ODE), to depict the interplay between cancer cells and effector cells under chemotherapy. The stability of the equilibrium points in the model is analysed using the Jacobian matrix and eigenvalues. Additionally, bifurcation analysis is conducted to determine the optimal values for the control parameters. OBJECTIVE: To evaluate the performance of the model and control strategies, benchmarking simulations are performed using the PlatEMO platform. METHODS: The Pure Multi-objective Optimal Control Problem (PMOCP) and the Hybrid Multi-objective Optimal Control Problem (HMOCP) are two different forms of optimal control problems that are solved using revolutionary metaheuristic optimisation algorithms. The utilization of the Hypervolume (HV) performance indicator allows for the comparison of various metaheuristic optimization algorithms in their efficacy for solving the PMOCP and HMOCP. RESULTS: Results indicate that the MOPSO algorithm excels in solving the HMOCP, with M-MOPSO outperforming for PMOCP in HV analysis. CONCLUSION: Despite not directly addressing immediate clinical concerns, these findings indicates that the stability shifts at critical thresholds may impact treatment efficacy.


Assuntos
Algoritmos , Modelos Teóricos
11.
ACS Omega ; 9(23): 24761-24773, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38882091

RESUMO

The present investigation focuses on the manufacturing and mechanical evaluation of epoxy-based composites reinforced with fiberglass with and without various particle fillers. The study explores the potential use of industrial wastes, such as coal powder (CP), coal fly ash (CFA), bagasse ash (BA), palm fruit ash (PFA), ash from rice husks (RHA), bone ash (BoA), marble/granite powder (MP), combinations of coal fly ash and coal powder (CFACP), blends of coal fly ash and marble powder (CFAMP), and combinations of coal fly ash and bone ash (CFABoA).The use of industrial factory wastes as a filler in polymer composite materials is becoming more and more common due to the improvement in structural characteristics compared to the pure epoxy-e-glass fiber composites. Composite manufacturing costs might be drastically reduced by using the above industrial wastes as reinforcing material, which would also solve the problems related to their disposal and ecological pollution. In previous research investigations, the comparative mechanical characteristic analysis of hybrid composites filled with two or more fillers has not been studied, which motivated us to take up the research on incorporation of the above listed industrial wastes as fillers. Different concentrations of these fillers are investigated, and the composites are formed successfully using a manual hand-layup approach. The mechanical properties assessed in accordance with ASTM Standards include micro-Vickers hardness (Hv), impact strength (IS), bending strength (TS), flexibility or flexural strength (FS), and interlaminar shear strength (ILSS). The form and amount of filler provided to the composite are considered when comparing each property of particle-loaded glass-reinforced epoxy composites. Some key findings from the investigation include: (1) Tensile Strength: unfilled composites exhibit a tensile strength of 252.19 MPa, marble powder causes the greatest drop in tensile strength, and CFACP-filled composites at 5 wt % yield the highest tensile strength of 251.42 MPa. (2) Flexural Strength: CFABoA-filled composites exhibit the highest peak bending strength of 860.22 MPa at 10 wt % and Peak ILSS of 34.317 MPa at 5 wt % is observed with CFABoA-filled composites. (3) Impact Strength and Hardness: CFACP-filled composites at 10 wt % show the maximum impact strength (2100 J/m) and hardness (62 Hv). (4) Effect of the Filler Percentage: mechanical characteristics of composites improve with increasing weight percentage of filler material, and Glass fiber-reinforced epoxy composites can be replaced with glass fiber-reinforced and particle-filled polymer-based hybrid composites for structural purposes. (5) Cost Considerations: hybrid composites based on CFACP-filled E-glass fiber-reinforced epoxy can be used instead of E-glass fiber-reinforced epoxy composites to reduce fabrication costs and "ER" epoxy resin usage. (6) Application Recommendation: the study suggests the use of CFACP-filled E-glass fiber-reinforced epoxy composites for constructing end posts in rail insulation junctions. In conclusion, the investigation provides valuable insights into the mechanical properties of epoxy-based composites with various fillers, offering potential applications in structural components with improved characteristics and cost-effectiveness.

12.
Biomed Mater Eng ; 35(3): 249-264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189746

RESUMO

BACKGROUND: The scientific revolution in the treatment of many illnesses has been significantly aided by stem cells. This paper presents an optimal control on a mathematical model of chemotherapy and stem cell therapy for cancer treatment. OBJECTIVE: To develop effective hybrid techniques that combine the optimal control theory (OCT) with the evolutionary algorithm and multi-objective swarm algorithm. The developed technique is aimed to reduce the number of cancerous cells while utilizing the minimum necessary chemotherapy medications and minimizing toxicity to protect patients' health. METHODS: Two hybrid techniques are proposed in this paper. Both techniques combined OCT with the evolutionary algorithm and multi-objective swarm algorithm which included MOEA/D, MOPSO, SPEA II and PESA II. This study evaluates the performance of two hybrid techniques in terms of reducing cancer cells and drug concentrations, as well as computational time consumption. RESULTS: In both techniques, MOEA/D emerges as the most effective algorithm due to its superior capability in minimizing tumour size and cancer drug concentration. CONCLUSION: This study highlights the importance of integrating OCT and evolutionary algorithms as a robust approach for optimizing cancer chemotherapy treatment.


Assuntos
Algoritmos , Antineoplásicos , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Simulação por Computador , Terapia Combinada , Transplante de Células-Tronco/métodos , Modelos Biológicos , Inteligência Artificial
13.
Heliyon ; 10(7): e28902, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38633652

RESUMO

Rhodanine is a heterocyclic organic compound that has been investigated for its potential biomedical applications, particularly in drug discovery. Rhodanine derivatives have been examined as the medication options for numerous illnesses, including cancer, inflammation, and infectious diseases. Some rhodanine derivatives have also shown promising activity against drug-resistant strains of bacteria and viruses. One of these derivatives is polyrhodanine (PR), a conducting polymer that has gained attention for its biomedical properties. This review article summarises the latest advancements in creating biomaterials based on PR for biosensing, antimicrobial treatments, and anticancer therapies. The distinctive characteristics of PR, such as biocompatibility, biodegradability, and good conductivity, render it an attractive candidate for these applications. The article also explores obstacles and potential future paths for advancing biomaterials made with PR, including synthesis modifications, characterisation techniques, and in vivo evaluation of biocompatibility and efficacy. Overall, as an emerging research topic, this review emphasises the potential of PR as a promising biomaterial for various biomedical applications and provides insights into the contemporary state of research and prospective directions for investigation.

14.
Materials (Basel) ; 17(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38591661

RESUMO

In the present investigation, the corrosion tendency of mild steel under acidic pH was studied by employing unused expired amiodarone (EAD) drug as a potential corrosion inhibitor by adopting the weight loss measurement method. The corrosion inhibition efficiency (IE) of the formed protective film (EAD) on the steel surface was analyzed using potentiodynamic polarization and AC-impedance spectroscopy studies. The surface morphology of the mild steel before and after corrosion (in 1.0 M HCl) was analyzed via scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDAX), atomic force microscopy (AFM), and thermodynamic studies. The weight loss measurement under different concentrations of EAD indicated that an excellent inhibition was displayed at a concentration of 0.001 M, and the IE was found to depend on both the concentration and molecular structure of EAD. A potentiodynamic polarization study revealed that EAD predominantly acted as a cathode inhibitor, and electrochemical impedance spectroscopy (EIS) confirmed the adsorption of EAD on the surface of mild steel, which obeyed Temkin's adsorption isotherm model. The calculated thermodynamic parameters revealed that adsorption was spontaneous and exothermic.

15.
Polymers (Basel) ; 15(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37111974

RESUMO

This study concentrated on the influence of rice husk biochar on the structural, thermal, flammable, and mechanical properties of recycled high-density polyethylene (HDPE). The percentage of rice husk biochar with recycled HDPE was varied between 10% and 40%, and the optimum percentages were found for the various properties. Mechanical characteristics were evaluated in terms of the tensile, flexural, and impact properties. Similarly, the flame retardancy of the composites was observed by means of horizontal and vertical burning tests (UL-94 tests), limited oxygen index, and cone calorimetry. The thermal properties were characterized using thermogravimetric analysis (TGA). For detailed characterization, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) tests were performed, to elaborate on the variation in properties. The composite with 30% rice husk biochar demonstrated the maximum increase in tensile and flexural strength, i.e., 24% and 19%, respectively, compared to the recycled HDPE, whereas the 40% composite showed a 22.5% decrease in impact strength. Thermogravimetric analysis revealed that the 40% rice husk biochar reinforced composite exhibited the best thermal stability, due to having the highest amount of biochar. In addition, the 40% composite also displayed the lowest burning rate in the horizontal burning test and the lowest V-1 rating in the vertical burning test. The 40% composite material also showed the highest limited oxygen index (LOI), whereas it had the lowest peak heat release rate (PHRR) value (52.40% reduced) and total heat release rate (THR) value (52.88% reduced) for cone calorimetry, when compared with the recycled HDPE. These tests proved that rice husk biochar is a significant additive for enhancing the mechanical, thermal, and fire-retardant properties of recycled HDPE.

16.
Chemosphere ; 336: 139291, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37353165

RESUMO

This paper offers a comprehensive analysis of algal-based membrane bioreactors (AMBRs) and their potential for removing hazardous and toxic contaminants from wastewater. Through an identification of contaminant types and sources, as well as an explanation of AMBR operating principles, this study sheds light on the promising capabilities of AMBRs in eliminating pollutants like nitrogen, phosphorus, and organic matter, while generating valuable biomass and energy. However, challenges and limitations, such as the need for process optimization and the risk of algal-bacterial imbalance, have been identified. To overcome these obstacles, strategies like mixed cultures and bioaugmentation techniques have been proposed. Furthermore, this study explores the wider applications of AMBRs beyond wastewater treatment, including the production of value-added products and the removal of emerging contaminants. The findings underscore the significance of factors such as appropriate algal-bacterial consortia selection, hydraulic and organic loading rate optimization, and environmental factor control for the success of AMBRs. A comprehensive understanding of these challenges and opportunities can pave the way for more efficient and effective wastewater treatment processes, which are crucial for safeguarding public health and the environment.


Assuntos
Poluentes Ambientais , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Bactérias
17.
Micromachines (Basel) ; 14(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37630137

RESUMO

The phase change of all-inorganic cesium lead halide (CsPbI3) thin film from yellow δ-phase to black γ-/α-phase has been a topic of interest in the perovskite optoelectronics field. Here, the main focus is how to secure a black perovskite phase by avoiding a yellow one. In this work, we fabricated a self-doped CsPbI3 thin film by incorporating an excess cesium iodide (CsI) into the perovskite precursor solution. Then, we studied the effect of organic additive such as 1,8-diiodooctane (DIO), 1-chloronaphthalene (CN), and 1,8-octanedithiol (ODT) on the optical, structural, and morphological properties. Specifically, for elucidating the binary additive-solvent solution thermodynamics, we employed the Flory-Huggins theory based on the oligomer level of additives' molar mass. Resultantly, we found that the miscibility of additive-solvent displaying an upper critical solution temperature (UCST) behavior is in the sequence CN:DMF > ODT:DMF > DIO:DMF, the trends of which could be similarly applied to DMSO. Finally, the self-doping strategy with additive engineering should help fabricate a black γ-phase perovskite although the mixed phases of δ-CsPbI3, γ-CsPbI3, and Cs4PbI6 were observed under ambient conditions. However, the results may provide insight for the stability of metastable γ-phase CsPbI3 at room temperature.

18.
Nanomaterials (Basel) ; 13(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36615916

RESUMO

Diesel fuel blends with biodiesels are expected to mitigate the rising price and demand of conventional fuels. Biodiesel fuel blends are also known to reduce engine emissions. Biodiesel is produced from various sources, one of which is Calophyllum Inophyllum methyl ester biodiesel (CIMEBD). Even though it serves to mitigate the energy crisis and has a low overall carbon footprint, CIMEBD has certain negative issues relating to engine performance and emission characteristics. Nanoparticle (NP) addition is known to enhance the engine performance characteristics of next generation biofuels. CeO2 (cerium oxide or ceria) NPs of varying size are used in this study along with 25:75 biodiesel-diesel (BD) blend and a fixed NP concentration of 90 ppm. Ceria NP-doped fuel is shown to have better engine performance compared to diesel and BD blend for all load conditions. Improvements in brake thermal efficiency (BTE) and brake-specific fuel consumption (BSFC) values equal to +30% and -46%, respectively, are observed from experiments for ceria NP-doped biodiesel, compared to diesel-biodiesel (BD) blend. Ceria NPs in the 20 to 40 nm range have optimum engine performance characteristics. Compared to BD blends, NP-doped biodiesel shows improvements in NOx, CO, CO2, UHC, and soot parameters up to -35%, -60%, -35%, -38%, and -40%, respectively. Likewise, the optimum size of ceria NPs is in the range 20-40 nm for better emission characteristics.

19.
Materials (Basel) ; 15(4)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35208130

RESUMO

AA2050-T84 alloy is widely used in primary structures of modern transport aircraft. AA2050-T84 is established as a low-density aluminum alloy with improved Young's modulus, less anisotropy, and temperature-dependent mechanical properties. During flights, loading rate and temperature variation in aircraft engine subsequent parts are commonly observed. The present work focuses on the effect of loading rate and temperature on tensile and fracture properties of the 50 mm thick (2-inch) AA2050-T84 alloy plate. Quasi-static strain rates of 0.01, 0.1, and 1 s-1 at -20 °C, 24 °C and 200 °C are considered. Tensile test results revealed the sensitivity of mechanical properties towards strain rate variations for considered temperatures. The key tensile properties, yield, and ultimate tensile stresses were positive strain rate dependent. However, Young's modulus and elongation showed negative strain rate dependency. Experimental fracture toughness tests exhibited the lower Plane Strain Fracture Toughness (KIC) at -20 °C compared to 24 °C. Elastic numerical fracture analysis revealed that the crack driving and constraint parameters are positive strain rate dependent and maximum at -20 °C, if plotted and analyzed over the stress ratio. The current results concerning strain rates and temperatures will help in understanding the performance-related issues of AA2050-T84 alloy reported in aircraft applications.

20.
Arch Comput Methods Eng ; 29(2): 1311-1337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34393475

RESUMO

Mathematical models have assisted in describing the transmission and propagation dynamics of various viral diseases like MERS, measles, SARS, and Influenza; while the advanced computational technique is utilized in the epidemiology of viral diseases to examine and estimate the influences of interventions and vaccinations. In March 2020, the World Health Organization (WHO) has declared the COVID-19 as a global pandemic and the rate of morbidity and mortality triggers unprecedented public health crises throughout the world. The mathematical models can assist in improving the interventions, key transmission parameters, public health agencies, and countermeasures to mitigate this pandemic. Besides, the mathematical models were also used to examine the characteristics of epidemiological and the understanding of the complex transmission mechanism. Our literature study found that there were still some challenges in mathematical modeling for the case of ecology, genetics, microbiology, and pathology pose; also, some aspects like political and societal issues and cultural and ethical standards are hard to be characterized. Here, the recent mathematical models about COVID-19 and their prominent features, applications, limitations, and future perspective are discussed and reviewed. This review can assist in further improvement of mathematical models that will consider the current challenges of viral diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA