Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 376, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884656

RESUMO

Mushroom poisoning contributes significantly to global foodborne diseases and related fatalities. Amanita mushrooms frequently cause such poisonings; however, identifying these toxic species is challenging due to the unavailability of fresh and intact samples. It is often necessary to analyze residues, vomitus, or stomach extracts to obtain DNA sequences for the identification of species responsible for causing food poisoning. This usually proves challenging to obtain usable DNA sequences that can be analyzed using conventional molecular biology techniques. Therefore, this study aimed to develop a DNA mini-barcoding method for the identification of Amanita species. Following the evaluation and optimization of universal primers for DNA mini-barcoding in Amanita mushrooms, we found that the internal transcribed spacer (ITS) gene sequence primer ITS-a was the most suitable DNA barcode primer for identifying Amanita species. Forty-three Amanita samples were subsequently amplified and sequenced. The sequences obtained were analyzed for intra- and inter-species genetic distances, and a phylogenetic tree was constructed. The findings indicated that the designed primers had strong universality among the Amanita samples and could accurately identify the target gene fragment with a length of 290 bp. Notably, the DNA mini-barcode accurately identified the 43 Amanita samples, demonstrating high consistency with the conventional DNA barcode. Furthermore, it effectively identified DNA from digested samples. In summary, this DNA mini-barcode is a promising tool for detecting accidental ingestion of toxic Amanita mushrooms. It may be used as an optimal barcode for species identification and traceability in events of Amanita-induced mushroom poisoning. KEY POINTS: • Development of a DNA mini-barcoding method for Amanita species identification without fresh samples. • The ITS-a primer set was optimized for robust universality in Amanita samples. • The mini-barcode is suitable for screening toxic mushroom species in mushroom poisoning cases.


Assuntos
Amanita , Código de Barras de DNA Taxonômico , DNA Fúngico , Intoxicação Alimentar por Cogumelos , Filogenia , Intoxicação Alimentar por Cogumelos/diagnóstico , Amanita/genética , DNA Fúngico/genética , Primers do DNA/genética , DNA Espaçador Ribossômico/genética , Análise de Sequência de DNA , Humanos
2.
Ecol Appl ; 33(5): e2863, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37185997

RESUMO

Mowing is common grassland management to feed livestock during winter by harvesting hay in many high-latitude regions in autumn. The trait-based approach has been used to explain the responses of the plant community to disturbance resulting from environmental changes and human activities. However, few studies have focused on the mechanisms underlying the responses of grassland ecosystems to mowing from the perspective of plant traits. Here, we investigated the effects of mowing on the plant community of a temperate steppe in Inner Mongolia of northern China by field experiments to dissect the trade-off between morphological and physiological traits in response to short-term (4 years) and long-term (16 years) mowing. Specifically, we evaluated the two strategies associated with the nutrient acquisition of two dominant species in response to mowing by measuring leaf and root morphological traits and physiological traits of root carboxylate exudation, arbuscular mycorrhizal fungi (AMF) colonization and soil microbial community. We found that long-term mowing, but not short-term mowing, led to an increase in species richness. In addition, mowing decreased the overall plant biomass of the grassland community, but enhanced and suppressed the growth of forbs and grasses, respectively. However, the ratio of forbs to grasses in the community was dependent on mowing duration, such that forbs became more dominant than the grasses under long-term mowing. Our results revealed that short-term mowing reduced soil microbial biodiversity and root colonization of AMF in the grass Stipa krylovii, while the root AMF colonization and carboxylate exudation in the forb Artemisia frigida were enhanced by short-term mowing. In long-term mowing, the functional traits associated with leaf resource conservation (i.e., leaf tissue density) and root resource acquisition were reduced in the grass, while the functional traits related to leaf resource acquisition and root resource conservation were increased in the forb, highlighting the species specificity and divergence in leaf and root traits in the grass and forb of temperate steppe in response to mowing. These novel findings demonstrate that physiological and morphological strategies are the main drivers for dominant species in response to mowing in temperate grasslands.


Assuntos
Microbiota , Micorrizas , Humanos , Ecossistema , Plantas , Poaceae , Biomassa , Biodiversidade , Micorrizas/fisiologia , Solo , Pradaria
3.
Ecol Appl ; 33(5): e2861, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37092906

RESUMO

Mowing, as a common grassland utilization strategy, affects nutrient status in soil by plant biomass removal. Phosphorus (P) cycle plays an important role in determining grassland productivity. However, few studies have addressed the impacts of mowing on P cycling in grassland ecosystems. Here, we investigated the effects of various mowing regimes on soil P fractions and P accumulation in plants and litters. We specifically explored the mechanisms by which mowing regulates ecosystem P cycling by linking aboveground community with soil properties. Our results showed that mowing increased soil dissolvable P concentrations, which probably met the demand for P absorption and utilization by plants, thus contributing to an increased P accumulation by plants. Mowing promoted grassland P cycling by a reciprocal relationship between plants and microbes. Short-term mowing enhanced P cycling mainly through increased root exudation-evoked the extracellular enzyme activity of microbes rather than the alternations in microbial biomass and community composition. Long-term mowing increased P cycling mainly by promoting carbon allocation to roots, thereby leading to greater microbial metabolic activity. Although mowing-stimulation of organic P mineralization lasted for 15 consecutive years, mowing did not result in soil P depletion. These results demonstrate that P removal by mowing will not necessarily lead to soil P limitation. Our findings would advance the knowledge on soil P dynamic under mowing and contribute to resource-efficient grassland management.


Assuntos
Jardins , Fósforo , Solo , Biomassa , Carbono , Ecossistema , Pradaria , Nitrogênio/metabolismo , Plantas , Poaceae
4.
Microb Ecol ; 85(1): 221-231, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35043220

RESUMO

Soil microorganisms play key roles in terrestrial biogeochemical cycles and ecosystem functions. However, few studies address how long-term nitrogen (N) addition gradients impact soil bacterial and fungal diversity and community composition simultaneously. Here, we investigated soil bacterial and fungal diversity and community composition based on a long-term (17 years) N addition gradient experiment (six levels: 0, 2, 4, 8, 16, 32 gN m-2 year-1) in temperate grassland, using the high-throughput Illumina MiSeq sequencing. Results showed that both soil bacterial and fungal alpha diversity responded nonlinearly to the N input gradient and reduced drastically when the N addition rate reached 32 g N m-2 year-1. The relative abundance of soil bacterial phyla Proteobacteria increased and Acidobacteria decreased significantly with increasing N level. In addition, the relative abundance of bacterial functional groups associated with aerobic ammonia oxidation, aerobic nitrite oxidation, nitrification, respiration of sulfate and sulfur compounds, and chitinolysis significantly decreased under the highest N addition treatment. For soil fungi, the relative abundance of Ascomycota increased linearly along the N enrichment gradient. These results suggest that changes in soil microbial community composition under elevated N do not always support the copiotrophic-oligotrophic hypothesis, and some certain functional bacteria would not simply be controlled by soil nutrients. Further analysis illustrated that reduced soil pH under N addition was the main factor driving variations in soil microbial diversity and community structure in this grassland. Our findings highlight the consistently nonlinear responses of soil bacterial and fungal diversity to increasing N input and the significant effects of soil acidification on soil microbial communities, which can be helpful for the prediction of underground ecosystem processes in light of future rising N deposition.


Assuntos
Microbiota , Solo , Solo/química , Pradaria , Microbiologia do Solo , Bactérias/genética , Fungos/genética , Concentração de Íons de Hidrogênio
5.
New Phytol ; 234(2): 422-434, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35048364

RESUMO

Root anatomical traits play crucial roles in understanding root functions and root form-function linkages. However, the root anatomy and form-function linkages of monocotyledonous and dicotyledonous herbs remain largely unknown. We measured order-based anatomical traits and mycorrhizal colonization rates of 32 perennial herbs of monocotyledons and dicotyledons in a temperate steppe. For monocots, relative constant proportion of cortex and mycorrhizal colonization rates, but increased cell-wall thickening of the endodermis and proportion of stele were observed across root orders, indicating a slight reduction in absorption capacity and improvement in transportation capacity across orders. For dicots, the cortex and mycorrhizal colonization disappeared in the fourth-order and/or fifth-order roots, whereas the secondary vascular tissue increased markedly, suggesting significant transition of root functions from absorption to transportation across root orders. The allometric relationships between stele and cortex differed across root orders and plant groups, suggesting different strategies to coordinate the absorption and transportation functions among plant groups. In summary, our results revealed different functional transition patterns across root orders and distinct strategies for coordinating the absorption and transportation of root system between monocots and dicots. These findings will contribute to our understanding of the root form and functions in herbaceous species.


Assuntos
Magnoliopsida , Micorrizas , Magnoliopsida/anatomia & histologia , Fenótipo , Raízes de Plantas/anatomia & histologia , Plantas
6.
Glob Chang Biol ; 28(11): 3651-3664, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35231142

RESUMO

Belowground plant traits play important roles in plant diversity loss driven by atmospheric nitrogen (N) deposition. However, the way N enrichment shapes plant microhabitats by patterning belowground traits and finally determines aboveground responses is poorly understood. Here, we investigated the rhizosheath trait of 74 plant species in seven N-addition simulation experiments across multiple grassland ecosystems in China. We found that rhizosheath formation differed among plant functional groups and contributed to changes in plant community composition induced by N enrichment. Compared with forb species, grass and sedge species exhibited distinct rhizosheaths; moreover, grasses and sedges expanded their rhizosheaths with increasing N-addition rate which allowed them to colonize belowground habitats. Grasses also shaped a different microenvironment around their roots compared with forbs by affecting the physicochemical, biological, and stress-avoiding properties of their rhizosphere soil. Rhizosheaths act as a "biofilm-like shield" by the accumulation of protective compounds, carboxylic anions and polysaccharides, determined by both plants and microorganisms. This enhanced the tolerance of grasses and sedges to stresses induced by N enrichment. Conversely, forbs lacked the protective rhizosheaths which renders their roots sensitive to stresses induced by N enrichment, thus contributing to their disappearance under N-enriched conditions. This study uncovers the processes by which belowground facilitation and trait matching affect aboveground responses under conditions of N enrichment, which advances our mechanistic understanding of the contribution of competitive exclusion and environmental tolerance to plant diversity loss caused by N deposition.


Assuntos
Pradaria , Nitrogênio , Biomassa , Ecossistema , Plantas , Poaceae , Solo/química
7.
New Phytol ; 229(3): 1481-1491, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32645210

RESUMO

Root anatomy plays important roles in the control of leaf water relations. However, few studies have evaluated whether and how anatomical traits of absorptive roots influence leaf physiology of herbaceous species in a temperate grassland. We measured absorptive root anatomical traits and leaf physiological traits of 15 herbaceous species in a temperate steppe and monitored their responses to increased precipitation in a field stimulating experiment. Root anatomical and leaf physiological traits differed among monocotyledonous grasses, monocotyledonous liliaceous species and dicotyledonous forbs. The species with higher stele: root diameter, lower root diameter and cortex thickness exhibited higher transpiration rates and stomatal conductance, but lower intrinsic water-use efficiency. Increased precipitation enhanced transpiration and stomatal conductance of forbs and lilies, but it enhanced photosynthesis in lilies exclusively. The sensitive response of lilies to precipitation may be related to their large root diameter and cortex thickness. In summary, we observed distinct differences in anatomical traits of absorptive roots among plant groups in temperate steppes. These differences drove variations in leaf physiological traits and their diverse responses to precipitation change. These findings highlight the important roles of root anatomical traits in driving leaf-level physiological processes in temperate grasslands.


Assuntos
Magnoliopsida , Folhas de Planta , Fotossíntese , Plantas , Poaceae
8.
Oecologia ; 189(1): 255-266, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30511091

RESUMO

Clonal plants with diverse growth forms are dominant in plant community of temperate grasslands and sensitive to enhanced atmospheric nitrogen (N) deposition. However, whether and how clonal plants with different growth forms differ in their responses to N deposition remains unclear. We investigated the long-term (14-year) and short-term (4-year) effects of N addition on clonal plants of three growth forms (clumper, stoloniferous and rhizomatous clonal plants) in temperate grasslands of northern China by monitoring the clonal traits and belowground meristems. We found that, for the first time, the effects of N addition on clonal plants were dependent on N-addition duration and growth forms of clonal plants. Short-term N addition enhanced growth of clumper clonal plants, while long-term N addition favored growth of rhizomatous clonal plants and suppressed growth of stoloniferous clonal plants. We further revealed that clumper clonal plants can preempt space by tillering rapidly, thus conferring their dominance in the community and suppressing vegetative reproduction of stoloniferous clonal plants upon exposure to short-term N enhancement. In contrast, long-term N addition depressed initiation of buds and tillering of clumper clonal plants. Moreover, long-term N addition shortened rhizome internode and enhanced vegetative reproduction of rhizomatous clonal plants, leading to their ultimate dominance in the steppe community. Our results highlight the important roles of belowground meristems and clonal traits in control of dynamic changes of plant community in response to N enrichment. These findings provide a new perspective to understand N-induced changes in plant community of temperate grasslands.


Assuntos
Nitrogênio , Plantas , China , Rizoma
9.
Ecology ; 97(1): 65-74, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27008776

RESUMO

Loss of plant diversity with increased anthropogenic nitrogen (N) deposition in grasslands has occurred globally. In most cases, competitive exclusion driven by preemption of light or space is invoked as a key mechanism. Here, we provide evidence from a 9-yr N-addition experiment for an alternative mechanism: differential sensitivity of forbs and grasses to increased soil manganese (Mn) levels. In Inner Mongolia steppes, increasing the N supply shifted plant community composition from grass-forb codominance (primarily Stipa krylovii and Artemisia frigida, respectively) to exclusive dominance by grass, with associated declines in overall species richness. Reduced abundance of forbs was linked to soil acidification that increased mobilization of soil Mn, with a 10-fold greater accumulation of Mn in forbs than in grasses. The enhanced accumulation of Mn in forbs was correlated with reduced photosynthetic rates and growth, and is consistent with the loss of forb species. Differential accumulation of Mn between forbs and grasses can be linked to fundamental differences between dicots and monocots in the biochemical pathways regulating metal transport. These findings provide a mechanistic explanation for N-induced species loss in temperate grasslands by linking metal mobilization in soil to differential metal acquisition and impacts on key functional groups in these ecosystems.


Assuntos
Biodiversidade , Pradaria , Manganês/química , Nitrogênio/química , Plantas/classificação , Solo/química , Biomassa , Nitrogênio/metabolismo , Fotossíntese , Especificidade da Espécie
10.
Zhongguo Zhong Yao Za Zhi ; 40(24): 4830-3, 2015 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-27245030

RESUMO

This study aims to investigate whether the cultivation peony, can take the place of wild herbaceous peony by comparing the biological traits and paeoniflorin content between them. The result showed that the biomass of the stem, leaf, crown, fleshy root and fine root of wild plants were all smaller than that of bud asexual cultivated plants, while there was no significant differences in below-ground and aboveground biomass ratio between these two plants. The stele diameter, the proportion of stele, and the ratio of stele diameter to cortex thickness of wild plants were significantly higher than that of bud asexual cultivated plants, while the cortex thickness and the proportion of cortex were significantly smaller than bud asexual cultivated plants. Although the biological traits of bud asexual cultivated plants have changed significantly, the paeoniflorin content in fleshy roots has no significant difference between wild and bud asexual cultivated plants. Therefore, it is feasible to use the bud asexual cultivation to the conservation and large-scale cultivation of Paeonia laciflora, which is an endangered species.


Assuntos
Glucosídeos/análise , Monoterpenos/análise , Paeonia/química , Paeonia/anatomia & histologia , Paeonia/crescimento & desenvolvimento
11.
J Agric Food Chem ; 72(17): 10055-10064, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634336

RESUMO

Enantioselective antibodies have emerged as efficient tools in the field of chiral chemical detection and separation. However, it is complicated to obtain a highly stereoselective antibody due to the unclear recognition mechanism. In this study, the hapten of metolachlor was synthesized and enantio-separated. The absolute configuration of the four haptens obtained was identified by the computed and experimental electronic circular dichroism comparison. Five polyclonal antibodies against the Rac-metolachlor and its enantiomers were generated by immunization. The cross-activity of all the 5 antibodies with 44 structural analogues, including metolachlor enantiomers, was tested. It demonstrated that antibodies have higher specificity to recognize central chirality than axial chirality. Especially, αRR-MET-Ab exhibited excellent specificity and stereoselectivity. Accordingly, 3D-QSAR models were constructed and revealed that paired stereoisomers exhibited opposite interactions with the antibodies. It is the first time that the antibodies against four stereoisomers were prepared and analyzed, which will be conducive to the rational design of the stereoselective antibodies.


Assuntos
Acetamidas , Anticorpos , Herbicidas , Herbicidas/química , Herbicidas/imunologia , Estereoisomerismo , Animais , Anticorpos/química , Anticorpos/imunologia , Acetamidas/química , Relação Quantitativa Estrutura-Atividade , Haptenos/química , Haptenos/imunologia , Coelhos
12.
Environ Sci Pollut Res Int ; 29(46): 70520-70531, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35589888

RESUMO

Demand for high forage production and quality has been increased markedly by development of animal husbandry in China. The lack of efficient planting regimes and key technologies greatly limits production of high-quality forage. Oat has become an important forage in animal husbandry in China due to its high nutritional value and forage yield as well as its great adaptation to harsh environment. To maximize oat forage production in an alpine region, we developed a new model of oat forage production known as two-sown regime, i.e., the first spring-sown and the second summer-sown, during a single growing season in an alpine region of Hulun Buir, Inner Mongolia Autonomous Region, China, using two early-matured oat species, Avena sativa (cv. Qinghai444, winner oat cultivar) and A. nuda (cv. Huazao2, spring oat cultivar). The key technologies and the underlying agronomic mechanisms were investigated across three experimental years of 2017-2019. The main results were as follows: (1) dry weight yield, crude protein yield, and relative feed value of forage in the two-sown regime were significantly increased by 53.6%, 48.9%, and 70.6% relative to traditional one-sown regime across the 3 years, respectively; (2) forage production was mainly achieved by an increase in plant height at the first spring-sown; and (3) forage yield resulted mainly from an increase in tiller density by increasing seeding rate under no-tillage treatment in the second summer-sown. The key technologies of the two-sown regime were the first spring-sown at the soil thawing depth 10-13 cm, followed by the second summer-sown with increasing seeding rate under no-tillage treatment. These findings highlight that the two-sown regime of oat forage can be widely used as an effective planting regime to maximize forage production in large alpine regions of northern China as well as in regions with similar climates.


Assuntos
Criação de Animais Domésticos , Avena , Animais , China , Região dos Alpes Europeus , Valor Nutritivo , Solo
13.
Environ Sci Pollut Res Int ; 28(48): 68804-68816, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34279779

RESUMO

The natural grasslands in northern China have been seriously degraded due mainly to overgrazing and climate change in recent decades, leading to shortage of forage supply to animal husbandry. To maximize forage production, we developed a two-harvest regime of oat forage by sowing in spring in an alpine region of Hulun Buir, northern China, using two oat early maturation species. The agronomic characteristics and forage quality of the two-harvest regime were evaluated across three constructive years from 2017 to 2019. Compared to the traditional one-harvest regime, the production, resource use efficiency, and economic benefits were compared and quantified for both oat species across the 3 years. Dry weight forage by the two-harvest regime was increased by 17.5-18.5%, while crude protein was increased by 25.1-30.0%. Growing days by the two-harvest regime was increased by 36.7% on average, nitrogen fertilizer use efficiency was enhanced by 25.1-30.0%, while water use efficiency was not significantly changed. The two-harvest regime also increased the net profit by 28.0%. Taken together, our results reveal that the two-harvest regime of forage production in the cold region of northern China is a promising practice with high forage yield, nutritional value, and nitrogen fertilizer use efficiency as well as economic profit.


Assuntos
Avena , Fertilizantes , Animais , China , Região dos Alpes Europeus , Valor Nutritivo , Estações do Ano
14.
Int J Biol Macromol ; 179: 542-549, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33716128

RESUMO

At present, the yield of common buckwheat, which is mainly grown in northern Shaanxi of China, is low and the grain quality is poor. Nitrogen is an important nutrient for the growth of common buckwheat, and appropriate nitrogen application can improve the grain quality. Nitrogen fertilizer could alter the starch granule morphology shapes and the granule size distribution. With increasing nitrogen levels, branch number, flower clusters number, grain number per plant, contents of protein and fat, size distribution of "C" granules, and percentages of light transmittance significantly increased, whereas amylose content and retrogradation decreased. All the samples displayed typical A-type X-ray diffraction patterns. Starch showed higher pasting temperature and gelatinization enthalpy but lower trough and final viscosities under high nitrogen levels. These results suggested N2 treatment was more suitable for common buckwheat growth, principal components and correlation analysis revealed that nitrogen fertilizer significantly affected the physicochemical properties of common buckwheat starches.


Assuntos
Fagopyrum , Fertilizantes/análise , Nitrogênio/metabolismo , Amido/química , China , Grão Comestível/química , Grão Comestível/crescimento & desenvolvimento , Fagopyrum/química , Fagopyrum/crescimento & desenvolvimento
15.
Food Chem ; 307: 125543, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634760

RESUMO

Phosphate fertilisation affects the growth, development and quality of Tartary buckwheat. In this study, the effect of different phosphorus levels, including 0, 15, 75, and 135 kg/ha (non-, low-, medium-, and high-phosphorus levels, respectively), on the characteristics of starch from Tartary buckwheat were investigated in 2015 and 2017. With increased phosphorus level, the median diameter of starch granules and the apparent amylose content initially decreased and then increased. All starch samples showed the features of A-type X-ray diffraction patterns. Starches under medium-phosphorus treatment showed higher relative crystallinity than those under non-phosphorus treatment, as well as the highest solubility, gelatinisation enthalpy and transmittance among all starches. Starches under low-phosphorus treatment exhibited higher pasting properties than those under non-phosphorus treatment. This research revealed that phosphorus treatments and year significantly affected the physicochemical properties of Tartary buckwheat starch, and can provide information for the applications of starch in the food and non-food industries.


Assuntos
Fagopyrum/química , Fertilizantes , Fosfatos/farmacologia , Amido/química , Amilose/química , Fenômenos Químicos , Fagopyrum/efeitos dos fármacos , Solubilidade
16.
Int J Biol Macromol ; 129: 799-808, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30731161

RESUMO

Nitrogen is an essential nutrient for Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) because this substance affects the yield and quality of Tartary buckwheat. The physicochemical characteristics of starch represent the important parameters of Tartary buckwheat quality. The effects of different levels of nitrogen application at different levels (0, 45, 135 and 225kg/ha in 2015 and 0, 90, 180 and 270kg/ha in 2017) on the physicochemical characteristics of Tartary buckwheat starch were studied. The amylose content, particle size and retrogradation of Tartary buckwheat starch with nitrogen were lower than those of without nitrogen. The structure complexity, pasting temperature, gelatinization enthalpy, relative crystallinity, light transmittance and solubility of the former were higher than those of the latter. Nitrogen application did not change the 'A'-type crystalline pattern of Tartary buckwheat starch. This study indicated that nitrogen level and years and the interactions among nitrogen fertilizer levels and years significantly affected the physicochemical properties of Tartary buckwheat starch. These integrated results also provided information about the management of fertilization conditions to obtain starches with special properties for applications in food or nonfood industries.


Assuntos
Fenômenos Químicos , Fagopyrum/química , Fagopyrum/metabolismo , Nitrogênio/metabolismo , Amido/química , Amido/metabolismo , Amilose/química , Tamanho da Partícula , Solubilidade , Análise Espectral , Amido/isolamento & purificação , Amido/ultraestrutura , Temperatura
17.
Huan Jing Ke Xue ; 39(12): 5665-5671, 2018 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628413

RESUMO

With the development of economics, the deposition of available nitrogen in the terrestrial ecosystem is increasing dramatically due to anthropic activities, which negatively impacts the sustainability of the ecosystem ecology. In this study, the effect of long-term stimulated nitrogen deposition[with nitrogen addition of 0, 1, 4, 8, and 32 g·(m2·a)-1] on the microbial community structure of soil was investigated in a temperate steppe in Inner Mongolia using a pyrosequencing technique targeting the bacterial 16S rRNA gene. The results show that the available nitrogen in soil increases with increasing nitrogen addition, resulting in the decrease of the soil pH. The results of pyrosequencing indicate that soil bacterial OTU (operational taxonomy unit) numbers increase with increasing nitrogen deposition, while bacterial α diversity indices show an initial increase and subsequent decrease. Non-metric multidimensional scaling (NMDS) analysis indicates that the bacterial community structure significantly varies among treatments, which can be largely attributed to the changes in the soil pH and nitrogen content due to nitrogen deposition. At the class level, the relative abundance of different bacterial groups shows a varying trend depending on the nitrogen deposition. This study indicates that long-term nitrogen deposition significantly impacts the bacterial community by changing the soil properties.


Assuntos
Bactérias/classificação , Pradaria , Nitrogênio/análise , Microbiologia do Solo , China , RNA Ribossômico 16S/genética , Solo
18.
J Vis Exp ; (112)2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27404089

RESUMO

Nondestructive prediction of ingredient contents of farm products is useful to ship and sell the products with guaranteed qualities. Here, near-infrared spectroscopy is used to predict nondestructively total sugar, total organic acid, and total anthocyanin content in each blueberry. The technique is expected to enable the selection of only delicious blueberries from all harvested ones. The near-infrared absorption spectra of blueberries are measured with the diffuse reflectance mode at the positions not on the calyx. The ingredient contents of a blueberry determined by high-performance liquid chromatography are used to construct models to predict the ingredient contents from observed spectra. Partial least squares regression is used for the construction of the models. It is necessary to properly select the pretreatments for the observed spectra and the wavelength regions of the spectra used for analyses. Validations are necessary for the constructed models to confirm that the ingredient contents are predicted with practical accuracies. Here we present a protocol to construct and validate the models for nondestructive prediction of ingredient contents in blueberries by near-infrared spectroscopy.


Assuntos
Mirtilos Azuis (Planta) , Calibragem , Cromatografia Líquida de Alta Pressão , Análise dos Mínimos Quadrados , Modelos Teóricos , Espectroscopia de Luz Próxima ao Infravermelho
19.
Sci Rep ; 6: 26901, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27264386

RESUMO

Predicted future shifts in the magnitude and frequency (larger but fewer) of precipitation events and enhanced nitrogen (N) deposition may interact to affect grassland productivity, but the effects of N enrichment on the productivity response to individual precipitation events remain unclear. In this study, we quantified the effects of N addition on the response patterns of gross primary productivity (GPP) to individual precipitation events of different sizes (Psize) in a temperate grassland in China. The results showed that N enrichment significantly increased the time-integrated amount of GPP in response to an individual precipitation event (GPPtotal), and the N-induced stimulation of GPP increased with increasing Psize. N enrichment rarely affected the duration of the GPP response, but it significantly stimulated the maximum absolute GPP response. Higher foliar N content might play an important role in the N-induced stimulation of GPP. GPPtotal in both the N-addition and control treatments increased linearly with Psize with similar Psize intercepts (approximately 5 mm, indicating a similar lower Psize threshold to stimulate the GPP response) but had a steeper slope under N addition. Our work indicates that the projected larger precipitation events will stimulate grassland productivity, and this stimulation might be amplified by increasing N deposition.


Assuntos
Nitrogênio/química , Folhas de Planta/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Chuva , China , Pradaria , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Poaceae/metabolismo , Estações do Ano
20.
Ying Yong Sheng Tai Xue Bao ; 26(8): 2291-7, 2015 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-26685590

RESUMO

The plants in arid environment are constrained not only by water availability, but also by soil nutrient conditions. In order to clarify to what extent nutrient addition would facilitate the growth of plants in semi-arid region, we conducted a nitrogen (N) and phosphorus (P) addition experiment in Inner Mongolia temperate grassland in 2012 and 2013. In our experiment, N was added at 10 and 40 g N · m(-2) · a(-1) alone or in combination with P addition (10 g P · m(-2) · a(-1)). N addition significantly improved plant aboveground biomass (AGB) during the two study years. AGB in the treatments of 10 and 40 g · m2 · a(-1) was enhanced by 50.8% and 65.9% in 2012, and 71.6% and 93.3% in 2013, respectively. However, no significant difference in AGB enhancement was found between two N addition treatments. Compared with N addition treatments at the rates of 10 and 40 g · m(-2) · a(-1), N plus P addition improved AGB by 98.4% and 186.8% in 2012, and 111.7% and 141.4% in 2013, respectively. N addition generally increased all the three main functional types (i.e., Gramineae, Asteraceae and others) , and the three functional types contributed nearly equally to the increase of the community AGB. In comparison, Asteraceae contributed largest to the increments of AGB under the N plus P addition treatments. Our results also indicated that N and P addition remarkably increased the ground coverage, resulting in improved surface soil moisture condition, which might be one important reason that N and P addition could facilitate plant growth in arid environment.


Assuntos
Asteraceae/crescimento & desenvolvimento , Biomassa , Nitrogênio/química , Fósforo/química , Poaceae/crescimento & desenvolvimento , Solo/química , China , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA