Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Hum Genet ; 111(6): 1140-1164, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38776926

RESUMO

Detection of structural variants (SVs) is currently biased toward those that alter copy number. The relative contribution of inversions toward genetic disease is unclear. In this study, we analyzed genome sequencing data for 33,924 families with rare disease from the 100,000 Genomes Project. From a database hosting >500 million SVs, we focused on 351 genes where haploinsufficiency is a confirmed disease mechanism and identified 47 ultra-rare rearrangements that included an inversion (24 bp to 36.4 Mb, 20/47 de novo). Validation utilized a number of orthogonal approaches, including retrospective exome analysis. RNA-seq data supported the respective diagnoses for six participants. Phenotypic blending was apparent in four probands. Diagnostic odysseys were a common theme (>50 years for one individual), and targeted analysis for the specific gene had already been performed for 30% of these individuals but with no findings. We provide formal confirmation of a European founder origin for an intragenic MSH2 inversion. For two individuals with complex SVs involving the MECP2 mutational hotspot, ambiguous SV structures were resolved using long-read sequencing, influencing clinical interpretation. A de novo inversion of HOXD11-13 was uncovered in a family with Kantaputra-type mesomelic dysplasia. Lastly, a complex translocation disrupting APC and involving nine rearranged segments confirmed a clinical diagnosis for three family members and resolved a conundrum for a sibling with a single polyp. Overall, inversions play a small but notable role in rare disease, likely explaining the etiology in around 1/750 families across heterogeneous clinical cohorts.


Assuntos
Inversão Cromossômica , Doenças Raras , Humanos , Doenças Raras/genética , Masculino , Feminino , Inversão Cromossômica/genética , Linhagem , Genoma Humano , Sequenciamento Completo do Genoma , Proteína 2 de Ligação a Metil-CpG/genética , Mutação , Proteínas de Homeodomínio/genética , Pessoa de Meia-Idade
2.
J Med Genet ; 61(4): 305-312, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38154813

RESUMO

BACKGROUND: National and international amalgamation of genomic data offers opportunity for research and audit, including analyses enabling improved classification of variants of uncertain significance. Review of individual-level data from National Health Service (NHS) testing of cancer susceptibility genes (2002-2023) submitted to the National Disease Registration Service revealed heterogeneity across participating laboratories regarding (1) the structure, quality and completeness of submitted data, and (2) the ease with which that data could be assembled locally for submission. METHODS: In May 2023, we undertook a closed online survey of 51 clinical scientists who provided consensus responses representing all 17 of 17 NHS molecular genetic laboratories in England and Wales which undertake NHS diagnostic analyses of cancer susceptibility genes. The survey included 18 questions relating to 'next-generation sequencing workflow' (11), 'variant classification' (3) and 'phenotypical context' (4). RESULTS: Widely differing processes were reported for transfer of variant data into their local LIMS (Laboratory Information Management System), for the formatting in which the variants are stored in the LIMS and which classes of variants are retained in the local LIMS. Differing local provisions and workflow for variant classifications were also reported, including the resources provided and the mechanisms by which classifications are stored. CONCLUSION: The survey responses illustrate heterogeneous laboratory workflow for preparation of genomic variant data from local LIMS for centralised submission. Workflow is often labour-intensive and inefficient, involving multiple manual steps which introduce opportunities for error. These survey findings and adoption of the concomitant recommendations may support improvement in laboratory dataflows, better facilitating submission of data for central amalgamation.


Assuntos
Laboratórios , Neoplasias , Humanos , Fluxo de Trabalho , Medicina Estatal , Genômica , Reino Unido
3.
Genet Med ; 26(3): 101051, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38131308

RESUMO

PURPOSE: The UK 100,000 Genomes Project offered participants screening for additional findings (AFs) in genes associated with familial hypercholesterolemia (FH) or hereditary cancer syndromes including breast/ovarian cancer (HBOC), Lynch, familial adenomatous polyposis, MYH-associated polyposis, multiple endocrine neoplasia (MEN), and von Hippel-Lindau. Here, we report disclosure processes, manifestation of AF-related disease, outcomes, and costs. METHODS: An observational study in an area representing one-fifth of England. RESULTS: Data were collected from 89 adult AF recipients. At disclosure, among 57 recipients of a cancer-predisposition-associated AF and 32 recipients of an FH-associated AF, 35% and 88%, respectively, had personal and/or family history evidence of AF-related disease. During post-disclosure investigations, 4 cancer-AF recipients had evidence of disease, including 1 medullary thyroid cancer. Six women with an HBOC AF, 3 women with a Lynch syndrome AF, and 2 individuals with a MEN AF elected for risk-reducing surgery. New hyperlipidemia diagnoses were made in 6 FH-AF recipients and treatment (re-)initiated for 7 with prior hyperlipidemia. Generating and disclosing AFs in this region cost £1.4m; £8680 per clinically significant AF. CONCLUSION: Generation and disclosure of AFs identifies individuals with and without personal or familial evidence of disease and prompts appropriate clinical interventions. Results can inform policy toward secondary findings.


Assuntos
Neoplasias da Mama , Hiperlipidemias , Síndromes Neoplásicas Hereditárias , Adulto , Humanos , Feminino , Testes Genéticos/métodos , Revelação , Síndromes Neoplásicas Hereditárias/genética , Neoplasias da Mama/genética , Hiperlipidemias/genética , Atenção à Saúde , Predisposição Genética para Doença
4.
J Med Genet ; 60(7): 669-678, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36572524

RESUMO

OBJECTIVE: To describe national patterns of National Health Service (NHS) analysis of mismatch repair (MMR) genes in England using individual-level data submitted to the National Disease Registration Service (NDRS) by the NHS regional molecular genetics laboratories. DESIGN: Laboratories submitted individual-level patient data to NDRS against a prescribed data model, including (1) patient identifiers, (2) test episode data, (3) per-gene results and (4) detected sequence variants. Individualised per-laboratory algorithms were designed and applied in NDRS to extract and map the data to the common data model. Laboratory-level MMR activity audit data from the Clinical Molecular Genetics Society/Association of Clinical Genomic Science were used to assess early years' missing data. RESULTS: Individual-level data from patients undergoing NHS MMR germline genetic testing were submitted from all 13 English laboratories performing MMR analyses, comprising in total 16 722 patients (9649 full-gene, 7073 targeted), with the earliest submission from 2000. The NDRS dataset is estimated to comprise >60% of NHS MMR analyses performed since inception of NHS MMR analysis, with complete national data for full-gene analyses for 2016 onwards. Out of 9649 full-gene tests, 2724 had an abnormal result, approximately 70% of which were (likely) pathogenic. Data linkage to the National Cancer Registry demonstrated colorectal cancer was the most frequent cancer type in which full-gene analysis was performed. CONCLUSION: The NDRS MMR dataset is a unique national pan-laboratory amalgamation of individual-level clinical and genomic patient data with pseudonymised identifiers enabling linkage to other national datasets. This growing resource will enable longitudinal research and can form the basis of a live national genomic disease registry.


Assuntos
Neoplasias , Medicina Estatal , Humanos , Reparo de Erro de Pareamento de DNA/genética , Laboratórios , Genômica
5.
J Gastroenterol Hepatol ; 37(5): 861-869, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35128723

RESUMO

BACKGROUND AND AIM: Serrated polyposis syndrome (SPS) is now known to be the commonest polyposis syndrome. Previous analyses for germline variants have shown no consistent positive findings. To exclude other polyposis syndromes, 2019 British Society of Gastroenterology (BSG) guidelines advise gene panel testing if the patient is under 50 years, there are multiple affected individuals within a family, or there is dysplasia within any of the polyps. METHODS: A database of SPS patients was established at the Oxford University Hospitals NHS Foundation Trust. Patients were referred for genetic assessment based on personal and family history and patient preference. The majority were tested for a hereditary colorectal cancer panel including MUTYH, APC, PTEN, SMAD4, BMPR1A, STK11, NTLH1, POLD1, POLE, GREM1 (40-kb duplication), PMS2, and Lynch syndrome mismatch repair genes. RESULTS: One hundred and seventy-three patients were diagnosed with SPS based on World Health Organization 2019 criteria between February 2010 and December 2020. The mean age of diagnosis was 54.2 ± 16.8 years. Seventy-three patients underwent genetic testing and 15/73 (20.5%) were found to have germline variants, of which 7/73 (9.6%) had a pathogenic variant (MUTYH n = 2, SMAD4 n = 1, CHEK2 n = 2, POLD1 n = 1, and RNF43 n = 1). Only 60% (9/15) of these patients would have been recommended for gene panel testing according to current BSG guidelines. CONCLUSIONS: A total of 20.5% of SPS patients tested were affected by heterozygous germline variants, including previously unreported associations with CHEK2 and POLD1. This led to a change in management in seven patients (9.6%). Current recommendations may miss SPS associated with germline variants, which is more common than previously anticipated.


Assuntos
Polipose Adenomatosa do Colo , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Polipose Adenomatosa do Colo/genética , Adulto , Idoso , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Testes Genéticos , Células Germinativas , Mutação em Linhagem Germinativa , Humanos , Pessoa de Meia-Idade , Síndrome
6.
Diagn Mol Pathol ; 22(4): 190-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24193010

RESUMO

EGFR mutation testing of tumor samples is routinely performed to predict sensitivity to treatment with tyrosine kinase inhibitors for patients with non-small cell lung cancer. At least 9 different methodologies are employed in UK laboratories, and the aim of this study was to compare the sensitivity of different methods for the detection of EGFR mutations. Participating laboratories were sent coded samples with varying mutation loads (from 0% to 15%) to be tested for the p.Leu858Arg (p.L858R) missense mutation and c.2235_2249del exon 19 deletion. The p.L858R mutation and deletions within exon 19 of the EGFR gene account for ∼90% of mutation-positive cases. The 11 laboratories used their standard testing method(s) and submitted 15 sets of results for the p.L858R samples and 10 for the exon 19 deletion. The p.Leu858Arg (p.L858R) mutation was detected at levels between 1% and 7.5% by Sanger sequencing, pyrosequencing, real-time polymerase chain reaction (PCR), amplification refractory mutation system, and capillary electrophoresis single-strand conformation analysis. The c.2235_2249del mutation was detected at 1% to 5% by fragment size analysis, Sanger sequencing or real-time PCR. A mutation was detected in 24/25 (96%) of the samples tested which contained 5% mutated DNA. The 1% sensitivity claimed for commercial real-time PCR-targeted EGFR tests was achieved and our results show greater sensitivity for the Sanger sequencing and pyrosequencing screening methods compared to the 10% to 20% detection levels cited on clinical diagnostic reports. We conclude that multiple methodologies are suitable for the detection of acquired EGFR mutations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Mutação de Sentido Incorreto , Patologia Molecular/métodos , Deleção de Sequência , Humanos , Sensibilidade e Especificidade , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA