Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Biol Chem ; 299(8): 104997, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37394008

RESUMO

Presenilin-1 (PSEN1) is the catalytic subunit of the intramembrane protease γ-secretase and undergoes endoproteolysis during its maturation. Heterozygous mutations in the PSEN1 gene cause early-onset familial Alzheimer's disease (eFAD) and increase the proportion of longer aggregation-prone amyloid-ß peptides (Aß42 and/or Aß43). Previous studies had suggested that PSEN1 mutants might act in a dominant-negative fashion by functional impediment of wild-type PSEN1, but the exact mechanism by which PSEN1 mutants promote pathogenic Aß production remains controversial. Using dual recombinase-mediated cassette exchange (dRMCE), here we generated a panel of isogenic embryonic and neural stem cell lines with heterozygous, endogenous expression of PSEN1 mutations. When catalytically inactive PSEN1 was expressed alongside the wild-type protein, we found the mutant accumulated as a full-length protein, indicating that endoproteolytic cleavage occurred strictly as an intramolecular event. Heterozygous expression of eFAD-causing PSEN1 mutants increased the Aß42/Aß40 ratio. In contrast, catalytically inactive PSEN1 mutants were still incorporated into the γ-secretase complex but failed to change the Aß42/Aß40 ratio. Finally, interaction and enzyme activity assays demonstrated the binding of mutant PSEN1 to other γ-secretase subunits, but no interaction between mutant and wild-type PSEN1 was observed. These results establish that pathogenic Aß production is an intrinsic property of PSEN1 mutants and strongly argue against a dominant-negative effect in which PSEN1 mutants would compromise the catalytic activity of wild-type PSEN1 through conformational effects.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas Mutantes/genética , Mutação , Fragmentos de Peptídeos/metabolismo , Presenilina-1/metabolismo , Animais , Camundongos
2.
Alzheimers Dement ; 18(5): 988-1007, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34581500

RESUMO

Studies supporting a strong association between tau deposition and neuronal loss, neurodegeneration, and cognitive decline have heightened the allure of tau and tau-related mechanisms as therapeutic targets. In February 2020, leading tau experts from around the world convened for the first-ever Tau2020 Global Conference in Washington, DC, co-organized and cosponsored by the Rainwater Charitable Foundation, the Alzheimer's Association, and CurePSP. Representing academia, industry, government, and the philanthropic sector, presenters and attendees discussed recent advances and current directions in tau research. The meeting provided a unique opportunity to move tau research forward by fostering global partnerships among academia, industry, and other stakeholders and by providing support for new drug discovery programs, groundbreaking research, and emerging tau researchers. The meeting also provided an opportunity for experts to present critical research-advancing tools and insights that are now rapidly accelerating the pace of tau research.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Biomarcadores , Descoberta de Drogas , Humanos , Proteínas tau
3.
Acta Neuropathol ; 137(2): 239-257, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30426203

RESUMO

Brain accumulation and aggregation of amyloid-ß (Aß) peptides is a critical step in the pathogenesis of Alzheimer's disease (AD). Full-length Aß peptides (mainly Aß1-40 and Aß1-42) are produced through sequential proteolytic cleavage of the amyloid precursor protein (APP) by ß- and γ-secretases. However, studies of autopsy brain samples from AD patients have demonstrated that a large fraction of insoluble Aß peptides are truncated at the N-terminus, with Aß4-x peptides being particularly abundant. Aß4-x peptides are highly aggregation prone, but their origin and any proteases involved in their generation are unknown. We have identified a recognition site for the secreted metalloprotease ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4) in the Aß peptide sequence, which facilitates Aß4-x peptide generation. Inducible overexpression of ADAMTS4 in HEK293 cells resulted in the secretion of Aß4-40 but unchanged levels of Aß1-x peptides. In the 5xFAD mouse model of amyloidosis, Aß4-x peptides were present not only in amyloid plaque cores and vessel walls, but also in white matter structures co-localized with axonal APP. In the ADAMTS4-/- knockout background, Aß4-40 levels were reduced confirming a pivotal role of ADAMTS4 in vivo. Surprisingly, in the adult murine brain, ADAMTS4 was exclusively expressed in oligodendrocytes. Cultured oligodendrocytes secreted a variety of Aß species, but Aß4-40 peptides were absent in cultures derived from ADAMTS4-/- mice indicating that the enzyme was essential for Aß4-x production in this cell type. These findings establish an enzymatic mechanism for the generation of Aß4-x peptides. They further identify oligodendrocytes as a source of these highly amyloidogenic Aß peptides.


Assuntos
Proteína ADAMTS4/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Oligodendroglia/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos , Oligodendroglia/patologia , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/patologia
4.
J Biol Chem ; 288(4): 2521-31, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23209290

RESUMO

γ-Secretase is a large enzyme complex comprising presenilin, nicastrin, presenilin enhancer 2, and anterior pharynx-defective 1 that mediates the intramembrane proteolysis of a large number of proteins including amyloid precursor protein and Notch. Recently, a novel γ-secretase activating protein (GSAP) was identified that interacts with γ-secretase and the C-terminal fragment of amyloid precursor protein to selectively increase amyloid-ß production. In this study we have further characterized the role of endogenous and exogenous GSAP in the regulation of γ-secretase activity and amyloid-ß production in vitro. Knockdown of GSAP expression in N2a cells decreased amyloid-ß levels. In contrast, overexpression of GSAP in HEK cells expressing amyloid precursor protein or in N2a cells had no overt effect on amyloid-ß generation. Likewise, purified recombinant GSAP had no effect on amyloid-ß generation in two distinct in vitro γ-secretase assays. In subsequent cellular studies with imatinib, a kinase inhibitor that reportedly prevents the interaction of GSAP with the C-terminal fragment of amyloid precursor protein, a concentration-dependent decrease in amyloid-ß levels was observed. However, no interaction between GSAP and the C-terminal fragment of amyloid precursor protein was evident in co-immunoprecipitation studies. In addition, subchronic administration of imatinib to rats had no effect on brain amyloid-ß levels. In summary, these findings suggest the roles of GSAP and imatinib in the regulation of γ-secretase activity and amyloid-ß generation are uncertain.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Regulação da Expressão Gênica , Piperazinas/farmacologia , Proteínas/química , Pirimidinas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Benzamidas , Encéfalo/metabolismo , Linhagem Celular Tumoral , Humanos , Mesilato de Imatinib , Masculino , Camundongos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo
5.
J Neurochem ; 125(4): 610-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23253155

RESUMO

The molecular mechanisms governing γ-secretase cleavage specificity are not fully understood. Herein, we demonstrate that extending the transmembrane domain of the amyloid precursor protein-derived C99 substrate in proximity to the cytosolic face strongly influences γ-secretase cleavage specificity. Sequential insertion of leucines or replacement of membrane-anchoring lysines by leucines elevated the production of Aß42, whilst lowering production of Aß40. A single insertion or replacement was sufficient to produce this phenotype, suggesting that the helical length distal to the ε-site is a critical determinant of γ-secretase cleavage specificity. Replacing the lysine at the luminal membrane border (K28) with glutamic acid (K28E) increased Aß37 and reduced Aß42 production. Maintaining a positive charge with an arginine replacement, however, did not alter cleavage specificity. Using two potent and structurally distinct γ-secretase modulators (GSMs), we elucidated the contribution of K28 to the modulatory mechanism. Surprisingly, whilst lowering the potency of the non-steroidal anti-inflammatory drug-type GSM, the K28E mutation converted a heteroaryl-type GSM to an inverse GSM. This result implies the proximal lysine is critical for the GSM mechanism and pharmacology. This region is likely a major determinant for substrate binding and we speculate that modulation of substrate binding is the fundamental mechanism by which GSMs exert their action.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Sítios de Ligação , Ativação Enzimática , Células HEK293 , Humanos , Leucina/metabolismo , Lisina/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato
6.
ACS Chem Neurosci ; 13(8): 1296-1314, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35357812

RESUMO

Neurodegenerative proteinopathies are characterized by the intracellular formation of insoluble and toxic protein aggregates in the brain that are closely linked to disease progression. In Alzheimer's disease and in rare tauopathies, aggregation of the microtubule-associated tau protein leads to the formation of neurofibrillary tangles (NFT). In Parkinson's disease (PD) and other α-synucleinopathies, intracellular Lewy bodies containing aggregates of α-synuclein constitute the pathological hallmark. Inhibition of the glycoside hydrolase O-GlcNAcase (OGA) prevents the removal of O-linked N-acetyl-d-glucosamine (O-GlcNAc) moieties from intracellular proteins and has emerged as an attractive therapeutic approach to prevent the formation of tau pathology. Like tau, α-synuclein is known to be modified with O-GlcNAc moieties and in vitro these have been shown to prevent its aggregation and toxicity. Here, we report the preclinical discovery and development of a novel small molecule OGA inhibitor, ASN90. Consistent with the substantial exposure of the drug and demonstrating target engagement in the brain, the clinical OGA inhibitor ASN90 promoted the O-GlcNAcylation of tau and α-synuclein in brains of transgenic mice after daily oral dosing. Across human tauopathy mouse models, oral administration of ASN90 prevented the development of tau pathology (NFT formation), functional deficits in motor behavior and breathing, and increased survival. In addition, ASN90 slowed the progression of motor impairment and reduced astrogliosis in a frequently utilized α-synuclein-dependent preclinical rodent model of PD. These findings provide a strong rationale for the development of OGA inhibitors as disease-modifying agents in both tauopathies and α-synucleinopathies. Since tau and α-synuclein pathologies frequently co-exist in neurodegenerative diseases, OGA inhibitors represent unique, multimodal drug candidates for further clinical development.


Assuntos
Doença de Parkinson , Sinucleinopatias , Tauopatias , Animais , Camundongos , Doença de Parkinson/metabolismo , Preparações Farmacêuticas , Tauopatias/metabolismo , alfa-Sinucleína/metabolismo , beta-N-Acetil-Hexosaminidases , Proteínas tau/metabolismo
7.
Chem Biol ; 14(2): 209-19, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17317574

RESUMO

In this report, inhibitors of the gamma-secretase enzyme have been exploited to characterize the antiproliferative relationship between target inhibition and cellular responses in Notch-dependent human T cell acute lymphoblastic leukemia (T-ALL) cell lines. Inhibition of gamma-secretase led to decreased Notch signaling, measured by endogenous NOTCH intracellular domain (NICD) formation, and was associated with decreased cell viability. Flow cytometry revealed that decreased cell viability resulted from a G(0)/G(1) cell cycle block, which correlated strongly to the induction of apoptosis. These effects associated with inhibitor treatment were rescued by exogenous expression of NICD and were not mirrored when a markedly less active enantiomer was used, demonstrating the gamma-secretase dependency and specificity of these responses. Together, these data strengthen the rationale for using gamma-secretase inhibitors therapeutically and suggest that programmed cell death may contribute to reduction of tumor burden in the clinic.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Leucemia-Linfoma de Células T do Adulto/patologia , Receptores Notch/antagonistas & inibidores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Óxidos S-Cíclicos/farmacologia , Citometria de Fluxo , Humanos , Leucemia-Linfoma de Células T do Adulto/enzimologia , Leucemia-Linfoma de Células T do Adulto/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiadiazóis/farmacologia
8.
Curr Pharm Des ; 11(26): 3363-82, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16250842

RESUMO

An effective, disease-modifying treatment of Alzheimer's disease (AD) remains one of the most significant unmet needs in modern medicine. As a result of the extensive research in the area, the mechanisms underlying the disease are now much better understood than at any time before. A significant amount of evidence points to the central role of beta-amyloid (Abeta) peptide-mediated toxicity in the disease etiology and strategies to remove this species from the central nervous system (CNS) have been actively pursued. The enzyme responsible for the final step in Abeta synthesis, gamma-secretase, has emerged as an attractive drug target and intensive research has transformed this enzyme from shadowy beginnings into a well characterised member of a new family of intramembrane-cleaving aspartyl proteases. Many inhibitors across diverse structural classes have been discovered and have demonstrated a lowering of central Abeta levels in preclinical models of AD. It has also become increasingly evident more recently that gamma-secretase also mediates a range of cleavages of alternative transmembrane peptides most notably the Notch receptor and the functional consequences of this activity have attracted much attention. The ultimate therapeutic benefit of gamma-secretase inhibitors and the effect of alternative, mechanism-based activities can only be judged when clinical data is forthcoming. In this review we describe the literature regarding the discovery of the nature of gamma-secretase, the development of small molecule inhibitors and their in vivo profiles.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Endopeptidases/efeitos dos fármacos , Endopeptidases/uso terapêutico , Doença de Alzheimer/etiologia , Doença de Alzheimer/fisiopatologia , Secretases da Proteína Precursora do Amiloide , Animais , Ácido Aspártico Endopeptidases , Humanos , Inibidores de Proteases/uso terapêutico
9.
Neurobiol Aging ; 25(9): 1175-85, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15312963

RESUMO

A homogeneous time-resolved fluorescence immunoassay for detection of beta-amyloid (A beta) peptides has been adapted for quantification of A beta(40) and A beta(42) accumulation in brains of APP695SWE transgenic mice. These over-express human beta APP(swe), beta-amyloid precursor protein (beta-APP) containing the K670N/M671L 'Swedish' familial Alzheimer's disease (FAD) mutation. Both peptides start to accumulate in this line from about 260 to 280 days of age. Co-expression of a human presenilin-1 (PS1) transgene containing the A246E FAD mutation accelerates deposition and also favors-at least initially-accumulation of A beta(42) so that the A beta(2):A beta(40) ratio of peptides from 7- to 12-month-old APP695SWE x PS1A246E animals is significantly elevated above that observed throughout the lifetime of APP695SWE mice. These findings, supported by parallel immunohistochemical staining and surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry data, offer important longitudinal characterization of two mouse models of cerebral amyloidosis. Application of the same extraction and quantitation procedures to samples of temporal cortex from AD sufferers indicates however that A beta(40) is only a minor component of beta-amyloid in humans.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/análise , Encéfalo/metabolismo , Placa Amiloide/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Imunoensaio de Fluorescência por Polarização/métodos , Gliose/genética , Gliose/metabolismo , Gliose/fisiopatologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/genética , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/química , Placa Amiloide/genética , Presenilina-1 , Células Tumorais Cultivadas , Regulação para Cima/genética
10.
Curr Opin Drug Discov Devel ; 7(5): 709-19, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15503873

RESUMO

gamma-Secretase is a critical enzyme involved in the production of amyloid-beta (Abeta) peptide, one of the main pathological hallmarks of Alzheimer's disease. gamma-Secretase cleaves the beta-amyloid precursor protein (betaAPP) at a position predicted to be within the membrane. In addition to betaAPP, gamma-secretase cleaves a range of other substrates. Thus, a key question in the development of gamma-secretase inhibitors for preventing Abeta production is whether undesired mechanism-based side effects may result from inhibition of cleavage of other substrates, and if so whether a suitable window exists to reduce brain Abeta. In this review, progress in the development of small-molecule inhibitors will be described, and potential toxicity issues associated with the development of gamma-secretase inhibitors discussed.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Endopeptidases/metabolismo , Inibidores de Proteases/uso terapêutico , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases , Ensaios Clínicos Fase II como Assunto , Desenho de Fármacos , Humanos , Estrutura Molecular , Inibidores de Proteases/química , Ensaios Clínicos Controlados Aleatórios como Assunto , Tecnologia Farmacêutica/métodos
11.
J Med Chem ; 46(12): 2275-8, 2003 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-12773031

RESUMO

Novel benzodiazepine-containing gamma-secretase inhibitors for potential use in Alzheimer's disease have been designed that incorporate a substituted hydrocinnamide C-3 side chain. A syn combination of alpha-alkyl or aryl and beta-hydroxy or hydroxymethyl substituents was shown to give highly potent compounds. In particular, (2S,3R)-3-(3,4-difluorophenyl)-2-(4-fluorophenyl)-4-hydroxy-N-((3S)-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)butyramide (34) demonstrated excellent in vitro potency (IC(50) = 0.06 nM). 34 could also be selectively methylated to give [(3)H]-28, which is of use in radioligand binding assays.


Assuntos
Benzodiazepinas/síntese química , Benzodiazepinonas/síntese química , Endopeptidases/metabolismo , Inibidores de Proteases/síntese química , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/biossíntese , Ácido Aspártico Endopeptidases , Benzodiazepinas/química , Benzodiazepinas/farmacologia , Benzodiazepinonas/química , Benzodiazepinonas/farmacologia , Desenho de Fármacos , Humanos , Marcação por Isótopo , Ligantes , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
12.
J Biomol Screen ; 18(3): 277-85, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23023105

RESUMO

ß-Site amyloid precursor protein cleaving enzyme-1 (BACE-1) is a transmembrane aspartic protease that mediates the initial cleavage of the amyloid precursor protein (APP), leading to the generation of amyloid-ß (Aß) peptides that are thought to be causative of Alzheimer's disease (AD). Consequently, inhibition of BACE-1 is an attractive therapeutic approach for the treatment of AD. In general, in vitro biochemical assays to monitor BACE-1 activity have used the extracellular domain of the protein that contains the catalytic active site. This form of BACE-1 is catalytically active at acidic pH and cleaves APP-based peptide substrates at the ß-site. However, this form of BACE-1 does not mimic the natural physiology of BACE-1 and shows minimal activity at pH 6.0, which is more representative of the pH within the intracellular compartments where BACE-1 resides. Moreover, high-throughput screens with recombinant BACE-1 at pH 4.5 have failed to identify tractable leads for drug discovery, and hence, BACE-1 inhibitor development has adopted a rational drug design approach. Here we describe the development and validation of a novel membrane assay comprising full-length BACE-1 with measurable activity at pH 6.0, which could be used for the identification of novel inhibitors of BACE-1.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/química , Membrana Celular/química , Membrana Celular/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Domínio Catalítico , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
13.
FEBS Lett ; 587(22): 3722-8, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24113653

RESUMO

Aggregation of tau into paired helical filaments is a pathological process leading to neurotoxicity in Alzheimer's disease and other tauopathies. Tau is posttranslationally modified by O-linked N-acetylglucosamine (O-GlcNAc), and increasing tau O-GlcNAcylation may protect against its aggregation. Research tools to study the relationship between tau aggregation and tau O-GlcNAcylation have not been widely available. Here we describe the generation of a rabbit monoclonal antibody specific for tau O-GlcNAcylated at Ser400 (O-tau(S400)). We show the utility of this antibody for in vitro and in vivo experiments to investigate the function of O-GlcNAc modifications of tau at Ser400.


Assuntos
Anticorpos Monoclonais/química , Processamento de Proteína Pós-Traducional , Proteínas tau/imunologia , Acetilglucosamina/metabolismo , Animais , Especificidade de Anticorpos , Glicosilação , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Ligação Proteica , Coelhos , Serina/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo
14.
Nat Commun ; 4: 2246, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23907250

RESUMO

Pathological amino-acid substitutions in the amyloid precursor protein (APP) and chemical γ-secretase modulators affect the processing of APP by the γ-secretase complex and the production of the amyloid-beta peptide Aß42, the accumulation of which is considered causative of Alzheimer's disease. Here we demonstrate that mutations in the transmembrane domain of APP causing aggressive early-onset familial Alzheimer's disease affect both γ- and ε-cleavage sites, by raising the Aß42/40 ratio and inhibiting the production of AICD50-99, one of the two physiological APP intracellular domains (ICDs). This is in sharp contrast to γ-secretase modulators, which shift Aß42 production towards the shorter Aß38, but unequivocally spare the ε-site and APP- and Notch-ICDs production. Molecular simulations suggest that familial Alzheimer's disease mutations modulate the flexibility of the APP transmembrane domain and the presentation of its γ-site, modifying at the same time, the solvation of the ε-site.


Assuntos
Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Mutação/genética , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Imidazóis/química , Imidazóis/farmacologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Piperidinas/química , Piperidinas/farmacologia , Estrutura Terciária de Proteína , Proteólise/efeitos dos fármacos , Receptores Notch/metabolismo
15.
Alzheimers Res Ther ; 4(2): 9, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22494386

RESUMO

Mutations in both the amyloid precursor protein (APP) and the presenilin (PSEN) genes cause familial Alzheimer's disease (FAD) with autosomal dominant inheritance and early onset of disease. The clinical course and neuropathology of FAD and sporadic Alzheimer's disease are highly similar, and patients with FAD constitute a unique population in which to conduct treatment and, in particular, prevention trials with novel pharmaceutical entities. It is critical, therefore, to exactly defi ne the molecular consequences of APP and PSEN FAD mutations. Both APP and PSEN mutations drive amyloidosis in FAD patients through changes in the brain metabolism of amyloid-ß (Aß) peptides that promote the formation of pathogenic aggregates. APP mutations do not seem to impair the physiological functions of APP. In contrast, it has been proposed that PSEN mutations compromise γ-secretase-dependent and -independent functions of PSEN. However, PSEN mutations have mostly been studied in model systems that do not accurately refl ect the genetic background in FAD patients. In this review, we discuss the reported cellular phenotypes of APP and PSEN mutations, the current understanding of their molecular mechanisms, the need to generate faithful models of PSEN mutations, and the potential bias of APP and PSEN mutations on therapeutic strategies that target Aß.

16.
ACS Chem Biol ; 7(9): 1488-95, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22725102

RESUMO

We present an integrated approach to identify and optimize a novel class of γ-secretase modulators (GSMs) with a unique pharmacological profile. Our strategy included (i) virtual screening through application of a recently developed protocol (PhAST), (ii) synthetic chemistry to discover structure-activity relationships, and (iii) detailed in vitro pharmacological characterization. GSMs are promising agents for treatment or prevention of Alzheimer's disease. They modulate the γ-secretase product spectrum (i.e., amyloid-ß (Aß) peptides of different length) and induce a shift from toxic Aß42 to shorter Aß species such as Aß38 with no or minimal effect on the overall rate of γ-secretase cleavage. We describe the identification of a series of 4-hydroxypyridin-2-one derivatives, which display a novel type of γ-secretase modulation with equipotent inhibition of Aß42 and Aß38 peptide species.


Assuntos
Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Piridinas/química , Piridinas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Animais , Células CHO , Cricetinae , Desenho de Fármacos , Humanos , Dados de Sequência Molecular , Piridonas , Relação Estrutura-Atividade
18.
Chem Biol Drug Des ; 74(6): 619-24, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19843076

RESUMO

Resveratrol is a plant polyphenol capable of exerting beneficial metabolic effects which are thought to be mediated in large by the activation of the NAD(+)-dependent protein deacetylase SIRT1. Although resveratrol has been claimed to be a bona fide SIRT1 activator using a peptide substrate (Fluor de Lys-SIRT1 peptide substrate), recent reports indicate that this finding might be an experimental artifact and need to be clarified. Here, we show that: (i) the Fluor de Lys-SIRT1 peptide is an artificial SIRT1 substrate because in the absence of the covalently linked fluorophore the peptide itself is not a substrate of the enzyme, (ii) resveratrol does not activate SIRT1 in vitro in the presence of either a p53-derived peptide substrate or acetylated PGC-1alpha isolated from cells, and (iii) although SIRT1 deacetylates PGC-1alpha in both in vitro and cell-based assays, resveratrol did not activate SIRT1 under these conditions. Based on these observations, we conclude that the pharmacological effects of resveratrol in various models are unlikely to be mediated by a direct enhancement of the catalytic activity of the SIRT1 enzyme. In consequence, our data challenge the overall utility of resveratrol as a pharmacological tool to directly activate SIRT1.


Assuntos
Sirtuína 1/metabolismo , Estilbenos/química , Acetilação , Linhagem Celular , Proteínas de Choque Térmico/metabolismo , Humanos , Peptídeos/química , Peptídeos/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Resveratrol , Sirtuína 1/química , Sirtuína 1/genética , Estilbenos/farmacologia , Fatores de Transcrição/metabolismo
19.
Curr Top Med Chem ; 8(1): 34-7, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18220930

RESUMO

The genetics of Alzheimer's disease (AD) implies that restoring non-pathological levels or ratios of different amyloid-beta (Abeta) peptide species in the brain could prevent the onset or delay the progression of this neurodegenerative disease. In particular, a selective reduction of the longer Abeta(1-42) peptide which is widely believed to be causative of AD is currently seen as an attractive approach for a disease-modifying therapy. Based on the knowledge that Abeta(1-42) and various shorter Abeta peptides are generated by the same gamma secretase enzyme, the concept of allosteric modulation of the cleavage specificity of this aspartic protease has been introduced to the field of protease drug discovery and fuelled novel medicinal chemistry efforts. Gamma-secretase modulation holds the promise that chemical entities can be synthesized which restore non-pathological enzyme activity by shifting the actual substrate cleavage towards the generation of shorter Abeta peptides. It can be assumed that this approach has gained considerable attraction for pharmaceutical drug discovery since the development of non-selective protease inhibitors for gamma-secretase has been proven to be difficult due to inherent mechanism-based liabilities.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Secretases da Proteína Precursora do Amiloide/química , Animais , Humanos
20.
Curr Pharm Des ; 12(33): 4337-55, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17105431

RESUMO

The amyloid-beta (Abeta) peptides and in particular the longer, highly amyloidogenic isoform Abeta42 are believed by many to be the central disease-causing agents in Alzheimer's disease (AD). Consequently, academic and pharmaceutical laboratories have focused on elucidating the mechanisms of Abeta production and developing strategies to diminish Abeta formation for treatment or prevention of AD. The most substantial advances have been made with respect to inhibitors of the gamma-secretase enzyme, which catalyzes the final step in the generation of Abeta from the amyloid precursor protein (APP). Highly potent gamma-secretase inhibitors which suppress production of all Abeta peptides are available today. However, due to the promiscuous substrate specificity of gamma-secretase and its essential role in the NOTCH signaling pathway overt mechanism-based toxicity has been observed in preclinical studies of gamma-secretase inhibitors. For that reason, specific blockage of Abeta42 production might be preferable over non-discriminatory gamma-secretase inhibition but small molecule inhibitors of Abeta42 production have remained elusive until recently. This has changed with the discovery that certain non-steroidal anti-inflammatory drugs (NSAIDs) including ibuprofen possess preferential Abeta42-lowering activity. These compounds seem to offer a window of modulation where Abeta42 production is potently inhibited whereas processing of the NOTCH receptor and other gamma-secretase substrates remains unaffected. The Abeta42-lowering activity of NSAIDs is not related to inhibition of cyclooxygenases and can be dissociated from the anti-inflammatory properties of this class of drugs. Ongoing efforts concentrate on uncovering the mechanism of action and improving potency and brain permeability of Abeta42-lowering compounds. Hopes are high that in the near future this will lead to the development of clinically viable compounds which selectively target Abeta42 as a key molecule in the pathogenesis of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/biossíntese , Anti-Inflamatórios não Esteroides/uso terapêutico , Fragmentos de Peptídeos/biossíntese , Doença de Alzheimer/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA