Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Mol Cell Cardiol ; 192: 26-35, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734061

RESUMO

Coronary microvascular disease (CMD) and impaired coronary blood flow control are defects that occur early in the pathogenesis of heart failure in cardiometabolic conditions, prior to the onset of atherosclerosis. In fact, recent studies have shown that CMD is an independent predictor of cardiac morbidity and mortality in patients with obesity and metabolic disease. CMD is comprised of functional, structural, and mechanical impairments that synergize and ultimately reduce coronary blood flow in metabolic disease and in other co-morbid conditions, including transplant, autoimmune disorders, chemotherapy-induced cardiotoxicity, and remote injury-induced CMD. This review summarizes the contemporary state-of-the-field related to CMD in metabolic and these other co-morbid conditions based on mechanistic data derived mostly from preclinical small- and large-animal models in light of available clinical evidence and given the limitations of studying these mechanisms in humans. In addition, we also discuss gaps in current understanding, emerging areas of interest, and opportunities for future investigations in this field.


Assuntos
Comorbidade , Doenças Metabólicas , Humanos , Animais , Doenças Metabólicas/complicações , Doenças Metabólicas/epidemiologia , Circulação Coronária , Microvasos/patologia , Microvasos/metabolismo
2.
Physiol Genomics ; 56(4): 360-366, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314697

RESUMO

Adverse cardiac remodeling contributes to heart failure development and progression, partly due to inappropriate sympathetic nervous system activation. Although ß-adrenergic receptor (ß-AR) blockade is a common heart failure therapy, not all patients respond, prompting exploration of alternative treatments. Minocycline, an FDA-approved antibiotic, has pleiotropic properties beyond antimicrobial action. Recent evidence suggests it may alter gene expression via changes in miRNA expression. Thus, we hypothesized that minocycline could prevent adverse cardiac remodeling induced by the ß-AR agonist isoproterenol, involving miRNA-mRNA transcriptome alterations. Male C57BL/6J mice received isoproterenol (30 mg/kg/day sc) or vehicle via osmotic minipump for 21 days, along with daily minocycline (50 mg/kg ip) or sterile saline. Isoproterenol induced cardiac hypertrophy without altering cardiac function, which minocycline prevented. Total mRNA sequencing revealed isoproterenol altering gene networks associated with inflammation and metabolism, with fibrosis activation predicted by integrated miRNA-mRNA sequencing, involving miR-21, miR-30a, miR-34a, miR-92a, and miR-150, among others. Conversely, the cardiac miRNA-mRNA transcriptome predicted fibrosis inhibition in minocycline-treated mice, involving antifibrotic shifts in Atf3 and Itgb6 gene expression associated with miR-194 upregulation. Picrosirius red staining confirmed isoproterenol-induced cardiac fibrosis, prevented by minocycline. These results demonstrate minocycline's therapeutic potential in attenuating adverse cardiac remodeling through miRNA-mRNA-dependent mechanisms, especially in reducing cardiac fibrosis. NEW & NOTEWORTHY We demonstrate that minocycline treatment prevents cardiac hypertrophy and fibrotic remodeling induced by chronic ß-adrenergic stimulation by inducing antifibrotic shifts in the cardiac miRNA-mRNA transcriptome.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , MicroRNAs , Humanos , Masculino , Camundongos , Animais , Isoproterenol/farmacologia , Isoproterenol/metabolismo , Minociclina/farmacologia , Miócitos Cardíacos/metabolismo , Adrenérgicos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Remodelação Ventricular/genética , Camundongos Endogâmicos C57BL , Cardiomegalia/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Fibrose
3.
Am J Physiol Heart Circ Physiol ; 325(6): H1337-H1353, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37801046

RESUMO

Neuraminidases cleave sialic acids from glycocalyx structures and plasma neuraminidase activity is elevated in type 2 diabetes (T2D). Therefore, we hypothesize circulating neuraminidase degrades the endothelial glycocalyx and diminishes flow-mediated dilation (FMD), whereas its inhibition restores shear mechanosensation and endothelial function in T2D settings. We found that compared with controls, subjects with T2D have higher plasma neuraminidase activity, reduced plasma nitrite concentrations, and diminished FMD. Ex vivo and in vivo neuraminidase exposure diminished FMD and reduced endothelial glycocalyx presence in mouse arteries. In cultured endothelial cells, neuraminidase reduced glycocalyx coverage. Inhalation of the neuraminidase inhibitor, zanamivir, reduced plasma neuraminidase activity, enhanced endothelial glycocalyx length, and improved FMD in diabetic mice. In humans, a single-arm trial (NCT04867707) of zanamivir inhalation did not reduce plasma neuraminidase activity, improved glycocalyx length, or enhanced FMD. Although zanamivir plasma concentrations in mice reached 225.8 ± 22.0 ng/mL, in humans were only 40.0 ± 7.2 ng/mL. These results highlight the potential of neuraminidase inhibition for ameliorating endothelial dysfunction in T2D and suggest the current Food and Drug Administration-approved inhaled dosage of zanamivir is insufficient to achieve desired outcomes in humans.NEW & NOTEWORTHY This work identifies neuraminidase as a key mediator of endothelial dysfunction in type 2 diabetes that may serve as a biomarker for impaired endothelial function and predictive of development and progression of cardiovascular pathologies associated with type 2 diabetes (T2D). Data show that intervention with the neuraminidase inhibitor zanamivir at effective plasma concentrations may represent a novel pharmacological strategy for restoring the glycocalyx and ameliorating endothelial dysfunction.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Doenças Vasculares , Camundongos , Humanos , Animais , Zanamivir/farmacologia , Neuraminidase/química , Neuraminidase/farmacologia , Células Endoteliais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia
4.
Eur Respir J ; 61(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36028255

RESUMO

BACKGROUND: Obstructive sleep apnoea (OSA) is a chronic prevalent condition characterised by intermittent hypoxia (IH), and is associated with endothelial dysfunction and coronary artery disease (CAD). OSA can induce major changes in gut microbiome diversity and composition, which in turn may induce the emergence of OSA-associated morbidities. However, the causal effects of IH-induced gut microbiome changes on the vasculature remain unexplored. Our objective was to assess if vascular dysfunction induced by IH is mediated through gut microbiome changes. METHODS: Faecal microbiota transplantation (FMT) was conducted on C57BL/6J naïve mice for 6 weeks to receive either IH or room air (RA) faecal slurry with or without probiotics (VSL#3). In addition to 16S rRNA amplicon sequencing of their gut microbiome, FMT recipients underwent arterial blood pressure and coronary artery and aorta function testing, and their trimethylamine N-oxide (TMAO) and plasma acetate levels were determined. Finally, C57BL/6J mice were exposed to IH, IH treated with VSL#3 or RA for 6 weeks, and arterial blood pressure and coronary artery function assessed. RESULTS: Gut microbiome taxonomic profiles correctly segregated IH from RA in FMT mice and the normalising effect of probiotics emerged. Furthermore, IH-FMT mice exhibited increased arterial blood pressure and TMAO levels, and impairments in aortic and coronary artery function (p<0.05) that were abrogated by probiotic administration. Lastly, treatment with VSL#3 under IH conditions did not attenuate elevations in arterial blood pressure or CAD. CONCLUSIONS: Gut microbiome alterations induced by chronic IH underlie, at least partially, the typical cardiovascular disturbances of sleep apnoea and can be mitigated by concurrent administration of probiotics.


Assuntos
Doença da Artéria Coronariana , Microbioma Gastrointestinal , Probióticos , Apneia Obstrutiva do Sono , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Modelos Animais de Doenças , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/terapia , Hipóxia , Doença da Artéria Coronariana/terapia , Doença da Artéria Coronariana/complicações
5.
Basic Res Cardiol ; 118(1): 11, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36988733

RESUMO

Coronary microvascular dysfunction (CMD) is associated with cardiac dysfunction and predictive of cardiac mortality in obesity, especially in females. Clinical data further support that CMD associates with development of heart failure with preserved ejection fraction and that mineralocorticoid receptor (MR) antagonism may be more efficacious in obese female, versus male, HFpEF patients. Accordingly, we examined the impact of smooth muscle cell (SMC)-specific MR deletion on obesity-associated coronary and cardiac diastolic dysfunction in female mice. Obesity was induced in female mice via western diet (WD) feeding alongside littermates fed standard diet. Global MR blockade with spironolactone prevented coronary and cardiac dysfunction in obese females and specific deletion of SMC-MR was sufficient to prevent obesity-associated coronary and cardiac diastolic dysfunction. Cardiac gene expression profiling suggested reduced cardiac inflammation in WD-fed mice with SMC-MR deletion independent of blood pressure, aortic stiffening, and cardiac hypertrophy. Further mechanistic studies utilizing single-cell RNA sequencing of non-cardiomyocyte cell populations revealed novel impacts of SMC-MR deletion on the cardiac cellulome in obese mice. Specifically, WD feeding induced inflammatory gene signatures in non-myocyte populations including B/T cells, macrophages, and endothelium as well as increased coronary VCAM-1 protein expression, independent of cardiac fibrosis, that was prevented by SMC-MR deletion. Further, SMC-MR deletion induced a basal reduction in cardiac mast cells and prevented WD-induced cardiac pro-inflammatory chemokine expression and leukocyte recruitment. These data reveal a central role for SMC-MR signaling in obesity-associated coronary and cardiac dysfunction, thus supporting the emerging paradigm of a vascular origin of cardiac dysfunction in obesity.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Masculino , Feminino , Camundongos , Animais , Camundongos Obesos , Insuficiência Cardíaca/complicações , Multiômica , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Volume Sistólico , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Obesidade/metabolismo
6.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768567

RESUMO

Obstructive sleep apnea (OSA) is a chronic and highly prevalent condition that is associated with oxidative stress, inflammation, and fibrosis, leading to endothelial dysfunction, arterial stiffness, and vascular insulin resistance, resulting in increased cardiovascular disease and overall mortality rates. To date, OSA remains vastly underdiagnosed and undertreated, with conventional treatments yielding relatively discouraging results for improving cardiovascular outcomes in OSA patients. As such, a better mechanistic understanding of OSA-associated cardiovascular disease (CVD) and the development of novel adjuvant therapeutic targets are critically needed. It is well-established that inappropriate mineralocorticoid receptor (MR) activation in cardiovascular tissues plays a causal role in a multitude of CVD states. Clinical studies and experimental models of OSA lead to increased secretion of the MR ligand aldosterone and excessive MR activation. Furthermore, MR activation has been associated with worsened OSA prognosis. Despite these documented relationships, there have been no studies exploring the causal involvement of MR signaling in OSA-associated CVD. Further, scarce clinical studies have exclusively assessed the beneficial role of MR antagonists for the treatment of systemic hypertension commonly associated with OSA. Here, we provide a comprehensive overview of overlapping mechanistic pathways recruited in the context of MR activation- and OSA-induced CVD and propose MR-targeted therapy as a potential avenue to abrogate the deleterious cardiovascular consequences of OSA.


Assuntos
Doenças Cardiovasculares , Hipertensão , Resistência à Insulina , Apneia Obstrutiva do Sono , Humanos , Receptores de Mineralocorticoides , Hipertensão/complicações
7.
Basic Res Cardiol ; 117(1): 50, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36222894

RESUMO

The lack of pre-clinical large animal models of heart failure with preserved ejection fraction (HFpEF) remains a growing, yet unmet obstacle to improving understanding of this complex condition. We examined whether chronic cardiometabolic stress in Ossabaw swine, which possess a genetic propensity for obesity and cardiovascular complications, produces an HFpEF-like phenotype. Swine were fed standard chow (lean; n = 13) or an excess calorie, high-fat, high-fructose diet (obese; n = 16) for ~ 18 weeks with lean (n = 5) and obese (n = 8) swine subjected to right ventricular pacing (180 beats/min for ~ 4 weeks) to induce heart failure (HF). Baseline blood pressure, heart rate, LV end-diastolic volume, and ejection fraction were similar between groups. High-rate pacing increased LV end-diastolic pressure from ~ 11 ± 1 mmHg in lean and obese swine to ~ 26 ± 2 mmHg in lean HF and obese HF swine. Regression analyses revealed an upward shift in LV diastolic pressure vs. diastolic volume in paced swine that was associated with an ~ twofold increase in myocardial fibrosis and an ~ 50% reduction in myocardial capillary density. Hemodynamic responses to graded hemorrhage revealed an ~ 40% decrease in the chronotropic response to reductions in blood pressure in lean HF and obese HF swine without appreciable changes in myocardial oxygen delivery or transmural perfusion. These findings support that high-rate ventricular pacing of lean and obese Ossabaw swine initiates underlying cardiac remodeling accompanied by elevated LV filling pressures with normal ejection fraction. This distinct pre-clinical tool provides a unique platform for further mechanistic and therapeutic studies of this highly complex syndrome.


Assuntos
Insuficiência Cardíaca , Animais , Frutose , Obesidade/complicações , Oxigênio , Fenótipo , Volume Sistólico/fisiologia , Suínos , Função Ventricular Esquerda
8.
Am J Physiol Renal Physiol ; 320(3): F505-F517, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522410

RESUMO

Recent evidence suggests that dipeptidyl peptidase-4 (DPP4) inhibition with saxagliptin (Saxa) is renoprotective under comorbid conditions associated with activation of the renin-angiotensin-aldosterone system (RAAS), such as diabetes, obesity, and hypertension, which confer a high cardiovascular risk. Immune system activation is now recognized as a contributor to RAAS-mediated tissue injury, and, importantly, immunomodulatory effects of DPP4 have been reported. Accordingly, we examined the hypothesis that DPP4 inhibition with Saxa attenuates angiotensin II (ANG II)-induced kidney injury and albuminuria via attenuation of immune activation in the kidney. To this end, male mice were infused with either vehicle or ANG II (1,000 ng/kg/min, s.c.) for 3 wk and received either placebo or Saxa (10 mg/kg/day, p.o.) during the final 2 wk. ANG II infusion increased kidney, but not plasma, DPP4 activity in vivo as well as DPP4 activity in cultured proximal tubule cells. The latter was prevented by angiotensin receptor blockade with olmesartan. Further, ANG II induced hypertension and kidney injury characterized by mesangial expansion, mitochondrial damage, reduced brush border megalin expression, and albuminuria. Saxa inhibited DPP4 activity ∼50% in vivo and attenuated ANG II-mediated kidney injury, independent of blood pressure. Further mechanistic experiments revealed mitigation by Saxa of proinflammatory and profibrotic mediators activated by ANG II in the kidney, including CD8+ T cells, resident macrophages (CD11bhiF4/80loLy6C-), and neutrophils. In addition, Saxa improved ANG II suppressed anti-inflammatory regulatory T cell and T helper 2 lymphocyte activity. Taken together, these results demonstrate, for the first time, blood pressure-independent involvement of renal DPP4 activation contributing to RAAS-dependent kidney injury and immune activation.NEW & NOTEWORTHY This work highlights the role of dipeptidyl peptidase-4 (DPP4) in promoting ANG II-mediated kidney inflammation and injury. Specifically, ANG II infusion in mice led to increases in blood pressure and kidney DPP4 activity, which then led to activation of CD8+ T cells, Ly6C- macrophages, and neutrophils and suppression of anti-inflammatory T helper 2 lymphocytes and regulatory T cells. Collectively, this led to kidney injury, characterized by mesangial expansion, mitochondrial damage, and albuminuria, which were mitigated by DPP4 inhibition independent of blood pressure reduction.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Hipoglicemiantes/farmacologia , Macrófagos/metabolismo , Angiotensina II/farmacologia , Animais , Inibidores da Dipeptidil Peptidase IV/farmacologia , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos
9.
Basic Res Cardiol ; 116(1): 35, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34018061

RESUMO

Impaired coronary microvascular function (e.g., reduced dilation and coronary flow reserve) predicts cardiac mortality in obesity, yet underlying mechanisms and potential therapeutic strategies remain poorly understood. Mineralocorticoid receptor (MR) antagonism improves coronary microvascular function in obese humans and animals. Whether MR blockade improves in vivo regulation of coronary flow, a process involving voltage-dependent K+ (Kv) channel activation, or reduces coronary structural remodeling in obesity is unclear. Thus, the goals of this investigation were to determine the effects of obesity on coronary responsiveness to reductions in arterial PO2 and potential involvement of Kv channels and whether the benefit of MR blockade involves improved coronary Kv function or altered passive structural properties of the coronary microcirculation. Hypoxemia increased coronary blood flow similarly in lean and obese swine; however, baseline coronary vascular resistance was significantly higher in obese swine. Inhibition of Kv channels reduced coronary blood flow and augmented coronary resistance under baseline conditions in lean but not obese swine and had no impact on hypoxemic coronary vasodilation. Chronic MR inhibition in obese swine normalized baseline coronary resistance, did not influence hypoxemic coronary vasodilation, and did not restore coronary Kv function (assessed in vivo, ex vivo, and via patch clamping). Lastly, MR blockade prevented obesity-associated coronary arteriolar stiffening independent of cardiac capillary density and changes in cardiac function. These data indicate that chronic MR inhibition prevents increased coronary resistance in obesity independent of Kv channel function and is associated with mitigation of obesity-mediated coronary arteriolar stiffening.


Assuntos
Aldosterona/farmacologia , Doença da Artéria Coronariana/prevenção & controle , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Obesidade/tratamento farmacológico , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Resistência Vascular/efeitos dos fármacos , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Feminino , Masculino , Microcirculação/efeitos dos fármacos , Obesidade/complicações , Obesidade/metabolismo , Obesidade/fisiopatologia , Sus scrofa , Rigidez Vascular/efeitos dos fármacos
10.
Am J Physiol Heart Circ Physiol ; 318(1): H11-H24, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31702972

RESUMO

Recognition that coronary blood flow is tightly coupled with myocardial metabolism has been appreciated for well over half a century. However, exactly how coronary microvascular resistance is tightly coupled with myocardial oxygen consumption (MV̇o2) remains one of the most highly contested mysteries of the coronary circulation to this day. Understanding the mechanisms responsible for local metabolic control of coronary blood flow has been confounded by continued debate regarding both anticipated experimental outcomes and data interpretation. For a number of years, coronary venous Po2 has been generally accepted as a measure of myocardial tissue oxygenation and thus the classically proposed error signal for the generation of vasodilator metabolites in the heart. However, interpretation of changes in coronary venous Po2 relative to MV̇o2 are quite nuanced, inherently circular in nature, and subject to confounding influences that remain largely unaccounted for. The purpose of this review is to highlight difficulties in interpreting the complex interrelationship between key coronary outcome variables and the arguments that emerge from prior studies performed during exercise, hemodilution, hypoxemia, and alterations in perfusion pressure. Furthermore, potential paths forward are proposed to help to facilitate further dialogue and study to ultimately unravel what has become the Gordian knot of the coronary circulation.


Assuntos
Circulação Coronária , Vasos Coronários/fisiologia , Metabolismo Energético , Hemodinâmica , Miocárdio/metabolismo , Consumo de Oxigênio , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Modelos Animais de Doenças , Humanos , Modelos Cardiovasculares , Especificidade da Espécie
11.
Am J Physiol Heart Circ Physiol ; 317(2): H357-H363, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199187

RESUMO

Elevated plasma aldosterone (Aldo) levels are associated with greater risk of cardiac ischemic events and cardiovascular mortality. Adenosine-mediated coronary vasodilation is a critical cardioprotective mechanism during ischemia; however, whether this response is impaired by increased Aldo is unclear. We hypothesized that chronic Aldo impairs coronary adenosine-mediated vasodilation via downregulation of vascular K+ channels. Male C57BL/6J mice were treated with vehicle (Con) or subpressor Aldo for 4 wk. Coronary artery function, assessed by wire myography, revealed Aldo-induced reductions in vasodilation to adenosine and the endothelium-dependent vasodilator acetylcholine but not to the nitric oxide donor sodium nitroprusside. Coronary vasoconstriction to endothelin-1 and the thromboxane A2 mimetic U-46619 was unchanged by Aldo. Additional mechanistic studies revealed impaired adenosine A2A, not A2B, receptor-dependent vasodilation by Aldo with a tendency for Aldo-induced reduction of coronary A2A gene expression. Adenylate cyclase inhibition attenuated coronary adenosine dilation but did not eliminate group differences, and adenosine-stimulated vascular cAMP production was similar between Con and Aldo mice. Similarly, blockade of inward rectifier K+ channels reduced but did not eliminate group differences in adenosine dilation whereas group differences were eliminated by blockade of Ca2+-activated K+ (KCa) channels that blunted and abrogated adenosine and A2A-dependent dilation, respectively. Gene expression of several coronary KCa channels was reduced by Aldo. Together, these data demonstrate Aldo-induced impairment of adenosine-mediated coronary vasodilation involving blunted A2A-KCa-dependent vasodilation, independent of blood pressure, providing important insights into the link between plasma Aldo and cardiac mortality and rationale for aldosterone antagonist use to preserve coronary microvascular function.NEW & NOTEWORTHY Increased plasma aldosterone levels are associated with worsened cardiac outcomes in diverse patient groups by unclear mechanisms. We identified that, in male mice, elevated aldosterone impairs coronary adenosine-mediated vasodilation, an important cardioprotective mechanism. This aldosterone-induced impairment involves reduced adenosine A2A, not A2B, receptor-dependent vasodilation associated with downregulation of coronary KCa channels and does not involve altered adenylate cyclase/cAMP signaling. Importantly, this effect of aldosterone occurred independent of changes in coronary vasoconstrictor responsiveness and blood pressure.


Assuntos
Adenosina/farmacologia , Aldosterona/farmacologia , Vasos Coronários/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Vasos Coronários/metabolismo , AMP Cíclico/metabolismo , Regulação para Baixo , Masculino , Camundongos Endogâmicos C57BL , Canais de Potássio Cálcio-Ativados/genética , Canais de Potássio Cálcio-Ativados/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Transdução de Sinais
12.
Microcirculation ; 26(6): e12539, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30821858

RESUMO

OBJECTIVE: Swine with familial hypercholesterolemia (FH) exhibit attenuated exercise-induced systemic vasodilation that is restored by phosphodiesterase 5 (PDE5) inhibition. Whether the impacts of FH and PDE5 inhibition to impair and restore exercise-induced vasodilation, respectively, results from tissue-specific or generalized effects remains unclear. Thus, we hypothesized that FH induces generalized impairment of skeletal muscle vasodilation that would be alleviated by PDE5 inhibition. METHODS: Systemic vascular responses to exercise were assessed in chronically instrumented normal and FH swine before and after PDE5 inhibition with EMD360527. Skeletal muscle and organ blood flows and conductances were determined via the microsphere technique. RESULTS: As previously reported, vs normal swine, FH swine have pronounced elevation of total cholesterol and impaired exercise-induced vasodilation that is restored by PDE5 inhibition. Blood flows to several, not all, skeletal muscle vascular beds were severely impaired by FH associated with reduced blood flow to many visceral organs. PDE5 inhibition differentially impacted skeletal muscle and organ blood flows in normal and FH swine. CONCLUSIONS: These data indicate that FH induces regional, not generalized, vasomotor dysfunction and that FH and normal swine exhibit unique tissue blood flow responses to PDE5 inhibition thereby adding to accumulating evidence of vascular bed-specific dysfunction in co-morbid conditions.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Hiperlipoproteinemia Tipo II , Músculo Esquelético , Inibidores da Fosfodiesterase 5/farmacologia , Condicionamento Físico Animal , Vasodilatação/efeitos dos fármacos , Animais , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Hiperlipoproteinemia Tipo II/enzimologia , Hiperlipoproteinemia Tipo II/patologia , Hiperlipoproteinemia Tipo II/fisiopatologia , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Suínos
13.
J Biol Chem ; 292(6): 2345-2358, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28053087

RESUMO

Re-establishing blood supply is the primary goal for reducing myocardial injury in subjects with ischemic heart disease. Paradoxically, reperfusion results in nitroxidative stress and a marked inflammatory response in the heart. TRAF3IP2 (TRAF3 Interacting Protein 2; previously known as CIKS or Act1) is an oxidative stress-responsive cytoplasmic adapter molecule that is an upstream regulator of both IκB kinase (IKK) and c-Jun N-terminal kinase (JNK), and an important mediator of autoimmune and inflammatory responses. Here we investigated the role of TRAF3IP2 in ischemia/reperfusion (I/R)-induced nitroxidative stress, inflammation, myocardial dysfunction, injury, and adverse remodeling. Our data show that I/R up-regulates TRAF3IP2 expression in the heart, and its gene deletion, in a conditional cardiomyocyte-specific manner, significantly attenuates I/R-induced nitroxidative stress, IKK/NF-κB and JNK/AP-1 activation, inflammatory cytokine, chemokine, and adhesion molecule expression, immune cell infiltration, myocardial injury, and contractile dysfunction. Furthermore, Traf3ip2 gene deletion blunts adverse remodeling 12 weeks post-I/R, as evidenced by reduced hypertrophy, fibrosis, and contractile dysfunction. Supporting the genetic approach, an interventional approach using ultrasound-targeted microbubble destruction-mediated delivery of phosphorothioated TRAF3IP2 antisense oligonucleotides into the LV in a clinically relevant time frame significantly inhibits TRAF3IP2 expression and myocardial injury in wild type mice post-I/R. Furthermore, ameliorating myocardial damage by targeting TRAF3IP2 appears to be more effective to inhibiting its downstream signaling intermediates NF-κB and JNK. Therefore, TRAF3IP2 could be a potential therapeutic target in ischemic heart disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Remodelação Ventricular , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Deleção de Genes , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Espécies Reativas de Nitrogênio/metabolismo
14.
Am J Physiol Regul Integr Comp Physiol ; 314(2): R252-R264, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141949

RESUMO

Impaired microvascular insulin signaling may develop before overt indices of microvascular endothelial dysfunction and represent an early pathological feature of adolescent obesity. Using a translational porcine model of juvenile obesity, we tested the hypotheses that in the early stages of obesity development, impaired insulin signaling manifests in skeletal muscle (triceps), brain (prefrontal cortex), and corresponding vasculatures, and that depressed insulin-induced vasodilation is reversible with acute inhibition of protein kinase Cß (PKCß). Juvenile Ossabaw miniature swine (3.5 mo of age) were divided into two groups: lean control ( n = 6) and obese ( n = 6). Obesity was induced by feeding the animals a high-fat/high-fructose corn syrup/high-cholesterol diet for 10 wk. Juvenile obesity was characterized by excess body mass, hyperglycemia, physical inactivity (accelerometer), and marked lipid accumulation in the skeletal muscle, with no evidence of overt atherosclerotic lesions in athero-prone regions, such as the abdominal aorta. Endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) vasomotor responses in the brachial and carotid arteries (wire myography), as well as in the skeletal muscle resistance and 2A pial arterioles (pressure myography) were unaltered, but insulin-induced microvascular vasodilation was impaired in the obese group. Blunted insulin-stimulated vasodilation, which was reversed with acute PKCß inhibition (LY333-531), occurred alongside decreased tissue perfusion, as well as reduced insulin-stimulated Akt signaling in the prefrontal cortex, but not the triceps. In the early stages of juvenile obesity development, the microvasculature and prefrontal cortex exhibit impaired insulin signaling. Such adaptations may underscore vascular and neurological derangements associated with juvenile obesity.


Assuntos
Resistência à Insulina , Insulina/sangue , Microvasos/metabolismo , Músculo Esquelético/irrigação sanguínea , Obesidade Infantil/metabolismo , Córtex Pré-Frontal/irrigação sanguínea , Vasodilatação , Fatores Etários , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Masculino , Microvasos/efeitos dos fármacos , Microvasos/fisiopatologia , Obesidade Infantil/fisiopatologia , Fosforilação , Proteína Quinase C beta/antagonistas & inibidores , Proteína Quinase C beta/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Suínos , Porco Miniatura , Fatores de Tempo , Vasodilatação/efeitos dos fármacos
15.
Pharmacol Res ; 134: 100-108, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29870805

RESUMO

Coronary microvascular dysfunction predicts and may be a proximate cause of cardiac dysfunction and mortality in diabetes; however, few effective treatments exist for these conditions. We recently demonstrated that mineralocorticoid receptor (MR) antagonism reversed cardiovascular dysfunction in early-stage obesity/insulin resistance. The mechanisms underlying this benefit of MR antagonism and its relevance in the setting of long-term obesity complications like diabetes; however, remain unclear. Thus, the present study evaluated the impact of MR antagonism on diabetes-related coronary dysfunction and defines the MR-dependent vascular transcriptome in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat recapitulating later stages of human diabetes. OLETF rats were treated with spironolactone (Sp) and compared to untreated OLETF and lean Long-Evans Tokushima Otsuka rats. Sp treatment attenuated diabetes-associated adipose and cardiac inflammation/fibrosis and improved coronary endothelium-dependent vasodilation but did not alter enhanced coronary vasoconstriction, blood pressure, or metabolic parameters in OLETF rats. Further mechanistic studies using RNA deep sequencing of OLETF rat aortas revealed 157 differentially expressed genes following Sp including upregulation of genes involved in the molecular regulation of nitric oxide bioavailability (Hsp90ab1, Ahsa1, Ahsa2) as well as novel changes in α1D adrenergic receptors (Adra1d), cyclooxygenase-2 (Ptgs2), and modulatory factors of these pathways (Ackr3, Acsl4). Further, Ingenuity Pathway Analysis predicted inhibition of upstream inflammatory regulators by Sp and inhibition of 'migration of endothelial cells', 'differentiation of smooth muscle', and 'angiogenesis' biological functions by Sp in diabetes. Thus, this study is the first to define the MR-dependent vascular transcriptome underlying treatment of diabetes-related coronary microvascular dysfunction by Sp.


Assuntos
Arteríolas/efeitos dos fármacos , Doença da Artéria Coronariana/tratamento farmacológico , Vasos Coronários/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Angiopatias Diabéticas/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Espironolactona/farmacologia , Transcriptoma , Vasodilatação/efeitos dos fármacos , Animais , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Ratos Endogâmicos OLETF , Transdução de Sinais/efeitos dos fármacos
16.
Cardiovasc Diabetol ; 16(1): 61, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28476142

RESUMO

BACKGROUND: Diastolic dysfunction (DD), a hallmark of obesity and primary defect in heart failure with preserved ejection fraction, is a predictor of future cardiovascular events. We previously reported that linagliptin, a dipeptidyl peptidase-4 inhibitor, improved DD in Zucker Obese rats, a genetic model of obesity and hypertension. Here we investigated the cardioprotective effects of linagliptin on development of DD in western diet (WD)-fed mice, a clinically relevant model of overnutrition and activation of the renin-angiotensin-aldosterone system. METHODS: Female C56Bl/6 J mice were fed an obesogenic WD high in fat and simple sugars, and supplemented or not with linagliptin for 16 weeks. RESULTS: WD induced oxidative stress, inflammation, upregulation of Angiotensin II type 1 receptor and mineralocorticoid receptor (MR) expression, interstitial fibrosis, ultrastructural abnormalities and DD. Linagliptin inhibited cardiac DPP-4 activity and prevented molecular impairments and associated functional and structural abnormalities. Further, WD upregulated the expression of TRAF3IP2, a cytoplasmic adapter molecule and a regulator of multiple inflammatory mediators. Linagliptin inhibited its expression, activation of its downstream signaling intermediates NF-κB, AP-1 and p38-MAPK, and induction of multiple inflammatory mediators and growth factors that are known to contribute to development and progression of hypertrophy, fibrosis and contractile dysfunction. Linagliptin also inhibited WD-induced collagens I and III expression. Supporting these in vivo observations, linagliptin inhibited aldosterone-mediated MR-dependent oxidative stress, upregulation of TRAF3IP2, proinflammatory cytokine, and growth factor expression, and collagen induction in cultured primary cardiac fibroblasts. More importantly, linagliptin inhibited aldosterone-induced fibroblast activation and migration. CONCLUSIONS: Together, these in vivo and in vitro results suggest that inhibition of DPP-4 activity by linagliptin reverses WD-induced DD, possibly by targeting TRAF3IP2 expression and its downstream inflammatory signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiomiopatias/prevenção & controle , Dieta Ocidental/efeitos adversos , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Linagliptina/farmacologia , Miocardite/prevenção & controle , Miocárdio/enzimologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cardiomiopatias/enzimologia , Cardiomiopatias/etiologia , Cardiomiopatias/fisiopatologia , Células Cultivadas , Diástole , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Fibrose , Camundongos Endogâmicos C57BL , Miocardite/enzimologia , Miocardite/etiologia , Miocardite/fisiopatologia , Miocárdio/ultraestrutura , NF-kappa B/metabolismo , Estresse Nitrosativo/efeitos dos fármacos , Obesidade/etiologia , Estresse Oxidativo/efeitos dos fármacos , Recuperação de Função Fisiológica , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Transcrição AP-1/metabolismo , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Basic Res Cardiol ; 111(6): 61, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27624732

RESUMO

Accelerated development of coronary atherosclerosis is a defining characteristic of familial hypercholesterolemia (FH). However, the recent data highlight a significant cardiovascular risk prior to the development of critical coronary stenosis. We, therefore, examined the hypothesis that FH produces coronary microvascular dysfunction and impairs coronary vascular control at rest and during exercise in a swine model of FH. Coronary vascular responses to drug infusions and exercise were examined in chronically instrumented control and FH swine. FH swine exhibited ~tenfold elevation of plasma cholesterol and diffuse coronary atherosclerosis (20-60 % plaque burden). Similar to our recent findings in the systemic vasculature in FH swine, coronary smooth muscle nitric oxide sensitivity was increased in vivo and in vitro with maintained endothelium-dependent vasodilation in vivo in FH. At rest and during exercise, FH swine exhibited increased myocardial O2 extraction resulting in reduced coronary venous SO2 and PO2 versus control. During exercise in FH swine, the transmural distribution of coronary blood flow was unchanged; however, a shift toward anaerobic cardiac metabolism was revealed by increased coronary arteriovenous H(+) concentration gradient. This shift was associated with a worsening of cardiac efficiency (relationship between cardiac work and O2 consumption) in FH during exercise owing, in part, to a generalized reduction in stroke volume which was associated with increased left atrial pressure in FH. Our data highlight a critical role for coronary microvascular dysfunction as a contributor to impaired myocardial O2 balance, cardiac ischemia, and impaired cardiac function prior to the development of critical coronary stenosis in FH.


Assuntos
Circulação Coronária , Endotélio Vascular/fisiopatologia , Hiperlipoproteinemia Tipo II/fisiopatologia , Condicionamento Físico Animal/fisiologia , Animais , Doença da Artéria Coronariana/fisiopatologia , Modelos Animais de Doenças , Hemodinâmica/fisiologia , Consumo de Oxigênio/fisiologia , Suínos
18.
Am J Physiol Heart Circ Physiol ; 309(1): H1-8, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25934096

RESUMO

Increased levels of physical activity are associated with reduced cardiovascular disease (CVD) risk and mortality in obesity and diabetes. Available evidence suggests that local factors, including local hemodynamics, account for a significant portion of this CVD protection, and numerous studies have interrogated the therapeutic benefit of physical activity/exercise training in CVD. Less well established is whether basal differences in endothelial cell phenotype between/among vasculatures related to muscle recruitment patterns during activity may account for reports of nonuniform development of endothelial dysfunction in obesity. This is the focus of this review. We highlight recent work exploring the vulnerability of two distinct vasculatures with established differences in endothelial cell phenotype. Specifically, based largely on dramatic differences in underlying hemodynamics, arteries perfusing soleus muscle (slow-twitch muscle fibers) and those perfusing gastrocnemius muscle (fast-twitch muscle fibers) in the rat exhibit an exercise training-like versus an untrained endothelial cell phenotype, respectively. In the context of obesity, therefore, arteries to soleus muscle exhibit protection from endothelial dysfunction compared with vulnerable arteries to gastrocnemius muscle. This disparate vulnerability is consistent with numerous animal and human studies, demonstrating increased skeletal muscle blood flow heterogeneity in obesity coincident with reduced muscle function and exercise intolerance. Mechanistically, we highlight emerging areas of inquiry exploring novel aspects of hemodynamic-sensitive signaling in endothelial cells and the time course of physical activity-associated endothelial adaptations. Lastly, further exploration needs to consider the impact of endothelial heterogeneity on the development of endothelial dysfunction because endothelial dysfunction independently predicts CVD events.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Células Endoteliais/fisiologia , Endotélio Vascular/fisiopatologia , Atividade Motora/fisiologia , Músculo Esquelético/irrigação sanguínea , Obesidade/fisiopatologia , Fluxo Sanguíneo Regional/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Hemodinâmica , Humanos , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Fenótipo , Condicionamento Físico Animal/fisiologia , Ratos
19.
Am J Physiol Heart Circ Physiol ; 309(4): H574-82, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26092984

RESUMO

Increased central vascular stiffening, assessed in vivo by determination of pulse wave velocity (PWV), is an independent predictor of cardiovascular event risk. Recent evidence demonstrates that accelerated aortic stiffening occurs in obesity; however, little is known regarding stiffening of other disease-relevant arteries or whether regional variation in arterial stiffening occurs in this setting. We addressed this gap in knowledge by assessing femoral PWV in vivo in conjunction with ex vivo analyses of femoral and coronary structure and function in a mouse model of Western diet (WD; high-fat/high-sugar)-induced obesity and insulin resistance. WD feeding resulted in increased femoral PWV in vivo. Ex vivo analysis of femoral arteries revealed a leftward shift in the strain-stress relationship, increased modulus of elasticity, and decreased compliance indicative of increased stiffness following WD feeding. Confocal and multiphoton fluorescence microscopy revealed increased femoral stiffness involving decreased elastin/collagen ratio in conjunction with increased femoral transforming growth factor-ß (TGF-ß) content in WD-fed mice. Further analysis of the femoral internal elastic lamina (IEL) revealed a significant reduction in the number and size of fenestrae with WD feeding. Coronary artery stiffness and structure was unchanged by WD feeding. Functionally, femoral, but not coronary, arteries exhibited endothelial dysfunction, whereas coronary arteries exhibited increased vasoconstrictor responsiveness not present in femoral arteries. Taken together, our data highlight important regional variations in the development of arterial stiffness and dysfunction associated with WD feeding. Furthermore, our results suggest TGF-ß signaling and IEL fenestrae remodeling as potential contributors to femoral artery stiffening in obesity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Obesidade/fisiopatologia , Rigidez Vascular , Animais , Colágeno/metabolismo , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Elastina/metabolismo , Artéria Femoral/metabolismo , Artéria Femoral/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Especificidade de Órgãos , Fator de Crescimento Transformador beta/metabolismo
20.
Am J Physiol Heart Circ Physiol ; 308(9): H1126-35, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25747754

RESUMO

Overnutrition/obesity predisposes individuals, particularly women, to diastolic dysfunction (DD), an independent predictor of future cardiovascular disease. We examined whether low-dose spironolactone (Sp) prevents DD associated with consumption of a Western Diet (WD) high in fat, fructose, and sucrose. Female C57BL6J mice were fed a WD with or without Sp (1 mg·kg(-1)·day(-1)). After 4 mo on the WD, mice exhibited increased body weight and visceral fat, but similar blood pressures, compared with control diet-fed mice. Sp prevented the development of WD-induced DD, as indicated by decreased isovolumic relaxation time and an improvement in myocardial performance (

Assuntos
Diástole/efeitos dos fármacos , Dieta Ocidental , Ventrículos do Coração/efeitos dos fármacos , Antagonistas de Receptores de Mineralocorticoides/administração & dosagem , Receptores de Mineralocorticoides/efeitos dos fármacos , Espironolactona/administração & dosagem , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , Dieta Hiperlipídica , Sacarose Alimentar , Modelos Animais de Doenças , Feminino , Fibrose , Frutose , Ventrículos do Coração/imunologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptores de Mineralocorticoides/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo , Fatores Sexuais , Fatores de Tempo , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/imunologia , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Pressão Ventricular/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA