Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834098

RESUMO

Antimicrobial peptides (AMPs) can kill bacteria by disrupting their cytoplasmic membrane, which reduces the tendency of antibacterial resistance compared to conventional antibiotics. Their possible toxicity to human cells, however, limits their applicability. The combination of magnetically controlled drug delivery and supramolecular engineering can help to reduce the dosage of AMPs, control the delivery, and improve their cytocompatibility. Lasioglossin III (LL) is a natural AMP form bee venom that is highly antimicrobial. Here, superparamagnetic iron oxide nanoparticles (IONs) with a supramolecular ureido-pyrimidinone (UPy) coating were investigated as a drug carrier for LL for a controlled delivery to a specific target. Binding to IONs can improve the antimicrobial activity of the peptide. Different transmission electron microscopy (TEM) techniques showed that the particles have a crystalline iron oxide core with a UPy shell and UPy fibers. Cytocompatibility and internalization experiments were carried out with two different cell types, phagocytic and nonphagocytic cells. The drug carrier system showed good cytocompatibility (>70%) with human kidney cells (HK-2) and concentration-dependent toxicity to macrophagic cells (THP-1). The particles were internalized by both cell types, giving them the potential for effective delivery of AMPs into mammalian cells. By self-assembly, the UPy-coated nanoparticles can bind UPy-functionalized LL (UPy-LL) highly efficiently (99%), leading to a drug loading of 0.68 g g-1. The binding of UPy-LL on the supramolecular nanoparticle system increased its antimicrobial activity against E. coli (MIC 3.53 µM to 1.77 µM) and improved its cytocompatible dosage for HK-2 cells from 5.40 µM to 10.6 µM. The system showed higher cytotoxicity (5.4 µM) to the macrophages. The high drug loading, efficient binding, enhanced antimicrobial behavior, and reduced cytotoxicity makes ION@UPy-NH2 an interesting drug carrier for AMPs. The combination with superparamagnetic IONs allows potential magnetically controlled drug delivery and reduced drug amount of the system to address intracellular infections or improve cancer treatment.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Animais , Humanos , Pirimidinonas/química , Escherichia coli , Portadores de Fármacos , Anti-Infecciosos/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro , Íons , Mamíferos
2.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499070

RESUMO

Carboxymethyl-dextran (CMD)-coated iron oxide nanoparticles (IONs) are of great interest in nanomedicine, especially for applications in drug delivery. To develop a magnetically controlled drug delivery system, many factors must be considered, including the composition, surface properties, size and agglomeration, magnetization, cytocompatibility, and drug activity. This study reveals how the CMD coating thickness can influence these particle properties. ION@CMD are synthesized by co-precipitation. A higher quantity of CMD leads to a thicker coating and a reduced superparamagnetic core size with decreasing magnetization. Above 12.5−25.0 g L−1 of CMD, the particles are colloidally stable. All the particles show hydrodynamic diameters < 100 nm and a good cell viability in contact with smooth muscle cells, fulfilling two of the most critical characteristics of drug delivery systems. New insights into the significant impact of agglomeration on the magnetophoretic behavior are shown. Remarkable drug loadings (62%) with the antimicrobial peptide lasioglossin and an excellent efficiency (82.3%) were obtained by covalent coupling with the EDC/NHS (N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide/N-hydroxysuccinimide) method in comparison with the adsorption method (24% drug loading, 28% efficiency). The systems showed high antimicrobial activity with a minimal inhibitory concentration of 1.13 µM (adsorption) and 1.70 µM (covalent). This system successfully combines an antimicrobial peptide with a magnetically controllable drug carrier.


Assuntos
Dextranos , Nanopartículas de Magnetita , Dextranos/química , Nanopartículas de Magnetita/química , Sistemas de Liberação de Medicamentos , Portadores de Fármacos , Tamanho da Partícula
3.
Langmuir ; 37(19): 5902-5908, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33951395

RESUMO

The adsorption and desorption of nucleic acid to a solid surface is ubiquitous in various research areas like pharmaceutics, nanotechnology, molecular biology, and molecular electronics. In spite of this widespread importance, it is still not well understood how the negatively charged deoxyribonucleic acid (DNA) binds to the negatively charged silica surface in an aqueous solution. In this article, we study the adsorption of DNA to the silica surface using both modeling and experiments and shed light on the complicated binding (DNA to silica) process. The binding agent mediated DNA adsorption was elegantly captured by cooperative Langmuir model. Bulk-depletion experiments were performed to conclude the necessity of a positively charged binding agent for efficient DNA binding, which complements the findings from the model. A profound understanding of DNA binding will help to tune various processes for efficient nucleic acid extraction and purification. However, this work goes beyond the DNA binding and can shed light on other binding agent mediated surface-surface, surface-molecule, molecule-molecule interaction.


Assuntos
Dióxido de Silício , Água , Adsorção , DNA , Propriedades de Superfície
4.
Analyst ; 146(11): 3549-3556, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33899848

RESUMO

The detection of pathogens in aquatic environments issues a time-consuming challenge, but it is an essential task to prevent the spread of diseases. We have developed a new point-of-care (POC) method for the fast and efficient detection of Legionella pneumophila in water. The method consists first of the generation of immunocomplexes of bacteria species with its corresponding targeted fluorescence-labelled serogroup-specific antibodies, and second a concentration step of pathogens with a membrane filter. Third, on the filtration membrane, our method can detect the fluorescence intensity corresponding to the pathogen concentration. Thus selective and efficient evidence for the presence of bacteria can be evaluated. We tested our system on fluorescent Escherichia coli bacteria and were able to reach an accurate determination of 1000 cells. The technique was furthermore tested on Legionella pneumophila cells, which were labelled with fluorescence-labelled antibodies as a proof of principle. Furthermore, we were able to verify this method in the presence of other bacteria species. We were able to detect bacteria cells within half an hour, a substantial advancement compared to the prevailling state of the art detection method based on the cultivation of Legionella pneumophila. Hence, this system represents the basis for future developments in analysis of pathogens.


Assuntos
Legionella pneumophila , Microbiologia da Água , Anticorpos , Filtração , Sorogrupo
5.
Chemphyschem ; 21(20): 2347-2356, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32794279

RESUMO

Protein-surface interactions are exploited in various processes in life sciences and biotechnology. Many of such processes are performed in presence of a buffer system, which is generally believed to have an influence on the protein-surface interaction but is rarely investigated systematically. Combining experimental and theoretical methodologies, we herein demonstrate the strong influence of the buffer type on protein-surface interactions. Using state of the art chromatographic experiments, we measure the interaction between individual amino acids and silica, as a reference to understand protein-surface interactions. Among all the 20 proteinogenic amino acids studied, we found that arginine (R) and lysine (K) bind most strongly to silica, a finding validated by free energy calculations. We further measured the binding of R and K at different pH in presence of two different buffers, MOPS (3-(N-morpholino)propanesulfonic acid) and TRIS (tris(hydroxymethyl)aminomethane), and find dramatically different behavior. In presence of TRIS, the binding affinity of R/K increases with pH, whereas we observe an opposite trend for MOPS. These results can be understood using a multiscale modelling framework combining molecular dynamics simulation and Langmuir adsorption model. The modelling approach helps to optimize buffer conditions in various fields like biosensors, drug delivery or bio separation engineering prior to the experiment.

6.
Langmuir ; 35(25): 8472-8481, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31198043

RESUMO

Owing to their extraordinary magnetic properties and low-cost production, iron oxide nanoparticles (IONs) are in the focus of research. In order to better understand interactions of IONs with biomolecules, a tool for the prediction of the propensity of different peptides to interact with IONs is of great value. We present an effective implicit surface model (EISM), which includes several interaction models. Electrostatic interactions, van der Waals interactions, and entropic effects are considered for the theoretical calculations. However, the most important parameter, a surface accessible area force field contribution term, derives directly from experimental results on the interactions of IONs and peptides. Data from binding experiments of ION agglomerates to different peptides immobilized on cellulose membranes have been used to parameterize the model. The work was carried out under defined environmental conditions; hence, effects because of changes, for example structure or solubility by changing the surroundings, are not included. EISM enables researchers to predict the binding of peptides to IONs, which we then verify with further peptide array experiments in an iterative optimization process also presented here. Negatively charged peptides were identified as best binders for IONs in Tris buffer. Furthermore, we investigated the constitution of peptides and how the amount and position of several amino acid side chains affect peptide-binding. The incorporation of glycine leads to higher binding scores compared to the incorporation of cysteine in negatively charged peptides.


Assuntos
Compostos Férricos/química , Compostos Férricos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica
7.
Anal Chem ; 90(24): 14131-14136, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30450897

RESUMO

Potential-controlled tensiometry is a voltage-induced method which enables measuring the contact angle between a powder bed and a liquid medium through the capillary rise method. This analytical tool provides a fine-grained technique for understanding wetting behavior of powders as well as solid surfaces in connection with the application of an electrical potential. In this work, the powder bed was brought into contact with an aluminum rod connected to a portable lightweight DAC-module (digital to analog converter) powered by a lithium-polymer battery (LiPo). The presented analytical device can be charged up to ±1000 mV. Both the power source and the DAC-module are lightweight in order to be conveniently attached to a force tensiometer without incorporating complex wiring. In this setup, we tested multiwall carbon nanotubes (MWCNT) and glassy carbon particles. An influence of the potential on the wetting behavior of glassy carbon particles is observed which demonstrates the working principle of the device. Surprisingly, no significant effect of the potential on the wetting behavior of MWCNT is indicated in the range studied. This technique can be a valuable tool to analyze the effect of changing surface properties applying electrical gradients on materials.

8.
Protein Expr Purif ; 152: 155-160, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30059743

RESUMO

The need for fast and convenient protein purification is enormous, not only on the industrial scale for the production of therapeutics but also in life science research. Most protein purification strategies require multiple steps, which are time consuming, cost and resource intensive. Selective release of the intracellular target product can considerably facilitate downstream processing by minimizing the HCP concentration before subsequent purification processes. Here, we present a simple method to selectively release soluble overexpressed proteins from E. coli with minimal laboratory equipment requirements. This method is based on the creation of pores in the cell envelope by a single freeze-thaw cycle. Proteins of various sizes were released by several 50 mM Tris pH 9.5 buffer washes with high yields. Consequently, the need for detergents and other additives were circumvented. Green fluorescent protein (GFP), was tagged with peptides of various charges and polarity. Releasing these GFP variants with our method enabled the successful one-step chromatographic purification on a quaternary amine resin despite the different isoelectric points of the target proteins. Up to 90% of the target protein elution peak during anion exchange chromatography was of >95% purity. This optimized process is more productive compared to multi-step purification procedures currently available in literature.


Assuntos
Clonagem Molecular/métodos , Escherichia coli/genética , Vetores Genéticos/química , Proteínas de Fluorescência Verde/isolamento & purificação , Peptídeos/isolamento & purificação , Cromatografia por Troca Iônica/métodos , Difusão , Escherichia coli/metabolismo , Congelamento , Expressão Gênica , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Concentração de Íons de Hidrogênio , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Solubilidade
9.
J Sep Sci ; 40(5): 1176-1183, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28032692

RESUMO

Electrochemically modulated liquid chromatography is a special form of ion exchange chromatography in which the separation process is controlled by applying an electric potential to the stationary phase. This form of chromatography has so far only been applied in research studies. The present study shows that multiwalled carbon nanotubes are an effective resin material for an electrochemically modulated chromatography process. The experiments are carried out in a newly designed column that enables the packing of nanomaterials. We investigate the influence of the applied potential on the retention and elution of maleic acid, determine the dynamic binding capacity, and calculate the utilization degree of the electrical charge in the adsorption process. Moreover, the stability of the resin and the membrane over more than 200 working hours are presented. In addition to the stability, their sturdiness and inexpensive price are important qualities that make multiwalled carbon nanotubes interesting for application as the stationary phase in an electrochemically driven process. The investigated chromatography technique represents a promising separation process for future applications as a preparative step in biotechnology as well as other life science fields.


Assuntos
Nanotubos de Carbono , Resinas Sintéticas , Adsorção , Biotecnologia , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Cromatografia Líquida
10.
Protein Expr Purif ; 93: 87-92, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24184233

RESUMO

Protein A from Staphylococcus aureus plays one key role as an immobilized affinity ligand for the purification of antibodies. A simple method for its extracellular expression in Escherichia coli and subsequent purification is reported herein. The N-terminus of the gene coding for the five IgG binding domains was fused to a pelB signal peptide which is responsible for periplasmic localization and which is removed after translocation into the periplasmic space of E.coli. Different additives, which were added at the same time with the induction of the protein expression by IPTG, were tested in order to facilitate the release of the target protein. With help of this optimized release protocol, more than 380mgL(-1) of protein A were obtained when Tris-HCl pH 8.5 was added up to a final concentration of 180mM in shaking flask experiments. Based on these observations, a protocol was developed for the extracellular production of SpA in a stirred tank bioreactor yielding 5.5gL(-1) of the secreted target protein. After cell removal by centrifugation, the protein A-containing supernatant was concentrated and dialyzed by tangential flow filtration. The target protein was subsequently purified by anion exchange chromatography with a total process yield of 90% and a final purity of ⩾95% (RP HPLC) was achieved.

11.
Phys Chem Chem Phys ; 16(17): 8036-43, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24647967

RESUMO

Peptide based inhibitors of protein-protein interactions are of great interest in proteomics, structural biology and medicinal chemistry. Optimized inhibitors can be designed by experimental approaches or by computational prediction. Ideally, computational models are adjusted to the peptide-protein complex of interest according to experimental data obtained in specific binding experiments. The chemokine CXCL8 (interleukin-8) is an interesting target for drug discovery due to its role in inflammatory diseases. Given the available structural data and information on its receptor interactions it constitutes a basis for the rational design of inhibitor peptides. Starting from the reported structure of CXCL8 in complex with a peptide derived from its receptor CXCR1 we developed a computational docking procedure to estimate the changes in binding energy as a function of individual amino acid exchanges. This indicates whether the respective amino acid residue must be preserved or can be substituted to maintain or improve affinity, respectively. To validate and improve the assumptions made in this docking simulation we established a fluorescence polarization assay for receptor-derived peptides binding to CXCL8. A peptide library was tested comprising selected mutants characterized by docking simulations. A number of predictions regarding electrostatic interactions were confirmed by these experiments and it was revealed that the model needed to be corrected for backbone flexibility. Therefore, the assay presented here is a promising tool to systematically improve the computational model by iterative cycles of modeling, experimental validation and refinement of the algorithm, leading to a more reliable model and peptides with improved affinity.


Assuntos
Polarização de Fluorescência/métodos , Interleucina-8/metabolismo , Peptídeos/metabolismo , Receptores de Interleucina-8A/metabolismo , Sequência de Aminoácidos , Humanos , Interleucina-8/química , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Receptores de Interleucina-8A/química
12.
Membranes (Basel) ; 14(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38392658

RESUMO

New and highly selective stationary phases for affinity membrane chromatography have the potential to significantly enhance the efficiency and specificity of therapeutic protein purification by reduced mass transfer limitations. This work developed and compared different immobilization strategies for recombinant Protein A ligands to a gold-sputtered polymer membrane for antibody separation in terms of functionalization and immobilization success, protein load, and stability. Successful, functionalization was validated via X-ray photoelectron spectroscopy (XPS). Here, a recombinant Protein A ligand was coupled by N-hydroxysuccinimide (NHS)/N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) chemistry to carboxy-functionalized, gold-sputtered membranes. We achieved a binding capacity of up to 104 ± 17 mg of the protein ligand per gram of the gold-sputtered membrane. The developed membranes were able to successfully capture and release the monoclonal antibody (mAb) Trastuzumab, as well as antibodies from fresh frozen human blood plasma in both static and dynamic setups. Therefore, they demonstrated successful functionalization and immobilization strategies. The antibody load was tested using bicinchoninic acid (BCA), ultraviolet-visible spectroscopy (UV-vis) measurements, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The outcome is a fully functional affinity membrane that can be implemented in a variety of different antibody purification processes, eliminating the need for creating individualized strategies for modifying the surface to suit different substrates or conditions.

13.
J Chromatogr A ; 1718: 464733, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364620

RESUMO

Membrane separations offer a compelling alternative to traditional chromatographic methods by overcoming mass transport limitations. We introduce an additional degree of freedom in modulating membrane chromatography by using metalized membranes in a potential-driven process. Investigating the impact of a gold coating on membrane characteristics, the sputtered gold layer enhances the surface conductivity with stable electrochemical behavior. However, this comes at the expense of reduced permeability, wettability, and static binding capacity (∼ 474 µg g-1 of maleic acid). The designed device displayed a homogenous flow distribution, and the membrane electrodes exhibit predominantly capacitive behavior during potential application. Modulating the electrical potential during the adsorption and desorption phase strongly influenced the binding and elution behavior of anion-exchange membranes. Switching potentials between ±1.0 V vs. Ag/AgCl induces desorption, confirming the process principle. Elution efficiency reaches up to 58 % at -1.0 V vs. Ag/AgCl in the desorption phase without any alteration of the mobile phase. Increasing the potential perturbation ranging from +1.0 V to -1.0 V vs. Ag/AgCl resulted in reduced peak width and improved elution behavior, demonstrating the feasibility of electrochemically-modulated membrane chromatography. The developed process has great potential as a gentle and sustainable separation step in the biotechnological and chemical industry.


Assuntos
Cromatografia , Ouro , Eletrodos , Adsorção , Ouro/química , Biotecnologia
14.
ACS Appl Bio Mater ; 7(6): 3942-3952, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38740514

RESUMO

Magnetic separation is a promising alternative to chromatography for enhancing the downstream processing (DSP) of monoclonal antibodies (mAbs). However, there is a lack of efficient magnetic particles for successful application. Aiming to fill this gap, we demonstrate the suitability of bare iron oxide nanoparticles (BION) with physical site-directed immobilization of an engineered Protein A affinity ligand (rSpA) as an innovative magnetic material. The rSpA ligand contains a short peptide tag that enables the direct and stable immobilization onto the uncoated BION surface without commonly required laborious particle activation. The resulting BION@rSpA have beneficial characteristics outperforming conventional Protein A-functionalized magnetic particles: a simple, fast, low-cost synthesis, a particle size in the nanometer range with a large effective specific surface area enabling large immunoglobulin G (IgG) binding capacity, and a high magnetophoretic velocity advantageous for fast processing. We further show rapid interactions of IgG with the easily accessible rSpA ligands. The binding of IgG to BION@rSpA is thereby highly selective and not impeded by impurity molecules in perfusion cell culture supernatant. Regarding the subsequent acidic IgG elution from BION@rSpA@IgG, we observed a hampering pH increase caused by the protonation of large iron oxide surfaces after concentrating the particles in 100 mM sodium acetate buffer. However, the pH can be stabilized by adding 50 mM glycine to the elution buffer, resulting in recoveries above 85% even at high particle concentrations. Our work shows that BION@rSpA enable efficient magnetic mAb separation and could help to overcome emerging bottlenecks in DSP.


Assuntos
Imunoglobulina G , Nanopartículas Magnéticas de Óxido de Ferro , Teste de Materiais , Tamanho da Partícula , Nanopartículas Magnéticas de Óxido de Ferro/química , Ligantes , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Materiais Biocompatíveis/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo , Propriedades de Superfície , Compostos Férricos/química
15.
RSC Adv ; 14(23): 16117-16127, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38769965

RESUMO

Due to its simplicity, co-precipitation is the most commonly used method for producing iron (oxyhydr)oxide nanoparticles. However, it is reported to be sensitive to changes in process parameters, which complicates scale-up and is why only volumes up to 1.2 L have been described in the literature. This study aims to demonstrate the scale-up of a co-precipitation synthesis to 100 L using the example of a new phosphate-binding active ingredient based on iron (oxyhydr)oxide. The synthesis was shown to be very robust to changes in synthesis parameters and stirrer geometries. The in vitro phosphate-binding efficacy and the yield were maintained in all five scales tested. Only the content of the components in the nanoparticles varied slightly. However, Mössbauer spectroscopy, dynamic light scattering (DLS), and attenuated total reflection Fourier transform infrared spectroscopy (FT-IR) revealed no evidence of structural changes, but a reduction in the size of the iron (oxyhydr)oxide cores and the total core-shell nanoparticle sizes. Overall, this study has successfully demonstrated that ultrasmall iron (oxyhydr)oxide nanoparticles can be produced on a pilot scale by co-precipitation with a yield of >40 g L-1.

16.
ACS Appl Bio Mater ; 6(1): 146-156, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36503228

RESUMO

Magnetic nanoparticles are an attractive bioseparation tool due to their magnetic susceptibility and high adsorption capacity for different types of molecules. A major challenge for separation is to generate selectivity for a target molecule, or for a group of molecules in complex environments such as cell lysates. It is crucial to understand the factors that determine the targets' adsorption behavior in mixtures for triggering intended interactions and selectivity. Here we use a model system containing three molecules, each of them a common representative of the more abundant types of macromolecules in living systems: sodium oleate (SO), a fatty acid; bovine serum albumin (BSA), a protein; and dextran, a polysaccharide. Our results show that (a) the BSA adsorption capacity on the iron oxide material depends markedly on the pH, with the maximum capacity at the pI of the protein (0.39 g gMNP-1 ); (b) sodium oleate, a strongly negatively charged molecule, an organic anion, renders a maximum adsorption capacity of 0.40 g gMNP-1, even at pHs at which oleate as well as the nanoparticle surface are negatively charged; (c) the adsorbed masses of dextran, a neutral sugar, are lower than for the other two molecules, between 0.09 and 0.13 g gMNP-1, regardless of the system's pH. We observe an unexpected behavior in mixtures: SO completely prevents the adsorption of BSA, and dextran decreases the adsorption of the other competitors, SO and BSA, while adsorbing at the same capacities, unaffected by either the presence of the other two molecules or the pH. BSA does not decrease the oleate adsorption capacity. We demonstrate the essential role of pH in the adsorption of BSA (a protein) and SO (a fatty acid), as well as its impact in the structural organization of the oleate molecules in water. Moreover, we present exciting data on the adsorption of the molecules in competition, revealing the need to focus on interaction studies in more complex environments. This study attempts to open the scope of the current research of bio-nano interactions to not only proteins but also to mixtures, and generally to molecules with other physicochemical characteristics. Furthermore, we contribute to the understanding of multicomponent systems with the vision set in enhancing biomass exploitation and biofractionation processes.


Assuntos
Nanopartículas de Magnetita , Ácido Oleico , Ácido Oleico/química , Ácidos Graxos , Dextranos , Soroalbumina Bovina/química
17.
Colloids Surf B Biointerfaces ; 228: 113428, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37379701

RESUMO

Coated iron oxide nanoparticles (IONs) are promising candidates for various applications in nanomedicine, including imaging, magnetic hyperthermia, and drug delivery. The application of IONs in nanomedicine is influenced by factors such as biocompatibility, surface properties, agglomeration, degradation behavior, and thrombogenicity. Therefore, it is essential to investigate the effects of coating material and thickness on the behavior and performance of IONs in the human body. In this study, IONs with a carboxymethyl dextran (CMD) coating and two thicknesses of silica coating (TEOS0.98, and TEOS3.91) were screened and compared to bare iron oxide nanoparticles (BIONs). All three coated particles showed good cytocompatibility (>70%) when tested with smooth muscle cells over three days. To investigate their potential long term behavior inside the human body, the Fe2+ release and hydrodynamic diameters of silica-coated and CMD (carboxymethyl dextrane)-coated IONs were analyzed in simulated body fluids for 72 h at 37 °C. The ION@CMD showed moderate agglomeration of around 100 nm in all four simulated fluids and dissolved faster than the silica-coated particles in artificial exosomal fluid and artificial lysosomal fluid. The particles with silica coating agglomerated in all tested simulated media above 1000 nm. Increased thickness of the silica coating led to decreased degradation of particles. Additionally, CMD coating resulted in nanoparticles with the least prothrombotic activity, and the thick silica coating apparently decreased the prothrombotic properties of nanoparticles compared to BIONs and ION@TEOS0.98. For magnetic resonance applications, ION@CMD and ION@TEOS3.91 showed comparatively high relaxation rates R2 values. In magnetic particle imaging experiments ION@TEOS3.91 yielded the highest normalized signal to noise ratio values and in magnetic hyperthermia studies, ION@CMD and ION@TEOS0.98 showed similar specific loss power. These findings demonstrate the potential of coated IONs in nanomedicine and emphasize the importance of understanding the effect of coating material and thickness on their behavior and performance in the human body.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Humanos , Dióxido de Silício , Tamanho da Partícula , Nanopartículas Magnéticas de Óxido de Ferro , Íons
18.
J Colloid Interface Sci ; 634: 418-430, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36542971

RESUMO

HYPOTHESIS: The high binding affinity of iron(oxyhydr)oxides for phosphate has recently been used in medicine to treat hyperphosphatemia, an abnormally elevated phosphate concentration in the blood. For iron(oxyhydr)oxide nanoparticles, the composition of the organic shell has a more significant influence on their interaction with phosphate than is often assumed. This study shows different mechanisms in phosphate binding, using the example of two similar new phosphate-binding agents. EXPERIMENTS: We characterized the phosphate-binding behavior of two iron(oxyhydr)oxide-based nanomaterials with similar composition and particle properties and investigated their binding mechanisms by spectroscopic methods. FINDINGS: For the often prescribed Velphoro, we demonstrated a phosphate binding capacity of>210 mg/g. A similar active ingredient named C-PAM binds over 573 mg/g. Spectroscopic measurements highlighted differences in the binding mechanism. While Velphoro binds phosphate via surface complexation independent of pH and adsorbent concentration, C-PAM shows a strong concentration dependence. At low concentrations, phosphate is bound via complexation reactions. The iron(oxyhydr)oxide structure was dissolved at higher phosphate concentrations and formed various iron phosphate species. The substances behave differently upon interaction with phosphate, although being very similar in composition and crystal structure. Thus, we demonstrated a crucial influence of the ligands in the shell on the binding mechanism.


Assuntos
Ferro , Nanopartículas , Ferro/química , Óxidos , Compostos Férricos/química , Fosfatos/química , Adsorção
19.
Heliyon ; 9(6): e16487, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37274707

RESUMO

Iron oxide nanoparticles (IONs) are of great interest in nanomedicine for imaging, drug delivery, or for hyperthermia treatment. Although many research groups have focused on the synthesis and application of IONs in nanomedicine, little is known about the influence of the surface properties on the particles' behavior in the human body. This study analyzes the impact of surface coatings (dextran, polyvinyl alcohol, polylactide-co-glycolide) on the nanoparticles' cytocompatibility, agglomeration, degradation, and the resulting oxidative stress induced by the particle degradation. All particles, including bare IONs (BIONs), are highly cytocompatible (>70%) and show no significant toxicity towards smooth muscle cells. Small-angle X-ray scattering profiles visualize the aggregation behavior of nanoparticles and yield primary particle sizes of around 20 nm for the investigated nanoparticles. A combined experimental setup of dynamic light scattering and phenanthroline assay was used to analyze the long-term agglomeration and degradation profile of IONs in simulated body fluids, allowing fast screening of multiple candidates. All particles degraded in simulated endosomal and lysosomal fluid, confirming the pH-dependent dissolution. The degradation rate decreased with the shrinking size of particles leading to a plateau. The fastest Fe2+ release could be measured for the polyvinyl-coated IONs. The analytical setup is ideal for a quick preclinical study of IONs, giving often neglected yet crucial information about the behavior and toxicity of nanoparticles in the human body. Moreover, this study allows for the development and evaluation of novel ferroptosis-inducing agents.

20.
Curr Opin Biotechnol ; 77: 102768, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35930843

RESUMO

Biopharmaceuticals and their production are on the rise. They are needed to treat and to prevent multiple diseases. Therefore, an urgent need for process intensification in downstream processing (DSP) has been identified to produce biopharmaceuticals more efficiently. The DSP currently accounts for the majority of production costs of pharmaceutically relevant proteins. This short review gathers essential research over the past 3 years that addresses novel solutions to overcome this bottleneck. The overview includes promising studies in the fields of chromatography, aqueous two-phase systems, precipitation, crystallization, magnetic separation, and filtration for the purification of pharmaceutically relevant proteins.


Assuntos
Produtos Biológicos , Proteínas , Filtração , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA