Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Vis Exp ; (109)2016 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-27023729

RESUMO

RNA-mediated knockdowns are widely used to control gene expression. This versatile family of techniques makes use of short RNA (sRNA) that can be synthesized with any sequence and designed to complement any gene targeted for silencing. Because sRNA constructs can be introduced to many cell types directly or using a variety of vectors, gene expression can be repressed in living cells without laborious genetic modification. The most common RNA knockdown technology, RNA interference (RNAi), makes use of the endogenous RNA-induced silencing complex (RISC) to mediate sequence recognition and cleavage of the target mRNA. Applications of this technique are therefore limited to RISC-expressing organisms, primarily eukaryotes. Recently, a new generation of RNA biotechnologists have developed alternative mechanisms for controlling gene expression through RNA, and so made possible RNA-mediated gene knockdowns in bacteria. Here we describe a method for silencing gene expression in E. coli that functionally resembles RNAi. In this system a synthetic phagemid is designed to express sRNA, which may designed to target any sequence. The expression construct is delivered to a population of E. coli cells with non-lytic M13 phage, after which it is able to stably replicate as a plasmid. Antisense recognition and silencing of the target mRNA is mediated by the Hfq protein, endogenous to E. coli. This protocol includes methods for designing the antisense sRNA, constructing the phagemid vector, packaging the phagemid into M13 bacteriophage, preparing a live cell population for infection, and performing the infection itself. The fluorescent protein mKate2 and the antibiotic resistance gene chloramphenicol acetyltransferase (CAT) are targeted to generate representative data and to quantify knockdown effectiveness.


Assuntos
Bacteriófago M13/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Interferência de RNA , Pequeno RNA não Traduzido/genética , Inativação Gênica , Vetores Genéticos , Plasmídeos , RNA Antissenso , RNA Mensageiro/genética
2.
ACS Synth Biol ; 3(12): 932-4, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25408994

RESUMO

The emergence of extremely drug resistant Mycobacterium tuberculosis necessitates new strategies to combat the pathogen. Engineered bacteria may serve as vectors to deliver proteins to human cells, including mycobacteria-infected macrophages. In this work, we target Mycobacterium smegmatis, a nonpathogenic tuberculosis model, with E. coli modified to express trehalose dimycolate hydrolase (TDMH), a membrane-lysing serine esterase. We show that TDMH-expressing E. coli are capable of lysing mycobacteria in vitro and at low pH. Vectorized E. coli producing TDMH were found suppress the proliferation of mycobacteria in infected macrophages.


Assuntos
Bioengenharia/métodos , Escherichia coli/metabolismo , Esterases/genética , Vetores Genéticos/genética , Mycobacterium smegmatis/metabolismo , Células Cultivadas , Escherichia coli/genética , Esterases/metabolismo , Vetores Genéticos/metabolismo , Humanos , Macrófagos/microbiologia
3.
ACS Synth Biol ; 3(12): 1003-6, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25524110

RESUMO

In response to emergent antibiotic resistance, new strategies are needed to enhance the effectiveness of existing antibiotics. Here, we describe a phagemid-delivered, RNA-mediated system capable of directly knocking down antibiotic resistance phenotypes. Small regulatory RNAs (sRNAs) were designed to specifically inhibit translation of chloramphenicol acetyltransferase and kanamycin phosphotransferase. Nonlytic phagemids coding for sRNA expression were able to infect and restore chloramphenicol and kanamycin sensitivity to populations of otherwise resistant E. coli. This modular system could easily be extended to other bacteria with resistance profiles that depend on specific transcripts.


Assuntos
Bacteriófagos/genética , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Inativação Gênica , RNA Viral , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Engenharia Genética , RNA Viral/genética , RNA Viral/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA