Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 26(3): 962-80, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24642943

RESUMO

Plants require sophisticated regulatory mechanisms to ensure the degree of anthocyanin pigmentation is appropriate to myriad developmental and environmental signals. Central to this process are the activity of MYB-bHLH-WD repeat (MBW) complexes that regulate the transcription of anthocyanin genes. In this study, the gene regulatory network that regulates anthocyanin synthesis in petunia (Petunia hybrida) has been characterized. Genetic and molecular evidence show that the R2R3-MYB, MYB27, is an anthocyanin repressor that functions as part of the MBW complex and represses transcription through its C-terminal EAR motif. MYB27 targets both the anthocyanin pathway genes and basic-helix-loop-helix (bHLH) ANTHOCYANIN1 (AN1), itself an essential component of the MBW activation complex for pigmentation. Other features of the regulatory network identified include inhibition of AN1 activity by the competitive R3-MYB repressor MYBx and the activation of AN1, MYB27, and MYBx by the MBW activation complex, providing for both reinforcement and feedback regulation. We also demonstrate the intercellular movement of the WDR protein (AN11) and R3-repressor (MYBx), which may facilitate anthocyanin pigment pattern formation. The fundamental features of this regulatory network in the Asterid model of petunia are similar to those in the Rosid model of Arabidopsis thaliana and are thus likely to be widespread in the Eudicots.


Assuntos
Antocianinas/metabolismo , Pigmentos Biológicos/metabolismo , Transativadores/metabolismo , Redes Reguladoras de Genes , Genes myb , Plantas Geneticamente Modificadas
2.
Plant Cell Rep ; 34(10): 1817-23, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26113165

RESUMO

KEY MESSAGE: The Md - MYB10 R6 gene from apple is capable of self-regulating in heterologous host species and enhancing anthocyanin pigmentation, but the activity of MYB10 is dependent on endogenous protein partners. Coloured foliage due to anthocyanin pigments (bronze/red/black) is an attractive trait that is often lacking in many bedding, ornamental and horticultural plants. Apples (Malus × domestica) containing an allelic variant of the anthocyanin regulator, Md-MYB10 R6 , are highly pigmented throughout the plant, due to autoregulation by MYB10 upon its own promoter. We investigated whether Md-MYB10 R6 from apple is capable of functioning within the heterologous host Petunia hybrida to generate plants with novel pigmentation patterns. The Md-MYB10 R6 transgene (MYB10-R6 pro :MYB10:MYB10 term ) activated anthocyanin synthesis when transiently expressed in Antirrhinum rosea (dorsea) petals and petunia leaf discs. Stable transgenic petunias containing Md-MYB10 R6 lacked foliar pigmentation but had coloured flowers, complementing the an2 phenotype of 'Mitchell' petunia. The absence of foliar pigmentation was due to the failure of the Md-MYB10 R6 gene to self-activate in vegetative tissues, suggesting that additional protein partners are required for Md-MYB10 to activate target genes in this heterologous system. In petunia flowers, where endogenous components including MYB-bHLH-WDR (MBW) proteins were present, expression of the Md-MYB10 R6 promoter was initiated, allowing auto-regulation to occur and activating anthocyanin production. Md-MYB10 is capable of operating within the petunia MBW gene regulation network that controls the expression of the anthocyanin biosynthesis genes, AN1 (bHLH) and MYBx (R3-MYB repressor) in petals.


Assuntos
Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Petunia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Petunia/genética
3.
Planta ; 240(5): 983-1002, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25183255

RESUMO

MAIN CONCLUSION: This study confirmed pigment profiles in different colour groups, isolated key anthocyanin biosynthetic genes and established a basis to examine the regulation of colour patterning in flowers of Cymbidium orchid. Cymbidium orchid (Cymbidium hybrida) has a range of flower colours, often classified into four colour groups; pink, white, yellow and green. In this study, the biochemical and molecular basis for the different colour types was investigated, and genes involved in flavonoid/anthocyanin synthesis were identified and characterised. Pigment analysis across selected cultivars confirmed cyanidin 3-O-rutinoside and peonidin 3-O-rutinoside as the major anthocyanins detected; the flavonols quercetin and kaempferol rutinoside and robinoside were also present in petal tissue. ß-carotene was the major carotenoid in the yellow cultivars, whilst pheophytins were the major chlorophyll pigments in the green cultivars. Anthocyanin pigments were important across all eight cultivars because anthocyanin accumulated in the flower labellum, even if not in the other petals/sepals. Genes encoding the flavonoid biosynthetic pathway enzymes chalcone synthase, flavonol synthase, flavonoid 3' hydroxylase (F3'H), dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) were isolated from petal tissue of a Cymbidium cultivar. Expression of these flavonoid genes was monitored across flower bud development in each cultivar, confirming that DFR and ANS were only expressed in tissues where anthocyanin accumulated. Phylogenetic analysis suggested a cytochrome P450 sequence as that of the Cymbidium F3'H, consistent with the accumulation of di-hydroxylated anthocyanins and flavonols in flower tissue. A separate polyketide synthase, identified as a bibenzyl synthase, was isolated from petal tissue but was not associated with pigment accumulation. Our analyses show the diversity in flower colour of Cymbidium orchid derives not from different individual pigments but from subtle variations in concentration and pattern of pigment accumulation.


Assuntos
Antocianinas/biossíntese , Vias Biossintéticas , Flores/metabolismo , Orchidaceae/metabolismo , Aciltransferases/classificação , Aciltransferases/genética , Aciltransferases/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Cromatografia Líquida de Alta Pressão , Cor , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucosídeos/biossíntese , Quempferóis/biossíntese , Espectrometria de Massas , Orchidaceae/classificação , Orchidaceae/genética , Oxirredutases/classificação , Oxirredutases/genética , Oxirredutases/metabolismo , Oxigenases/classificação , Oxigenases/genética , Oxigenases/metabolismo , Filogenia , Pigmentação/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Quercetina/biossíntese , Especificidade da Espécie , beta Caroteno/biossíntese
4.
Front Plant Sci ; 13: 910155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812927

RESUMO

Vaccinium berries are regarded as "superfoods" owing to their high concentrations of anthocyanins, flavonoid metabolites that provide pigmentation and positively affect human health. Anthocyanin localization differs between the fruit of cultivated highbush blueberry (V. corymbosum) and wild bilberry (V. myrtillus), with the latter having deep red flesh coloration. Analysis of comparative transcriptomics across a developmental series of blueberry and bilberry fruit skin and flesh identified candidate anthocyanin regulators responsible for this distinction. This included multiple activator and repressor transcription factors (TFs) that correlated strongly with anthocyanin production and had minimal expression in blueberry (non-pigmented) flesh. R2R3 MYB TFs appeared key to the presence and absence of anthocyanin-based pigmentation; MYBA1 and MYBPA1.1 co-activated the pathway while MYBC2.1 repressed it. Transient overexpression of MYBA1 in Nicotiana benthamiana strongly induced anthocyanins, but this was substantially reduced when co-infiltrated with MYBC2.1. Co-infiltration of MYBC2.1 with MYBA1 also reduced activation of DFR and UFGT, key anthocyanin biosynthesis genes, in promoter activation studies. We demonstrated that these TFs operate within a regulatory hierarchy where MYBA1 activated the promoters of MYBC2.1 and bHLH2. Stable overexpression of VcMYBA1 in blueberry elevated anthocyanin content in transgenic plants, indicating that MYBA1 is sufficient to upregulate the TF module and activate the pathway. Our findings identify TF activators and repressors that are hierarchically regulated by SG6 MYBA1, and fine-tune anthocyanin production in Vaccinium. The lack of this TF module in blueberry flesh results in an absence of anthocyanins.

5.
BMC Plant Biol ; 10: 107, 2010 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-20540805

RESUMO

BACKGROUND: Cyclamen is a popular and economically significant pot plant crop in several countries. Molecular breeding technologies provide opportunities to metabolically engineer the well-characterized flavonoid biosynthetic pathway for altered anthocyanin profile and hence the colour of the flower. Previously we reported on a genetic transformation system for cyclamen. Our aim in this study was to change pigment profiles and flower colours in cyclamen through the suppression of flavonoid 3', 5'-hydroxylase, an enzyme in the flavonoid pathway that plays a determining role in the colour of anthocyanin pigments. RESULTS: A full-length cDNA putatively identified as a F3'5'H (CpF3'5'H) was isolated from cyclamen flower tissue. Amino acid and phylogeny analyses indicated the CpF3'5'H encodes a F3'5'H enzyme. Two cultivars of minicyclamen were transformed via Agrobacterium tumefaciens with an antisense CpF3'5'H construct. Flowers of the transgenic lines showed modified colour and this correlated positively with the loss of endogenous F3'5'H transcript. Changes in observed colour were confirmed by colorimeter measurements, with an overall loss in intensity of colour (C) in the transgenic lines and a shift in hue from purple to red/pink in one cultivar. HPLC analysis showed that delphinidin-derived pigment levels were reduced in transgenic lines relative to control lines while the percentage of cyanidin-derived pigments increased. Total anthocyanin concentration was reduced up to 80% in some transgenic lines and a smaller increase in flavonol concentration was recorded. Differences were also seen in the ratio of flavonol types that accumulated. CONCLUSION: To our knowledge this is the first report of genetic modification of the anthocyanin pathway in the commercially important species cyclamen. The effects of suppressing a key enzyme, F3'5'H, were wide ranging, extending from anthocyanins to other branches of the flavonoid pathway. The results illustrate the complexity involved in modifying a biosynthetic pathway with multiple branch points to different end products and provides important information for future flower colour modification experiments in cyclamen.


Assuntos
Antocianinas/biossíntese , Cyclamen/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , DNA Antissenso/genética , Flores/química , Clonagem Molecular , Cyclamen/genética , Sistema Enzimático do Citocromo P-450/genética , DNA Complementar/genética , Flores/enzimologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Estrutura Molecular , Filogenia , Pigmentação , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética
6.
Front Plant Sci ; 5: 603, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25414715

RESUMO

Petunia line Mitchell [MP, Petunia axillaris × (P. axillaris × P. hybrida)] and Eustoma grandiflorum (lisianthus) plants were produced containing a transgene for over-expression of the R2R3-MYB transcription factor [TF; ROSEA1 (ROS1)] that up-regulates flavonoid biosynthesis in Antirrhinum majus. The petunia lines were also crossed with previously produced MP lines containing a Zea mays flavonoid-related basic helix-loop-helix TF transgene (LEAF COLOR, LC), which induces strong vegetative pigmentation when these 35S:LC plants are exposed to high-light levels. 35S:ROS1 lisianthus transgenics had limited changes in anthocyanin pigmentation, specifically, precocious pigmentation of flower petals and increased pigmentation of sepals. RNA transcript levels for two anthocyanin biosynthetic genes, chalcone synthase and anthocyanidin synthase, were increased in the 35S:ROS1 lisianthus petals compared to those of control lines. With MP, the 35S:ROS1 calli showed novel red pigmentation in culture, but this was generally not seen in tissue culture plantlets regenerated from the calli or young plants transferred to soil in the greenhouse. Anthocyanin pigmentation was enhanced in the stems of mature 35S:ROS1 MP plants, but the MP white-flower phenotype was not complemented. Progeny from a 35S:ROS1 × 35S:LC cross had novel pigmentation phenotypes that were not present in either parental line or MP. In particular, there was increased pigment in the petal throat region, and the anthers changed from yellow to purple pigmentation. An outdoor field trial was conducted with the 35S:ROS1, 35S:LC, 35S:ROS1 × 35S:LC and control MP lines. Field conditions rapidly induced intense foliage pigmentation in 35S:LC plants, a phenotype not observed in control MP or equivalent 35S:LC plants maintained in a greenhouse. No difference in plant stature, seed germination, or plant survival was observed between transgenic and control plants.

7.
Methods Mol Biol ; 940: 63-74, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23104334

RESUMO

RNA interference (RNAi) is one of the most commonly used techniques for examining the function of genes of interest. In this chapter we present two examples of RNAi that use the particle inflow gun for delivery of the DNA constructs. In one example transient RNAi is used to show the function of an anthocyanin regulatory gene in flower petals. In the second example stably transformed cell cultures are produced with an RNAi construct that results in a change in the anthocyanin hydroxylation pattern.


Assuntos
Antirrhinum/genética , Biolística/instrumentação , Interferência de RNA , Solanum tuberosum/genética , Antirrhinum/enzimologia , Antirrhinum/crescimento & desenvolvimento , Antirrhinum/metabolismo , Células Cultivadas , Técnicas de Cultura , Sistema Enzimático do Citocromo P-450/deficiência , Sistema Enzimático do Citocromo P-450/genética , DNA/administração & dosagem , DNA/química , DNA/genética , Flores/crescimento & desenvolvimento , Ouro/química , Sequências Repetidas Invertidas/genética , Fenótipo , Pigmentação/genética , Proteínas de Plantas/genética , Solanum tuberosum/citologia , Fatores de Transcrição/genética , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA