Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 122(11): 2393-2401, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35951130

RESUMO

PURPOSE: This study aimed to investigate whether carbohydrate ingestion during 3 h long endurance exercise in highly trained cyclists at a rate of 120 g h-1 in 0.8:1 ratio between fructose and glucose-based carbohydrates would result in higher exogenous and lower endogenous carbohydrate oxidation rates as compared to ingestion of 90 g h-1 in 1:2 ratio, which is the currently recommended approach for exercise of this duration. METHODS: Eleven male participants (V̇O2peak 62.6 ± 7 mL kg-1 min-1, gas exchange threshold (GET) 270 ± 17 W and Respiratory compensation point 328 ± 32 W) completed the study involving 4 experimental visits consisting of 3 h cycling commencing after an overnight fast at an intensity equivalent to 95% GET. During the trials they received carbohydrates at an average rate of 120 or 90 g h-1 in 0.8:1 or 1:2 fructose-maltodextrin ratio, respectively. Carbohydrates were naturally high or low in 13C stable isotopes enabling subsequent calculations of exogenous and endogenous carbohydrate oxidation rates. RESULTS: Exogenous carbohydrate oxidation rates were higher in the 120 g h-1 condition (120-180 min: 1.51 ± 0.22 g min-1) as compared to the 90 g h-1 condition (1.29 ± 0.16 g min-1; p = 0.026). Endogenous carbohydrate oxidation rates did not differ between conditions (2.15 ± 0.30 and 2.20 ± 0.33 g min-1 for 120 and 90 g h-1 conditions, respectively; p = 0.786). CONCLUSIONS: The results suggest that carbohydrate ingestion at 120 g h-1 in 0.8:1 fructose-maltodextrin ratio as compared with 90 g h-1 in 1:2 ratio offers higher exogenous carbohydrate oxidation rates but no additional sparing of endogenous carbohydrates. Further studies should investigate potential performance effects of such carbohydrate ingestion strategies.


Assuntos
Frutose , Resistência Física , Glicemia , Carboidratos da Dieta/farmacologia , Frutose/farmacologia , Glucose/farmacologia , Humanos , Masculino , Oxirredução , Polissacarídeos
2.
Int J Sport Nutr Exerc Metab ; 32(6): 439-445, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36041732

RESUMO

It was previously demonstrated that postexercise ingestion of fructose-glucose mixtures can lead to superior liver and equal muscle glycogen synthesis as compared with glucose-based carbohydrates (CHOs) only. After an overnight fast, liver glycogen stores are reduced, and based on this we hypothesized that addition of fructose to a glucose-based breakfast would lead to improved subsequent endurance exercise capacity. In this double-blind cross-over randomized study (eight males, peak oxygen uptake: 62.2 ± 5.4 ml·kg-1·min-1), participants completed two experimental trials consisting of two exercise bouts. In the afternoon of Day 1, they completed a cycling interval training session to normalize glycogen stores after which a standardized high-CHO diet was provided for 4 hr. On Day 2, in the morning, participants received 2 g/kg of CHOs in the form of glucose and rice or fructose and rice, both in a CHO ratio of 1:2. Two hours later they commenced cycling exercise session at the intensity of the first ventilatory threshold until task failure. Exercise capacity was higher in fructose and rice (137.0 ± 22.7 min) as compared with glucose and rice (130.06 ± 19.87 min; p = .046). Blood glucose and blood lactate did not differ between the trials (p > .05) and neither did CHO and fat oxidation rates (p > .05). However, due to the duration of exercise, total CHO oxidation was higher in fructose and rice (326 ± 60 g vs. 298 ± 61 g, p = .009). Present data demonstrate that addition of fructose to a glucose-based CHO source at breakfast improves endurance exercise capacity. Further studies are required to determine the mechanisms and optimal dose and ratio.


Assuntos
Glicemia , Frutose , Masculino , Humanos , Glicogênio Hepático , Carboidratos da Dieta , Desjejum , Músculo Esquelético , Glicogênio , Glucose , Lactatos , Oxigênio , Resistência Física/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA