Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30504268

RESUMO

Although mitochondria play a multifunctional role in cancer progression and Ca2+ signaling is remodeled in a wide variety of tumors, the underlying mechanisms that link mitochondrial Ca2+ homeostasis with malignant tumor formation and growth remain elusive. Here, we show that phosphorylation at the N-terminal region of the mitochondrial calcium uniporter (MCU) regulatory subunit MICU1 leads to a notable increase in the basal mitochondrial Ca2+ levels. A pool of active Akt in the mitochondria is responsible for MICU1 phosphorylation, and mitochondrion-targeted Akt strongly regulates the mitochondrial Ca2+ content. The Akt-mediated phosphorylation impairs MICU1 processing and stability, culminating in reactive oxygen species (ROS) production and tumor progression. Thus, our data reveal the crucial role of the Akt-MICU1 axis in cancer and underscore the strategic importance of the association between aberrant mitochondrial Ca2+ levels and tumor development.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Células HEK293 , Células HeLa , Humanos , Camundongos , Mitocôndrias/metabolismo , Transplante de Neoplasias , Neoplasias/genética , Neoplasias/metabolismo , Fosforilação , Domínios Proteicos , Proteínas Proto-Oncogênicas c-akt/química , Ratos , Espécies Reativas de Oxigênio/metabolismo
2.
Haematologica ; 108(2): 472-482, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35924581

RESUMO

In hemophilia A, F8 nonsense variants, and particularly those affecting the large factor VIII (FVIII) B domain that is dispensable for coagulant activity, display lower association with replacement therapy-related anti-FVIII inhibitory antibodies as retrieved from multiple international databases. Since null genetic conditions favor inhibitor development, we hypothesized that translational readthrough over premature termination codons (PTC) may contribute to immune tolerance by producing full-length proteins through the insertion of amino acid subset(s). To quantitatively evaluate the readthrough output in vitro, we developed a very sensitive luciferase-based system to detect very low full-length FVIII synthesis from a wide panel (n=45; ~60% patients with PTC) of F8 nonsense variants. PTC not associated with inhibitors displayed higher readthrough-driven expression levels than inhibitor-associated PTC, a novel observation. Particularly, higher levels were detected for B-domain variants (n=20) than for variants in other domains (n=25). Studies on plasma from six hemophilia A patients with PTC, integrated by expression of the corresponding nonsense and readthrough-deriving missense variants, consistently revealed higher FVIII levels for B-domain variants. Only one B-domain PTC (Arg814*) was found among the highly represented PTC not sporadically associated with inhibitors, but with the lowest proportion of inhibitor cases (4 out of 57). These original insights into the molecular genetics of hemophilia A, and particularly into genotype-phenotype relationships related with disease treatment, demonstrate that B-domain features favor PTC readthrough output. This provides a potential molecular mechanism contributing to differential PTC-associated inhibitor occurrence, with translational implications for a novel, experimentally based classification of F8 nonsense variants.


Assuntos
Fator VIII , Hemofilia A , Humanos , Biossíntese de Proteínas , Códon sem Sentido , Mutação de Sentido Incorreto , Fator IX/genética
3.
Haemophilia ; 29(2): 479-487, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36533781

RESUMO

INTRODUCTION: Gene variation in receptors for circulating factor VIII (FVIII) is candidate to explain the large inter-patient variability of infused FVIII pharmacokinetics (PK) in haemophilia A (HA). AIM: To compare in an Italian HA cohort (n = 26) the influence on FVIII PK of genetic components in four von Willebrand factor (VWF)/FVIII receptors. METHODS: Genotypes of low-density lipoprotein receptor (LDLR), asialoglycoprotein receptor minor subunit (ASGR2), family 4 member M (CLEC4M), stabilin2 (STAB2) and ABO blood-group, and VWF:Ag levels were included as independent variables in linear regression analyses of two-compartment model (TCM) - standard half-life (SHL) FVIII PK parameters. RESULTS: In the initial FVIII distribution phase, the STAB2 rs4981022 AA, ASGR2 rs2289645 TT and LDLR rs688 TT genotypes may contribute to increase Cmax , and prolong or shorten AlphaHL. In the elimination phase, a shorter BetaHL was associated with the CLEC4M rs868875 GG (beta-coefficient .366, p = .025) and ASGR2 rs2289645 TC (beta-coefficient .456, p = .006) genotypes, which also showed shorter mean residence time (MRT) than TT genotypes (p = .021). The alpha and beta phase effects were independent of ABO and VWF:Ag levels at baseline. The association of the LDLR rs2228671 genotypes with clearance was independent of ABO (beta-coefficient -.363, p = .035) but not of other receptors or VWF:Ag, which may point out multiple and competing interactions. CONCLUSIONS: With the limitation of the small number of HA patients, these observations highlight multiple genetic components acting in distinct phases of FVIII PK and contributing to explain FVIII PK variability. This analysis provides candidates for genotype-based, individual tailoring of FVIII substitutive treatment.


Assuntos
Hemofilia A , Hemostáticos , Humanos , Fator VIII/genética , Fator VIII/farmacocinética , Fator de von Willebrand/genética , Hemofilia A/tratamento farmacológico , Hemofilia A/genética
4.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047160

RESUMO

Permeability transition pore (PTP) molecular composition and activity modulation have been a matter of research for several years, especially due to their importance in ischemia reperfusion injury (IRI). Notably, c subunit of ATP synthase (Csub) has been identified as one of the PTP-forming proteins and as a target for cardioprotection. Oligomycin A is a well-known Csub interactor that has been chemically modified in-depth for proposed new pharmacological approaches against cardiac reperfusion injury. Indeed, by taking advantage of its scaffold and through focused chemical improvements, innovative Csub-dependent PTP inhibitors (1,3,8-Triazaspiro[4.5]decane) have been synthetized in the past. Interestingly, four critical amino acids have been found to be involved in Oligomycin A-Csub binding in yeast. However, their position on the human sequence is unknown, as is their function in PTP inhibition. The aims of this study are to (i) identify for the first time the topologically equivalent residues in the human Csub sequence; (ii) provide their in vitro validation in Oligomycin A-mediated PTP inhibition and (iii) understand their relevance in the binding of 1,3,8-Triazaspiro[4.5]decane small molecules, as Oligomycin A derivatives, in order to provide insights into Csub interactions. Notably, in this study we demonstrated that 1,3,8-Triazaspiro[4.5]decane derivatives inhibit permeability transition pores through a FO-ATP synthase c subunit Glu119-independent mechanism that prevents Oligomycin A-related side effects.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , ATPases Mitocondriais Próton-Translocadoras , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Trifosfato de Adenosina/metabolismo , Permeabilidade
5.
Br J Haematol ; 194(2): 453-462, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34109608

RESUMO

The short half-life of coagulation factor IX (FIX) for haemophilia B (HB) therapy has been prolonged through fusion with human serum albumin (HSA), which drives the neonatal Fc receptor (FcRn)-mediated recycling of the chimera. However, patients would greatly benefit from further FIX-HSA half-life extension. In the present study, we designed a FIX-HSA variant through the engineering of both fusion partners. First, we developed a novel cleavable linker combining the two FIX activation sites, which resulted in improved HSA release. Second, insertion of the FIX R338L (Padua) substitution conferred hyperactive features (sevenfold higher specific activity) as for FIX Padua alone. Furthermore, we exploited an engineered HSA (QMP), which conferred enhanced human (h)FcRn binding [dissociation constant (KD ) 0·5 nM] over wild-type FIX-HSA (KD 164·4 nM). In hFcRn transgenic mice, Padua-QMP displayed a significantly prolonged half-life (2·7 days, P < 0·0001) versus FIX-HSA (1 day). Overall, we developed a novel FIX-HSA protein with improved activity and extended half-life. These combined properties may result in a prolonged functional profile above the therapeutic threshold, and thus in a potentially widened therapeutic window able to improve HB therapy. This rational engineering of both partners may pave the way for new fusion strategies for the design of engineered biotherapeutics.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Fator IX/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Albumina Sérica Humana/farmacologia , Animais , Fator IX/genética , Feminino , Meia-Vida , Hemofilia B/sangue , Hemofilia B/tratamento farmacológico , Humanos , Masculino , Camundongos Transgênicos , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/genética , Albumina Sérica Humana/genética
6.
RNA Biol ; 17(2): 254-263, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31613176

RESUMO

Nonsense mutations are relatively frequent in the rare X-linked lysosomal α-galactosidase A (α-Gal) deficiency (Fabry disease; FD), but have been poorly investigated. Here, we evaluated the responsiveness of a wide panel (n = 14) of GLA premature termination codons (PTCs) to the RNA-based approach of drug-induced readthrough through expression of recombinant α-Gal (rGal) nonsense and missense variants.We identified four high-responders to the readthrough-inducing aminoglycoside G418 in terms of full-length protein (C56X/W209X, ≥10% of wild-type rGal) and/or activity (Q119X/W209X/Q321X, ~5-7%), resulting in normal (Q119X/Q321X) or reduced (C56X, 0.27 ± 0.11; W209X, 0.35 ± 0.1) specific activity.To provide mechanistic insights we investigated the predicted amino acid substitutions mediated by readthrough (W209C/R, C56W/R), which resulted in correct lysosomal localization and appreciable protein/activity levels for the W209C/R variants. Differently, the C56W/R variants, albeit appreciably produced and localized into lysosomes, were inactive, thus indicating detrimental effects of substitutions at this position.Noticeably, when co-expressed with the functional W209C or W209R variants, the wild-type rGal displayed a reduced specific activity (0.5 ± 0.2 and 0.6 ± 0.2, respectively) that, considering the dimeric features of the α-Gal enzyme, suggested dominant-negative effects of missense variants through their interaction with the wild-type.Overall, we provide a novel mechanism through which amino acids inserted during readthrough might impact on the functional protein output. Our findings may also have implications for the interpretation of pathological phenotypes in heterozygous FD females, and for other human disorders involving dimeric or oligomeric proteins.


Assuntos
Códon sem Sentido , Doença de Fabry/genética , Genes Dominantes , Mutação de Sentido Incorreto , Biossíntese de Proteínas , alfa-Galactosidase/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Doença de Fabry/diagnóstico , Humanos , Fenótipo , Transporte Proteico , alfa-Galactosidase/metabolismo
7.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322589

RESUMO

The fidelity of protein synthesis, a process shaped by several mechanisms involving specialized ribosome regions and external factors, ensures the precise reading of sense and stop codons. However, premature termination codons (PTCs) arising from mutations may, at low frequency, be misrecognized and result in PTC suppression, named ribosome readthrough, with production of full-length proteins through the insertion of a subset of amino acids. Since some drugs have been identified as readthrough inducers, this fidelity drawback has been explored as a therapeutic approach in several models of human diseases caused by nonsense mutations. Here, we focus on the mechanisms driving translation in normal and aberrant conditions, the potential fates of mRNA in the presence of a PTC, as well as on the results obtained in the research of efficient readthrough-inducing compounds. In particular, we describe the molecular determinants shaping the outcome of readthrough, namely the nucleotide and protein context, with the latter being pivotal to produce functional full-length proteins. Through the interpretation of experimental and mechanistic findings, mainly obtained in lysosomal and coagulation disorders, we also propose a scenario of potential readthrough-favorable features to achieve relevant rescue profiles, representing the main issue for the potential translatability of readthrough as a therapeutic strategy.


Assuntos
Códon sem Sentido/genética , Códon de Terminação/genética , Animais , Humanos , Mutação/genética , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo
8.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228018

RESUMO

OTC splicing mutations are generally associated with the severest and early disease onset of ornithine transcarbamylase deficiency (OTCD), the most common urea cycle disorder. Noticeably, splicing defects can be rescued by spliceosomal U1snRNA variants, which showed their efficacy in cellular and animal models. Here, we challenged an U1snRNA variant in the OTCD mouse model (spf/ash) carrying the mutation c.386G > A (p.R129H), also reported in OTCD patients. It is known that the R129H change does not impair protein function but affects pre-mRNA splicing since it is located within the 5' splice site. Through in vitro studies, we identified an Exon Specific U1snRNA (ExSpeU1O3) that targets an intronic region downstream of the defective exon 4 and rescues exon inclusion. The adeno-associated virus (AAV8)-mediated delivery of the ExSpeU1O3 to mouse hepatocytes, although in the presence of a modest transduction efficiency, led to increased levels of correct OTC transcripts (from 6.1 ± 1.4% to 17.2 ± 4.5%, p = 0.0033). Consistently, this resulted in increased liver expression of OTC protein, as demonstrated by Western blotting (~3 fold increase) and immunostaining. Altogether data provide the early proof-of-principle of the efficacy of ExSpeU1 in the spf/ash mouse model and encourage further studies to assess the potential of RNA therapeutics for OTCD caused by aberrant splicing.


Assuntos
Dependovirus/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/terapia , Ornitina Carbamoiltransferase/genética , Splicing de RNA , RNA Nuclear Pequeno/genética , Animais , Sequência de Bases , Dependovirus/metabolismo , Modelos Animais de Doenças , Éxons , Terapia Genética/métodos , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Íntrons , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Ornitina Carbamoiltransferase/metabolismo , Doença da Deficiência de Ornitina Carbomoiltransferase/enzimologia , Doença da Deficiência de Ornitina Carbomoiltransferase/patologia , Sítios de Splice de RNA , RNA Nuclear Pequeno/metabolismo
9.
Hum Mutat ; 40(1): 48-52, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30408273

RESUMO

The ability of variants of the spliceosomal U1snRNA to rescue splicing has been proven in several human disease models, but not for nucleotide changes at the conserved GT nucleotide of 5' splice sites (5'ss), frequent and associated with severe phenotypes. Here, we focused on variants at the 5'ss of F9 intron 3, leading to factor IX (FIX) deficiency (hemophilia B). Through minigene expression, we demonstrated that all changes induce complete exon 3 skipping, which explains the associated hemophilia B phenotype. Interestingly, engineered U1snRNAs remarkably increased the proportion of correct transcripts in the presence of the c.277+4A>G (∼60%) and also c.277+2T>C mutation (∼20%). Expression of splicing-competent cDNA constructs indicated that the splicing rescue produces an appreciable increase of secreted FIX protein levels. These data provide the first experimental evidence that even part of variants at the conserved 5'ss +2T nucleotide can be rescued, thus expanding the applicability of this U1snRNA-based approach.


Assuntos
Sequência Conservada/genética , Doença/genética , Engenharia Genética , Sítios de Splice de RNA/genética , RNA Nuclear Pequeno/genética , Sequência de Bases , Éxons/genética , Humanos , Íntrons/genética , Mutação/genética , Nucleotídeos/genética , Splicing de RNA
10.
Blood ; 129(16): 2303-2307, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28196793

RESUMO

Drug-induced readthrough over premature stop codons (PTCs) is a potentially attractive therapy for genetic disorders, but a wide outcome variability has been observed. Through expression studies, we investigated the responsiveness to the readthrough-inducing drug geneticin of 11 rationally selected factor IX (FIX) nonsense mutations, present in 70% (324/469) of hemophilia B (HB) patients with PTCs. Among the predicted readthrough-permissive TGA variants, only 2 (p.W240X and p.R384X) responded with a remarkable rescue of FIX activity. The amounts of rescued full-length FIX protein for the p.W240X (∼9% of recombinant FIX [rFIX]-wild-type [WT]) slightly exceeded activity (5.2 ± 0.6%). FIX antigen for the p.R384X (1.9 ± 0.3%) was remarkably lower than activity (7.5 ± 0.7%). Data indicate novel specific mechanisms producing functional rescue: (1) prevalent reinsertion of the authentic residue (tryptophan), reverting the nonsense effects for the p.W240X, and (2) gain-of-function for the p.R384X, supported by the fourfold increased activity of the most probable readthrough-mediated missense variant (rFIX-R384W). For most PTCs, impaired secretion/function produced by readthrough-mediated amino acid substitutions prevented a significant functional rescue, which requires combinations of favorable FIX messenger RNA (mRNA) sequence and protein features. This rational approach, applicable to other coagulation disorders, helps with interpreting the poor response reported in the few investigated HB patients, and identifies candidate patients eligible for treatment.


Assuntos
Códon sem Sentido , Fator IX/genética , Gentamicinas/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Substituição de Aminoácidos , Arginina/genética , Arginina/metabolismo , Fator IX/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Hemofilia B/genética , Hemofilia B/metabolismo , Hemofilia B/patologia , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Triptofano/genética , Triptofano/metabolismo
11.
Haemophilia ; 25(4): 685-692, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30994257

RESUMO

INTRODUCTION: Inherited deficiencies in the coagulation pathway provide diversified models to investigate the molecular bases of perinatal lethality associated with null-like variants. Differently from X-linked haemophilias, homozygous/doubly heterozygous null variants in the rare autosomally inherited deficiency of factor X (FX) might be incompatible with perinatal survival. AIM: To provide experimental evidence about the null/close-to-null FX function. METHODS: The residual secreted (ELISA) and functional (thrombin generation assays) protein levels associated with the novel nonsense (c.1382G>A; p.Trp461Ter) and missense (c.752T>C; p.Leu251Pro) variants, found in the proposita with life-threatening symptoms at birth, were characterized through recombinant (r)FX expression. RESULTS: The rFX-461Ter showed very low secretion and undetectable function. Expression and function of the predicted readthrough-deriving missense variants (rFX-461Tyr, rFX-461Gln) were also severely impaired. These unfavourable features, due to nucleotide and protein sequence constraints, precluded functional readthrough over the 461 stop codon. Differently, the poorly secreted rFX-251Pro variant displayed residual function that was characterized by anti-TFPI aptamer-based amplification or selective inhibition of activated FX function by fondaparinux in plasma and found to be reduced by approximately three orders of magnitude. Similarly to the rFX-251Pro, a group of catalytic domain missense variants cause poorly secreted molecules with modest function in FX-deficient patients with life-threatening symptoms. CONCLUSIONS: Our data, contributing to the knowledge of the very severe FX deficiency forms, support life-saving requirement of trace FX function, clearly exemplified by the dysfunctional but not completely inactive rFX-251Pro variant that, albeit with severely reduced function, is compatible with a residual activity ensuring minimal haemostasis and permitting perinatal survival.


Assuntos
Domínio Catalítico/genética , Fator X/genética , Fator X/metabolismo , Hemorragias Intracranianas/genética , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Fator X/química , Regulação da Expressão Gênica , Células HEK293 , Humanos , Recém-Nascido , Hemorragias Intracranianas/metabolismo , Hemorragias Intracranianas/prevenção & controle , Fenótipo
12.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234407

RESUMO

Molecular strategies tailored to promote/correct the expression and/or processing of defective coagulation factors would represent innovative therapeutic approaches beyond standard substitutive therapy. Here, we focus on the molecular mechanisms and determinants underlying innovative approaches acting at DNA, mRNA and protein levels in inherited coagulation factor deficiencies, and in particular on: (i) gene editing approaches, which have permitted intervention at the DNA level through the specific recognition, cleavage, repair/correction or activation of target sequences, even in mutated gene contexts; (ii) the rescue of altered pre-mRNA processing through the engineering of key spliceosome components able to promote correct exon recognition and, in turn, the synthesis and secretion of functional factors, as well as the effects on the splicing of missense changes affecting exonic splicing elements; this section includes antisense oligonucleotide- or siRNA-mediated approaches to down-regulate target genes; (iii) the rescue of protein synthesis/function through the induction of ribosome readthrough targeting nonsense variants or the correction of folding defects caused by amino acid substitutions. Overall, these approaches have shown the ability to rescue the expression and/or function of potentially therapeutic levels of coagulation factors in different disease models, thus supporting further studies in the future aimed at evaluating the clinical translatability of these new strategies.


Assuntos
Transtornos de Proteínas de Coagulação/genética , Transtornos de Proteínas de Coagulação/terapia , Terapia Genética/métodos , Animais , Fatores de Coagulação Sanguínea/genética , Sistemas CRISPR-Cas , DNA/genética , Edição de Genes/métodos , Humanos , RNA Mensageiro/genética
13.
Hum Mutat ; 39(5): 702-708, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29388273

RESUMO

Pre-peptide regions of secreted proteins display wide sequence variability, even among highly homologous proteins such as coagulation factors, and are intracellularly removed, thus potentially favoring secretion of wild-type proteins upon suppression of nonsense mutations (translational readthrough). As models we selected F9 nonsense mutations with readthrough-favorable features affecting the pre-peptide and pro-peptide regions of coagulation factor IX (FIX), which cause hemophilia B (HB). Only the p.Gly21Ter (c.61G > T) in the variable pre-peptide hydrophobic core significantly responded (secretion, 4.1 ± 0.5% of wild-type; coagulant activity, 4.0 ± 0.3%) to the readthrough-inducer geneticin. Strikingly, for the p.Gly21Ter mutation, the resulting specific coagulant activity (0.96 ± 0.11) was compatible with normal function, thus suggesting secretion of FIX with wild-type features upon readthrough and removal of pre-peptide. Expression of the predicted readthrough-deriving missense variants (Gly21Trp/Cys/Arg) revealed a preserved specific activity (ranging from 0.84 to 0.98), thus supporting our observation. Conversely, rescue of the p.Cys28Ter (c.84T > A) and p.Lys45Ter (c.133A > T) was prevented by constraints of adjacent cleavage sites, a finding consistent with the association of most missense mutations affecting these regions with severe or moderate HB. Overall, our data indicate that suppression of nonsense mutations in the pre-peptide core preserves mature protein features, thus making this class of mutations preferred candidates for therapeutic readthrough.


Assuntos
Fator IX/genética , Hemofilia B/genética , Mutação de Sentido Incorreto/genética , Peptídeos/genética , Substituição de Aminoácidos/genética , Sequência de Bases , Células HEK293 , Humanos
14.
Haematologica ; 103(2): 344-350, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29170251

RESUMO

Dissection of pleiotropic effects of missense mutations, rarely investigated in inherited diseases, is fundamental to understanding genotype-phenotype relationships. Missense mutations might impair mRNA processing in addition to protein properties. As a model for hemophilia A, we investigated the highly prevalent F8 c.6046c>t/p.R2016W (exon 19) mutation. In expression studies exploiting lentiviral vectors, we demonstrated that the amino acid change impairs both Factor VIII (FVIII) secretion (antigen 11.0±0.4% of wild-type) and activity (6.0±2.9%). Investigations in patients' ectopic F8 mRNA and with minigenes showed that the corresponding nucleotide change also decreases correct splicing to 70±5%, which is predicted to lower further FVIII activity (4.2±2%), consistently with patients' levels (<1-5%). Masking the mutated exon 19 region by antisense U7snRNA supported the presence of a splicing regulatory element, potentially affected by several missense mutations causing hemophilia A. Among these, the c.6037g>a (p.G2013R) reduced exon inclusion to 41±3% and the c.6053a>g (p.E2018G) to 28±2%, similarly to a variant affecting the 5' splice site (c.6113a>g, p.N2038S, 26±2%), which displayed normal protein features upon recombinant expression. The p.G2013R reduced both antigen (7.0±0.9%) and activity (8.4±0.8%), while the p.E2018G produced a dysfunctional molecule (antigen: 69.0±18.1%; activity: 19.4±2.3%). In conclusion, differentially altered mRNA and protein patterns produce a gradient of residual activity, and clarify genotype-phenotype relationships. Data detail pathogenic mechanisms that, only in combination, account for moderate/severe disease forms, which in turn determine the mutation profile. Taken together we provide a clear example of interplay between mRNA and protein mechanisms of disease that operate in shaping many other inherited disorders.


Assuntos
Fator VIII/genética , Hemofilia A/genética , Mutação de Sentido Incorreto , Análise por Conglomerados , Fator VIII/metabolismo , Estudos de Associação Genética , Células HEK293 , Hemofilia A/etiologia , Células Hep G2 , Humanos , Fenótipo , Biossíntese de Proteínas , Splicing de RNA , RNA Mensageiro/genética
15.
Biochim Biophys Acta ; 1822(7): 1109-13, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22426302

RESUMO

Changes at the invariable donor splice site +1 guanine, relatively frequent in human genetic disease, are predicted to abrogate correct splicing, and thus are classified as null mutations. However, their ability to direct residual expression, which might have pathophysiological implications in several diseases, has been poorly investigated. As a model to address this issue, we studied the IVS6+1G>T mutation found in patients with severe deficiency of the protease triggering coagulation, factor VII (FVII), whose absence is considered lethal. In expression studies, the IVS6+1G>T induced exon 6 skipping and frame-shift, and prevented synthesis of correct FVII transcripts detectable by radioactive/fluorescent labelling or real-time RT-PCR. Intriguingly, the mutation induced the activation of a cryptic donor splice site in exon 6 and production of an in-frame 30bp deleted transcript (8 ± 2%). Expression of this cDNA variant, lacking 10 residues in the activation domain, resulted in secretion of trace amounts (0.2 ± 0.04%) of protein with appreciable specific activity (48 ± 16% of wt-FVII). Altogether these data indicate that the IVS6+1G>T mutation is compatible with the synthesis of functional FVII molecules (~0.01% of normal, 1pM), which could trigger coagulation. The low but detectable thrombin generation (352 ± 55nM) measured in plasma from an IVS6+1G>T homozygote was consistent with a minimal initiation of the enzymatic cascade. In conclusion, we provide experimental clues for traces of FVII expression, which might have reverted an otherwise perinatally lethal genetic condition.


Assuntos
Processamento Alternativo/genética , Deficiência do Fator VII/genética , Fator VII/genética , Mutação Puntual/genética , Sítios de Splice de RNA/genética , Coagulação Sanguínea/genética , Criança , DNA Complementar/genética , DNA Complementar/metabolismo , Éxons/genética , Fator VII/análise , Feminino , Mutação da Fase de Leitura/genética , Genes Letais , Homozigoto , Humanos , Masculino , Splicing de RNA/genética , Trombina/análise , Trombina/genética , Adulto Jovem
16.
Haematologica ; 97(5): 705-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22180436

RESUMO

We report 2 asymptomatic homozygotes for the nonsense p.R462X mutation affecting the carboxy-terminus of coagulation factor VII (FVII, 466 aminoacids). FVII levels of 3-5% and 2.7 ± 0.4% were found in prothrombin time-based and activated factor X (FXa) generation assays with human thromboplastins. Noticeably, FVII antigen levels were barely detectable (0.7 ± 0.2%) which suggested a gain-of-function effect. This effect was more pronounced with bovine thromboplastin (4.8 ± 0.9%) and disappeared with rabbit thromboplastin (0.7 ± 0.2%). This suggests that the mutation influences tissue factor/FVII interactions. Whereas the recombinant rFVII-462X variant confirmed an increase in specific activity (~400%), a panel of nonsense (p.P466X, p.F465X, p.P464X, p.A463X) and missense (p.R462A, p.R462Q, p.R462W) mutations of the FVII carboxy-terminus resulted in reduced secretion but normal specific activity. These data provide evidence for counteracting pleiotropic effects of the p.R462X mutation, which explains the asymptomatic FVII deficiency, and contributes to our understanding of the role of the highly variable carboxy-terminus of coagulation serine proteases.


Assuntos
Coagulação Sanguínea/genética , Códon sem Sentido/genética , Deficiência do Fator VII/genética , Deficiência do Fator VII/metabolismo , Fator VII/genética , Fator VII/metabolismo , Animais , Bovinos , Criança , Ensaio de Imunoadsorção Enzimática , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Tempo de Protrombina , Coelhos , Tromboplastina/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-36088072

RESUMO

Fidelity of protein synthesis, a process shaped by several mechanisms involving specialized ribosome regions and external factors, ensures the precise reading of sense as well as stop codons (UGA, UAG, UAA), which are usually localized at the 3' of mRNA and drive the release of the polypeptide chain. However, either natural (NTCs) or premature (PTCs) termination codons, the latter arising from nucleotide changes, can undergo a recoding process named ribosome or translational readthrough, which insert specific amino acids (NTCs) or subset(s) depending on the stop codon type (PTCs). This process is particularly relevant for nonsense mutations, a relatively frequent cause of genetic disorders, which impair gene expression at different levels by potentially leading to mRNA degradation and/or synthesis of truncated proteins. As a matter of fact, many efforts have been made to develop efficient and safe readthrough-inducing compounds, which have been challenged in several models of human disease to provide with a therapy. In this view, the dissection of the molecular determinants shaping the outcome of readthrough, namely nucleotide and protein contexts as well as their interplay and impact on protein structure/function, is crucial to identify responsive nonsense mutations resulting in functional full-length proteins. The interpretation of experimental and mechanistic findings is also important to define a possibly clear picture of potential readthrough-favorable features useful to achieve rescue profiles compatible with therapeutic thresholds typical of each targeted disorder, which is of primary importance for the potential translatability of readthrough into a personalized and mutation-specific, and thus patient-oriented, therapeutic strategy.


Assuntos
Códon sem Sentido , Biossíntese de Proteínas , Códon sem Sentido/genética , Códon sem Sentido/metabolismo , Códon de Terminação/genética , Códon de Terminação/metabolismo , Humanos , Nucleotídeos/metabolismo , Proteínas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
18.
Thromb Haemost ; 122(5): 715-725, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34407556

RESUMO

BACKGROUND: The asialoglycoprotein receptor (ASGPR) binds with high affinity factor VIII (FVIII) through its N-linked oligosaccharides. However, its contribution to the wide inter-individual variation of infused FVIII pharmacokinetics (PK) in hemophilia A (HA) is unknown. OBJECTIVE: To investigate the variability in FVIII PK outcomes in relation to genetic variation in the ASGR2, encoding the ASGPR2 subunit. METHODS: Thirty-two HA patients with FVIII:C ≤2 IU/dL underwent 66 single-dose FVIII PK studies. PK parameters were evaluated in relation to ASGR2 5' untranslated region (5'UTR) polymorphisms, which were investigated by recombinant and white blood cell reverse transcription-polymerase chain reaction approaches. RESULTS: The 5'UTR polymorphisms determine a frequent and conserved haplotype (HT1) in a regulatory region. The HT1 homozygotes may differ in the amounts of alternatively spliced mRNA transcripts and thus ASGPR2 isoforms. Compared with the other ASGR2 genotypes, the c.-95TT homozygotes (n = 9), showed threefold longer Alpha HL (3.60 hours, 95% confidence interval: 1.44-5.76, p = 0.006), and the c.-95TC heterozygotes (n = 17) showed 25% shorter mean residence time (MRT; 18.5 hours, 15.0-22.0, p = 0.038) and 32% shorter Beta HL (13.5 hours, 10.9-16.0, p = 0.016). These differences were confirmed in patients (n = 27) undergoing PK studies (n = 54) with full-length FVIII only. In different linear regression models, the contribution of the ASGR2 genotypes remained significant after adjustment by ABO genotypes and von Willebrand factor (VWF) antigen levels, and explained 14% (MRT), 15 to 18% (Beta HL), and 22% (Alpha HL) of parameter variability. CONCLUSION: Infused FVIII distribution was modulated by frequent ASGR2 genotypes, independently from and together with ABO and VWF antigen levels, which has potential implications for genetically tailored substitutive treatment in HA.


Assuntos
Receptor de Asialoglicoproteína , Fator VIII , Hemofilia A , Hemostáticos , Regiões 5' não Traduzidas , Receptor de Asialoglicoproteína/genética , Fator VIII/farmacocinética , Hemofilia A/tratamento farmacológico , Hemofilia A/genética , Hemostáticos/farmacocinética , Humanos , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
19.
J Thromb Haemost ; 20(8): 1818-1829, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35596664

RESUMO

BACKGROUND: The index case is a 21-year-old Italian woman with a mild hemorrhagic syndrome and von Willebrand factor antigen (VWF:Ag) = 34.3 U/dl, VWF recombinant glycoprotein Ib (VWF:GpIbR) = 32.8 U/dl, and factor VIII (FVIII) = 55.3 IU/dl. AIMS: The aim of this study is to characterize from a genetic and biochemical standpoint this low VWF phenotype. METHODS: Coagulation and biochemical methods were used to study the structural and functional pattern of VWF multimers in the index case's plasma. Recombinant wild-type and p.P1127S VWF variants were produced using human embryonic kidney (HEK)-293 cells. In addition, genetic screening was carried out to detect single nucleotide variants of some scavenger VWF/FVIII receptor genes such as CLEC4M, STAB2, and ASGR2. RESULTS: Genetic investigation revealed that the index case inherited from her mother the heterozygous missense mutation c.3379C > T (VWF exon 25), causing the p.P1127S substitution in the VWF D'D3 domain. The index case was also homozygous for the scavenger receptor ASGR2 c.-95 CC-genotype. Desmopressin normalized the VWF level of the patient, although its clearance was faster (t1/2  = 6.7 h) than in normal subjects (t1/2  = 12 ± 0.7 h). FVIII-VWF interaction, A Disintegrin And Metalloprotease with ThromboSpondin type 1 motif-13 levels, ristocetin-induced-platelet-aggregation, and VWF multimeric pattern were normal. The p.P1127S variant was normally synthesized and secreted by HEK-293 cells, and molecular modeling predicts a conformational change showing higher affinity for the macrophagic scavenger receptor lipoprotein receptor-related protein 1 (LRP1), as also experimentally verified. CONCLUSIONS: The p.P1127S variant may cause a low VWF phenotype, stemming from an increased VWF affinity for the scavenger receptor LRP1 and, consequently, an accelerated clearance of VWF.


Assuntos
Doenças de von Willebrand , Fator de von Willebrand , Fator VIII/genética , Feminino , Células HEK293 , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Fenótipo , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Adulto Jovem , Fator de von Willebrand/metabolismo
20.
J Thromb Haemost ; 20(1): 69-81, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626083

RESUMO

BACKGROUND: Circulating dysfunctional factor IX (FIX) might modulate distribution of infused FIX in hemophilia B (HB) patients. Recurrent substitutions at FIX activation sites (R191-R226, >300 patients) are associated with variable FIX activity and antigen (FIXag) levels. OBJECTIVES: To investigate the (1) expression of a complete panel of missense mutations at FIX activation sites and (2) contribution of F9 genotypes on the FIX pharmacokinetics (PK). METHODS: We checked FIX activity and antigen and activity assays in plasma and after recombinant expression of FIX variants and performed an analysis of infused FIX PK parameters in patients (n = 30), mostly enrolled in the F9 Genotype and PK HB Italian Study (GePKHIS; EudraCT ID2017-003902-42). RESULTS: The variable FIXag amounts and good relation between biosynthesis and activity of multiple R191 variants results in graded moderate-to-mild severity of the R191C>L>P>H substitutions. Recombinant expression may predict the absence in the HB mutation database of the benign R191Q/W/K and R226K substitutions. Equivalent changes at R191/R226 produced higher FIXag levels for R226Q/W/P substitutions, as also observed in p.R226W female carrier plasma. Pharmacokinetics analysis in patients suggested that infused FIX Alpha distribution and Beta elimination phases positively correlated with endogenous FIXag levels. Mean residence time was particularly prolonged (79.4 h, 95% confidence interval 44.3-114.5) in patients (n = 7) with the R191/R226 substitutions, which in regression analysis were independent predictors (ß coefficient 0.699, P = .004) of Beta half-life, potentially prolonged by the increasing over time ratio between endogenous and infused FIX. CONCLUSIONS: FIX activity and antigen levels and specific features of the dysfunctional R191/R226 variants may exert pleiotropic effects both on HB patients' phenotypes and substitutive treatment.


Assuntos
Fator IX , Hemofilia B , Testes de Coagulação Sanguínea , Fator IX/metabolismo , Feminino , Hemofilia B/diagnóstico , Hemofilia B/tratamento farmacológico , Hemofilia B/genética , Humanos , Mutação de Sentido Incorreto , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA