Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 608(7923): 499-503, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35978130

RESUMO

Moiré superlattices in atomically thin van der Waals heterostructures hold great promise for extended control of electronic and valleytronic lifetimes1-7, the confinement of excitons in artificial moiré lattices8-13 and the formation of exotic quantum phases14-18. Such moiré-induced emergent phenomena are particularly strong for interlayer excitons, where the hole and the electron are localized in different layers of the heterostructure19,20. To exploit the full potential of correlated moiré and exciton physics, a thorough understanding of the ultrafast interlayer exciton formation process and the real-space wavefunction confinement is indispensable. Here we show that femtosecond photoemission momentum microscopy provides quantitative access to these key properties of the moiré interlayer excitons. First, we elucidate that interlayer excitons are dominantly formed through femtosecond exciton-phonon scattering and subsequent charge transfer at the interlayer-hybridized Σ valleys. Second, we show that interlayer excitons exhibit a momentum fingerprint that is a direct hallmark of the superlattice moiré modification. Third, we reconstruct the wavefunction distribution of the electronic part of the exciton and compare the size with the real-space moiré superlattice. Our work provides direct access to interlayer exciton formation dynamics in space and time and reveals opportunities to study correlated moiré and exciton physics for the future realization of exotic quantum phases of matter.

2.
Nano Lett ; 24(15): 4505-4511, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578047

RESUMO

Twisted van der Waals heterostructures show intriguing interface exciton physics, including hybridization effects and emergence of moiré potentials. Recent experiments have revealed that moiré-trapped excitons exhibit remarkable dynamics, where excited states show lifetimes that are several orders of magnitude longer than in monolayers. The origin of this behavior is still under debate. Based on a microscopic many-particle approach, we investigate the phonon-driven relaxation cascade of nonequilibrium moiré excitons in the exemplary MoSe2-WSe2 heterostructure. We track exciton relaxation pathways across different moiré mini-bands and identify the phonon-scattering channels assisting the spatial redistribution of excitons into low-energy pockets of the moiré potential. We unravel a phonon bottleneck in the flat band structure at low twist angles preventing excitons from fully thermalizing into the lowest state, explaining the measured enhanced emission intensity and lifetime of excited moiré excitons. Overall, our work provides important insights into exciton relaxation dynamics in flat-band exciton materials.

3.
Phys Rev Lett ; 132(3): 036903, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307073

RESUMO

The optical response of doped monolayer semiconductors is governed by trions, i.e. photoexcited electron-hole pairs bound to doping charges. While their photoluminescence (PL) signatures have been identified in experiments, a microscopic model consistently capturing bright and dark trion peaks is still lacking. In this work, we derive a generalized trion PL formula on a quantum-mechanical footing, considering direct and phonon-assisted recombination mechanisms. We show the trion energy landscape in WSe_{2} by solving the trion Schrödinger equation. We reveal that the mass imbalance between equal charges results in less stable trions exhibiting a small binding energy and, interestingly, a large energetic offset from exciton peaks in PL spectra. Furthermore, we compute the temperature-dependent PL spectra for n- and p-doped monolayers and predict yet unobserved signatures originating from trions with an electron at the Λ point. Our work presents an important step toward a microscopic understanding of the internal structure of trions determining their stability and optical fingerprint.

4.
Nano Lett ; 23(10): 4627-4633, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37184441

RESUMO

In superlattices of twisted semiconductor monolayers, tunable moiré potentials emerge, trapping excitons into periodic arrays. In particular, spatially separated interlayer excitons are subject to a deep potential landscape and they exhibit a permanent dipole providing a unique opportunity to study interacting bosonic lattices. Recent experiments have demonstrated density-dependent transport properties of moiré excitons, which could play a key role for technological applications. However, the intriguing interplay between exciton-exciton interactions and moiré trapping has not been well understood yet. In this work, we develop a microscopic theory of interacting excitons in external potentials allowing us to tackle this highly challenging problem. We find that interactions between moiré excitons lead to a delocalization at intermediate densities, and we show how this transition can be tuned via twist angle and temperature. The delocalization is accompanied by a modification of optical moiré resonances, which gradually merge into a single free exciton peak.

5.
Nano Lett ; 23(10): 4399-4405, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37154560

RESUMO

Transition metal dichalcogenide heterostructures provide a versatile platform to explore electronic and excitonic phases. As the excitation density exceeds the critical Mott density, interlayer excitons are ionized into an electron-hole plasma phase. The transport of the highly non-equilibrium plasma is relevant for high-power optoelectronic devices but has not been carefully investigated previously. Here, we employ spatially resolved pump-probe microscopy to investigate the spatial-temporal dynamics of interlayer excitons and hot-plasma phase in a MoSe2/WSe2 twisted bilayer. At the excitation density of ∼1014 cm-2, well exceeding the Mott density, we find a surprisingly rapid initial expansion of hot plasma to a few microns away from the excitation source within ∼0.2 ps. Microscopic theory reveals that this rapid expansion is mainly driven by Fermi pressure and Coulomb repulsion, while the hot carrier effect has only a minor effect in the plasma phase.

6.
Nano Lett ; 22(3): 1311-1315, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35048702

RESUMO

The strong Coulomb interaction in monolayer semiconductors represents a unique opportunity for the realization of Wigner crystals without external magnetic fields. In this work, we predict that the formation of monolayer Wigner crystals can be detected by their terahertz response spectrum, which exhibits a characteristic sequence of internal optical transitions. We apply the density matrix formalism to derive the internal quantum structure and the optical conductivity of the Wigner crystal and to microscopically analyze the multipeak shape of the obtained terahertz spectrum. Moreover, we predict a characteristic shift of the peak position as a function of charge density for different atomically thin materials and show how our results can be generalized to an arbitrary two-dimensional system.

7.
Nano Lett ; 22(6): 2561-2568, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35157466

RESUMO

The density-driven transition of an exciton gas into an electron-hole plasma remains a compelling question in condensed matter physics. In two-dimensional transition metal dichalcogenides, strongly bound excitons can undergo this phase change after transient injection of electron-hole pairs. Unfortunately, unavoidable nanoscale inhomogeneity in these materials has impeded quantitative investigation into this elusive transition. Here, we demonstrate how ultrafast polarization nanoscopy can capture the Mott transition through the density-dependent recombination dynamics of electron-hole pairs within a WSe2 homobilayer. For increasing carrier density, an initial monomolecular recombination of optically dark excitons transitions continuously into a bimolecular recombination of an unbound electron-hole plasma above 7 × 1012 cm-2. We resolve how the Mott transition modulates over nanometer length scales, directly evidencing the strong inhomogeneity in stacked monolayers. Our results demonstrate how ultrafast polarization nanoscopy could unveil the interplay of strong electronic correlations and interlayer coupling within a diverse range of stacked and twisted two-dimensional materials.


Assuntos
Elementos de Transição , Eletrônica , Elétrons
8.
Nano Lett ; 21(13): 5867-5873, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34165994

RESUMO

The dynamics of momentum-dark exciton formation in transition metal dichalcogenides is difficult to measure experimentally, as many momentum-indirect exciton states are not accessible to optical interband spectroscopy. Here, we combine a tunable pump, high-harmonic probe laser source with a 3D momentum imaging technique to map photoemitted electrons from monolayer WS2. This provides momentum-, energy- and time-resolved access to excited states on an ultrafast time scale. The high temporal resolution of the setup allows us to trace the early-stage exciton dynamics on its intrinsic time scale and observe the formation of a momentum-forbidden dark KΣ exciton a few tens of femtoseconds after optical excitation. By tuning the excitation energy, we manipulate the temporal evolution of the coherent excitonic polarization and observe its influence on the dark exciton formation. The experimental results are in excellent agreement with a fully microscopic theory, resolving the temporal and spectral dynamics of bright and dark excitons in WS2.

9.
Phys Rev Lett ; 127(7): 076801, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34459627

RESUMO

We experimentally demonstrate time-resolved exciton propagation in a monolayer semiconductor at cryogenic temperatures. Monitoring phonon-assisted recombination of dark states, we find a highly unusual case of exciton diffusion. While at 5 K the diffusivity is intrinsically limited by acoustic phonon scattering, we observe a pronounced decrease of the diffusion coefficient with increasing temperature, far below the activation threshold of higher-energy phonon modes. This behavior corresponds neither to well-known regimes of semiclassical free-particle transport nor to the thermally activated hopping in systems with strong localization. Its origin is discussed in the framework of both microscopic numerical and semiphenomenological analytical models illustrating the observed characteristics of nonclassical propagation. Challenging the established description of mobile excitons in monolayer semiconductors, these results open up avenues to study quantum transport phenomena for excitonic quasiparticles in atomically thin van der Waals materials and their heterostructures.

10.
Nano Lett ; 20(12): 8534-8540, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-32970445

RESUMO

Stacking monolayers of transition metal dichalcogenides into a heterostructure with a finite twist-angle gives rise to artificial moiré superlattices with a tunable periodicity. As a consequence, excitons experience a periodic potential, which can be exploited to tailor optoelectronic properties of these materials. Whereas recent experimental studies have confirmed twist-angle-dependent optical spectra, the microscopic origin of moiré exciton resonances has not been fully clarified yet. Here, we combine first-principles calculations with the excitonic density matrix formalism to study transitions between different moiré exciton phases and their impact on optical properties of the twisted MoSe2/WSe2 heterostructure. At angles smaller than 2°, we find flat, moiré-trapped states for inter- and intralayer excitons. This moiré exciton phase changes into completely delocalized states at 3°. We predict a linear and quadratic twist-angle dependence of excitonic resonances for the moiré-trapped and delocalized exciton phases, respectively.

11.
Nano Lett ; 20(4): 2849-2856, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32084315

RESUMO

The photoluminescence (PL) spectrum of transition-metal dichalcogenides (TMDs) shows a multitude of emission peaks below the bright exciton line, and not all of them have been explained yet. Here, we study the emission traces of phonon-assisted recombinations of indirect excitons. To this end, we develop a microscopic theory describing simultaneous exciton, phonon, and photon interaction and including consistent many-particle dephasing. We explain the drastically different PL below the bright exciton in tungsten- and molybdenum-based materials as the result of different configurations of bright and momentum-dark states. In good agreement with experiments, our calculations predict that WSe2 exhibits clearly visible low-temperature PL signals stemming from the phonon-assisted recombination of momentum-dark K-K' excitons.

12.
Nano Lett ; 19(10): 7317-7323, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31532993

RESUMO

The interplay of optics, dynamics, and transport is crucial for the design of novel optoelectronic devices, such as photodetectors and solar cells. In this context, transition-metal dichalcogenides (TMDs) have received much attention. Here, strongly bound excitons dominate optical excitation, carrier dynamics, and diffusion processes. While the first two have been intensively studied, there is a lack of fundamental understanding of nonequilibrium phenomena associated with exciton transport that is of central importance (e.g., for high-efficiency light harvesting). In this work, we provide microscopic insights into the interplay of exciton propagation and many-particle interactions in TMDs. On the basis of a fully quantum mechanical approach and in excellent agreement with photoluminescence measurements, we show that Auger recombination and emission of hot phonons act as a heating mechanism giving rise to strong spatial gradients in excitonic temperature. The resulting thermal drift leads to an unconventional exciton diffusion characterized by spatial exciton halos.

13.
Phys Chem Chem Phys ; 21(47): 26077-26083, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31746874

RESUMO

Point defects, local strain or impurities can crucially impact the optical response of atomically thin two-dimensional materials as they offer trapping potentials for excitons. These trapped excitons appear in photoluminescence spectra as new resonances below the bright exciton that can even be exploited for single photon emission. While large progress has been made in deterministically introducing defects, only little is known about their impact on the optical fingerprint of 2D materials. Here, based on a microscopic approach we reveal direct signatures of localized bright excitonic states as well as indirect phonon-assisted side bands of localized momentum-dark excitons. The visibility of localized excitons strongly depends on temperature and disorder potential width. This results in different regimes, where either the bright or dark localized states are dominant in optical spectra. We trace back this behavior to an interplay between disorder-induced exciton capture and intervalley exciton-phonon scattering processes.

14.
Nano Lett ; 18(2): 1402-1409, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29365262

RESUMO

Heterostructures of van der Waals bonded layered materials offer unique means to tailor dielectric screening with atomic-layer precision, opening a fertile field of fundamental research. The optical analyses used so far have relied on interband spectroscopy. Here we demonstrate how a capping layer of hexagonal boron nitride (hBN) renormalizes the internal structure of excitons in a WSe2 monolayer using intraband transitions. Ultrabroadband terahertz probes sensitively map out the full complex-valued mid-infrared conductivity of the heterostructure after optical injection of 1s A excitons. This approach allows us to trace the energies and line widths of the atom-like 1s-2p transition of optically bright and dark excitons as well as the densities of these quasiparticles. The excitonic resonance red shifts and narrows in the WSe2/hBN heterostructure compared to the bare monolayer. Furthermore, the ultrafast temporal evolution of the mid-infrared response function evidences the formation of optically dark excitons from an initial bright population. Our results provide key insight into the effect of nonlocal screening on electron-hole correlations and open new possibilities of dielectric engineering of van der Waals heterostructures.

16.
Phys Rev Lett ; 119(6): 067405, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949645

RESUMO

Recent pump-probe experiments performed on graphene in a perpendicular magnetic field have revealed carrier relaxation times ranging from picoseconds to nanoseconds depending on the quality of the sample. To explain this surprising behavior, we propose a novel symmetry-breaking defect-assisted relaxation channel. This enables scattering of electrons with single out-of-plane phonons, which drastically accelerate the carrier scattering time in low-quality samples. The gained insights provide a strategy for tuning the carrier relaxation time in graphene and related materials by orders of magnitude.

17.
Nanoscale ; 16(18): 8996-9003, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38623653

RESUMO

Twisted transition metal dichalcogenides (TMDs) present an intriguing platform for exploring excitons and their transport properties. By introducing a twist angle, a moiré superlattice forms, providing a spatially dependent exciton energy landscape. Based on a microscopic many-particle theory, we investigate in this work polaron-induced changes in exciton transport properties in the exemplary MoSe2/WSe2 heterostructure. We demonstrate that polaron formation and the associated enhancement of the moiré exciton mass lead to a significant band flattening. As a result, the moiré inter-cell tunneling and the propagation velocity undergo noticeable temperature and twist-angle dependent changes. We predict a reduction of the hopping strength ranging from 80% at a twist angle of 1° to 30% at 3° at room temperature. The provided microscopic insights into the spatio-temporal exciton dynamics in presence of a moiré potential further expand the possibilities to tune charge and energy transport in 2D materials.

18.
Sci Adv ; 10(6): eadi1323, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324690

RESUMO

In two-dimensional semiconductors, cooperative and correlated interactions determine the material's excitonic properties and can even lead to the creation of correlated states of matter. Here, we study the fundamental two-particle correlated exciton state formed by the Coulomb interaction between single-particle holes and electrons. We find that the ultrafast transfer of an exciton's hole across a type II band-aligned semiconductor heterostructure leads to an unexpected sub-200-femtosecond upshift of the single-particle energy of the electron being photoemitted from the two-particle exciton state. While energy relaxation usually leads to an energetic downshift of the spectroscopic signature, we show that this upshift is a clear fingerprint of the correlated interaction of the electron and hole parts of the exciton. In this way, time-resolved photoelectron spectroscopy is straightforwardly established as a powerful method to access electron-hole correlations and cooperative behavior in quantum materials. Our work highlights this capability and motivates the future study of optically inaccessible correlated excitonic and electronic states of matter.

19.
Nanoscale ; 15(26): 11064-11071, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37309577

RESUMO

Transition-metal dichalcogenide bilayers exhibit a rich exciton landscape including layer-hybridized excitons, i.e. excitons which are of partly intra- and interlayer nature. In this work, we study hybrid exciton-exciton interactions in naturally stacked WSe2 homobilayers. In these materials, the exciton landscape is electrically tunable such that the low-energy states can be rendered more or less interlayer-like depending on the strength of the external electric field. Based on a microscopic and material-specific many-particle theory, we reveal two intriguing interaction regimes: a low-dipole regime at small electric fields and a high-dipole regime at larger fields, involving interactions between hybrid excitons with a substantially different intra- and interlayer composition in the two regimes. While the low-dipole regime is characterized by weak inter-excitonic interactions between intralayer-like excitons, the high-dipole regime involves mostly interlayer-like excitons which display a strong dipole-dipole repulsion and give rise to large spectral blue-shifts and a highly anomalous diffusion. Overall, our microscopic study sheds light on the remarkable electrical tunability of hybrid exciton-exciton interactions in atomically thin semiconductors and can guide future experimental studies in this growing field of research.

20.
Nat Commun ; 14(1): 5548, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684279

RESUMO

We report the emergence of dark-excitons in transition-metal-dichalcogenide (TMD) heterostructures that strongly rely on the stacking sequence, i.e., momentum-dark K-Q exciton located exclusively at the top layer of the heterostructure. The feature stems from band renormalization and is distinct from those of typical neutral excitons or trions, regardless of materials, substrates, and even homogeneous bilayers, which is further confirmed by scanning tunneling spectroscopy. To understand the unusual stacking sequence, we introduce the excitonic Elliot formula by imposing strain exclusively on the top layer that could be a consequence of the stacking process. We further find that the intensity ratio of Q- to K-excitons in the same layer is inversely proportional to laser power, unlike for conventional K-K excitons. This can be a metric for engineering the intensity of dark K-Q excitons in TMD heterostructures, which could be useful for optical power switches in solar panels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA