Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768473

RESUMO

Liquid-liquid phase separation (LLPS) is responsible for the formation of so-called membrane-less organelles (MLOs) that are essential for the spatio-temporal organization of the cell. Intrinsically disordered proteins (IDPs) or regions (IDRs), either alone or in conjunction with nucleic acids, are involved in the formation of these intracellular condensates. Notably, viruses exploit LLPS at their own benefit to form viral replication compartments. Beyond giving rise to biomolecular condensates, viral proteins are also known to partition into cellular MLOs, thus raising the question as to whether these cellular phase-separating proteins are drivers of LLPS or behave as clients/regulators. Here, we focus on a set of eukaryotic proteins that are either sequestered in viral factories or colocalize with viral proteins within cellular MLOs, with the primary goal of gathering organized, predicted, and experimental information on these proteins, which constitute promising targets for innovative antiviral strategies. Using various computational approaches, we thoroughly investigated their disorder content and inherent propensity to undergo LLPS, along with their biological functions and interactivity networks. Results show that these proteins are on average, though to varying degrees, enriched in disorder, with their propensity for phase separation being correlated, as expected, with their disorder content. A trend, which awaits further validation, tends to emerge whereby the most disordered proteins serve as drivers, while more ordered cellular proteins tend instead to be clients of viral factories. In light of their high disorder content and their annotated LLPS behavior, most proteins in our data set are drivers or co-drivers of molecular condensation, foreshadowing a key role of these cellular proteins in the scaffolding of viral infection-related MLOs.


Assuntos
Proteínas Intrinsicamente Desordenadas , Viroses , Humanos , Organelas/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Virais/metabolismo , Viroses/metabolismo , Eucariotos/metabolismo
2.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260713

RESUMO

Intrinsically disordered proteins (IDPs) are unable to adopt a unique 3D structure under physiological conditions and thus exist as highly dynamic conformational ensembles. IDPs are ubiquitous and widely spread in the protein realm. In the last decade, compelling experimental evidence has been gathered, pointing to the ability of IDPs and intrinsically disordered regions (IDRs) to undergo liquid-liquid phase separation (LLPS), a phenomenon driving the formation of membrane-less organelles (MLOs). These biological condensates play a critical role in the spatio-temporal organization of the cell, where they exert a multitude of key biological functions, ranging from transcriptional regulation and silencing to control of signal transduction networks. After introducing IDPs and LLPS, we herein survey available data on LLPS by IDPs/IDRs of viral origin and discuss their functional implications. We distinguish LLPS associated with viral replication and trafficking of viral components, from the LLPS-mediated interference of viruses with host cell functions. We discuss emerging evidence on the ability of plant virus proteins to interfere with the regulation of MLOs of the host and propose that bacteriophages can interfere with bacterial LLPS, as well. We conclude by discussing how LLPS could be targeted to treat phase separation-associated diseases, including viral infections.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas Intrinsicamente Desordenadas/isolamento & purificação , Extração Líquido-Líquido/métodos , Vírus/crescimento & desenvolvimento , Animais , Desenho de Fármacos , Humanos , Organelas/química
3.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867340

RESUMO

The abundance of intrinsic disorder in the protein realm and its role in a variety of physiological and pathological cellular events have strengthened the interest of the scientific community in understanding the structural and dynamical properties of intrinsically disordered proteins (IDPs) and regions (IDRs). Attempts at rationalizing the general principles underlying both conformational properties and transitions of IDPs/IDRs must consider the abundance of charged residues (Asp, Glu, Lys, and Arg) that typifies these proteins, rendering them assimilable to polyampholytes or polyelectrolytes. Their conformation strongly depends on both the charge density and distribution along the sequence (i.e., charge decoration) as highlighted by recent experimental and theoretical studies that have introduced novel descriptors. Published experimental data are revisited herein in the frame of this formalism, in a new and possibly unitary perspective. The physicochemical properties most directly affected by charge density and distribution are compaction and solubility, which can be described in a relatively simplified way by tools of polymer physics. Dissecting factors controlling such properties could contribute to better understanding complex biological phenomena, such as fibrillation and phase separation. Furthermore, this knowledge is expected to have enormous practical implications for the design, synthesis, and exploitation of bio-derived materials and the control of natural biological processes.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Polieletrólitos/química , Sequência de Aminoácidos , Agregados Proteicos , Conformação Proteica , Eletricidade Estática
4.
Proteomics ; 19(6): e1800060, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30365227

RESUMO

Intrinsically disordered proteins (IDPs) are systematically under-represented in structural proteomics studies. Their structural characterization implies description of the dynamic conformational ensembles populated by these polymers in solution, posing major challenges to biophysical methods. "Native" MS (native-MS) has emerged as a central tool in this field, conjugating the unique MS analytical power with structurally meaningful descriptors, like solvent-accessible surface area (SASA) and collisional cross section (CCS). This review summarizes recently published papers comparing native-MS and solution methods, with a focus on charge-state-distribution (CSD) analysis for IDP conformational analysis. The results point to substantial agreement, supporting structural interpretation of native-MS spectra of IDPs. The discussion is integrated with data from our group on "synthetic" IDPs, obtained by reduction and alkylation of natively folded proteins, whose fold is stabilized by disulfide bridges. Finally, an MS-based compaction index (CI) is introduced, evaluating SASA with reference to globular and fully disorder proteins. Such a parameter can be calculated for single conformers or the whole conformational ensemble, offering a continuous index for IDP comparison and classification.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Humanos , Proteínas Intrinsicamente Desordenadas/classificação , Conformação Proteica , Dobramento de Proteína , Proteômica/instrumentação , Espectrometria de Massas por Ionização por Electrospray/instrumentação
5.
Arch Biochem Biophys ; 676: 108055, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31356778

RESUMO

In this review, we detail the most common experimental approaches to assess and characterize protein intrinsic structural disorder, with the notable exception of NMR and EPR spectroscopy, two ideally suited approaches that will be described in depth in two other reviews within this special issue. We discuss the advantages, the limitations, as well as the caveats of the various methods. We also describe less common and more demanding approaches that enable achieving further insights into the conformational properties of IDPs. Finally, we present recent developments that have enabled assessment of structural disorder in living cells, and discuss the currently available methods to model IDPs as conformational ensembles.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Humanos , Hidrodinâmica , Proteínas Intrinsicamente Desordenadas/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Coloração e Rotulagem
6.
Int J Mol Sci ; 20(20)2019 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-31635031

RESUMO

Description of heterogeneous molecular ensembles, such as intrinsically disordered proteins, represents a challenge in structural biology and an urgent question posed by biochemistry to interpret many physiologically important, regulatory mechanisms. Single-molecule techniques can provide a unique contribution to this field. This work applies single molecule force spectroscopy to probe conformational properties of α-synuclein in solution and its conformational changes induced by ligand binding. The goal is to compare data from such an approach with those obtained by native mass spectrometry. These two orthogonal, biophysical methods are found to deliver a complex picture, in which monomeric α-synuclein in solution spontaneously populates compact and partially compacted states, which are differently stabilized by binding to aggregation inhibitors, such as dopamine and epigallocatechin-3-gallate. Analyses by circular dichroism and Fourier-transform infrared spectroscopy show that these transitions do not involve formation of secondary structure. This comparative analysis provides support to structural interpretation of charge-state distributions obtained by native mass spectrometry and helps, in turn, defining the conformational components detected by single molecule force spectroscopy.


Assuntos
Espectrometria de Massas , Conformação Proteica , Imagem Individual de Molécula , alfa-Sinucleína/química , Dicroísmo Circular , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , alfa-Sinucleína/metabolismo
7.
Biochim Biophys Acta Gen Subj ; 1862(10): 2204-2214, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30025858

RESUMO

BACKGROUND: Recent theoretical and computational studies have shown that the charge content and, most importantly, the linear distribution of opposite charges are major determinants of conformational properties of intrinsically disordered proteins (IDPs). Charge segregation in a sequence can be measured through κ, which represents a normalized measure of charge asymmetry. A strong inverse correlation between κ and radius of gyration has been previously demonstrated for two independent sets of permutated IDP sequences. METHODS: We used two well-characterized IDPs, namely measles virus NTAIL and Hendra virus PNT4, sharing a very similar fraction of charged residues and net charge per residue, but differing in proline (Pro) content. For each protein, we have rationally designed a low- and a high-κ variant endowed with the highest and the lowest κ values compatible with their natural amino acid composition. Then, the conformational properties of wild-type and κ-variants have been assessed by biochemical and biophysical techniques. RESULTS: We confirmed a direct correlation between κ and protein compaction. The analysis of our original data along with those available from the literature suggests that Pro content may affects the responsiveness to charge clustering. CONCLUSIONS: Charge clustering promotes IDP compaction, but the extent of its effects depends on the sequence context. Proline residues seem to play a role contrasting compaction. GENERAL SIGNIFICANCE: These results contribute to the identification of sequence determinants of IDP conformational properties. They may also serve as an asset for rational design of non-natural IDPs with tunable degree of compactness.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Mutação , Conformação Proteica , Proteínas Virais/química , Sequência de Aminoácidos , Proteínas Intrinsicamente Desordenadas/genética , Dobramento de Proteína , Homologia de Sequência , Proteínas Virais/genética
8.
Biochim Biophys Acta Gen Subj ; 1862(7): 1556-1564, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29621630

RESUMO

BACKGROUND: Protein-nanoparticle (NP) interactions dictate properties of nanoconjugates relevant to bionanotechnology. Non-covalent adsorption generates a protein corona (PC) formed by an inner and an outer layer, the hard and soft corona (HC, SC). Intrinsically disordered proteins (IDPs) exist in solution as conformational ensembles, whose response to the presence of NPs is not known. METHODS: Three IDPs (α-casein, Sic1 and α-synuclein) and lysozyme are compared, describing conformational properties inside HC on silica NPs by circular dichroism (CD) and Fourier-transform infrared (FTIR) spectroscopy. RESULTS: IDPs inside HC are largely unstructured, but display small, protein-specific conformational changes. A minor increase in helical content is observed for α-casein and α-synuclein, reminiscent of membrane effects on α-synuclein. Frozen in their largely disordered conformation, bound proteins do not undergo folding induced by dehydration, as they do in their free forms. While HC thickness approaches the hydrodynamic diameter of the protein in solution for lysozyme, it is much below the respective values for IDPs. NPs boost α-synuclein aggregation kinetics in a dose-dependent manner. CONCLUSIONS: IDPs maintain structural disorder inside HC, experiencing minor, protein-specific, induced folding and stabilization against further conformational transitions, such as formation of intermolecular beta-sheets upon dehydration. The HC is formed by a single layer of protein molecules. SC likely plays a key role stabilizing amyloidogenic α-synuclein conformers. GENERAL SIGNIFICANCE: Protein-NP interactions can mimic those with macromolecular partners, allowing dissection of contributing factors by rational design of NP surfaces. Application of NPs in vivo should be carefully tested for amyloidogenic potential.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Nanopartículas , Conformação Proteica , Coroa de Proteína/química , Animais , Caseínas/química , Bovinos , Embrião de Galinha , Dicroísmo Circular , Proteínas Inibidoras de Quinase Dependente de Ciclina/química , Eletroforese em Gel de Poliacrilamida , Humanos , Muramidase/química , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , alfa-Sinucleína/química
9.
Mass Spectrom Rev ; 35(1): 111-22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25952139

RESUMO

Electrospray-ionization mass spectrometry (ESI-MS) is a key tool of structural biology, complementing the information delivered by conventional biochemical and biophysical methods. Yet, the mechanism behind the conformational effects in protein ESI-MS is an object of debate. Two parameters-solvent-accessible surface area (As) and apparent gas-phase basicity (GBapp)-are thought to play a role in controlling the extent of protein ionization during ESI-MS experiments. This review focuses on recent experimental and theoretical investigations concerning the influence of these parameters on ESI-MS results and the structural information that can be derived. The available evidence supports a unified model for the ionization mechanism of folded and unfolded proteins. These data indicate that charge-state distribution (CSD) analysis can provide valuable structural information on normally folded, as well as disordered structures.


Assuntos
Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Conformação Proteica , Dobramento de Proteína , Proteínas/análise , Proteínas/metabolismo
10.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt A): 2543-2550, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28890401

RESUMO

Intrinsically disordered proteins (IDPs) possess a peculiar amino acid composition that makes them very soluble. Nevertheless, they can encounter aggregation in physiological and pathological contexts. In this work, we addressed the issue of how electrostatic charges can influence aggregation propensity by using the N-terminus moiety of the measles virus phosphoprotein, PNT, as a model IDP. Taking advantage of the high sequence designability of IDPs, we have produced an array of PNT variants sharing the same hydrophobicity, but differing in net charges per residue and isoelectric points (pI). The solubility and conformational properties of these proteins were analysed through biochemical and biophysical techniques in a wide range of pH values and compared with those of the green fluorescence protein (GFP), a globular protein with lower net charge per residue, but similar hydrophobicity. Tested proteins showed a solubility minimum close to their pI, as expected, but the pH-dependent decrease of solubility was not uniform and driven by the net charge per residue of each variant. A parallel behaviour was observed also in fusion proteins between PNT variants and GFP, which minimally contributes to the solubility of chimeras. Our data suggest that the overall solubility of a protein can be dictated by protein regions endowed with higher net charge per residue and, hence, prompter to respond to pH changes. This finding could be exploited for biotechnical purposes, such as the design of solubility/aggregation tags, and in studies aimed to clarify the pathological and physiological behaviour of IDPs.


Assuntos
Sequência de Aminoácidos/genética , Proteínas Intrinsicamente Desordenadas/química , Agregados Proteicos/genética , Proteínas Virais/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/genética , Cinética , Vírus do Sarampo/química , Vírus do Sarampo/genética , Conformação Proteica , Dobramento de Proteína , Solubilidade , Eletricidade Estática , Proteínas Virais/genética
11.
Biochim Biophys Acta ; 1844(12): 2203-13, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25280393

RESUMO

Protein structure and dynamics are crucial for protein function. Thus, the study of conformational properties can be very informative for characterizing new proteins and to rationalize how residue substitutions at specific protein sites affect its dynamics, activity and thermal stability. Here, we investigate the structure and dynamics of the recently isolated cold-adapted acylaminoacyl peptidase from Sporosarcina psychrophila (SpAAP) by the integration of simulations, circular dichroism, mass spectrometry and other experimental data. Our study notes traits of cold-adaptation, such as lysine-to-arginine substitutions and a lack of disulphide bridges. Cold-adapted enzymes are generally characterized by a higher number of glycine residues with respect to their warm-adapted counterparts. Conversely, the SpAAP glycine content is lower than that in the warm-adapted variants. Nevertheless, glycine residues are strategically located in proximity to the functional sites in SpAAP, such as the active site and the linker between the two domains.. In particular, G457 reduces the steric hindrance around the nucleophile elbow. Our results suggest a local weakening of the intramolecular interactions in the cold-adapted enzyme. This study offers a basis for the experimental mutagenesis of SpAAP and related enzymes. The approaches employed in this study may also provide a more general framework to characterize new protein structures in the absence of X-ray or NMR data.

12.
Bioresour Technol ; 406: 131063, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964512

RESUMO

Responsible use of natural resources and waste reduction are key concepts in bioeconomy. This study demonstrates that agro-food derived-biomasses from the Italian food industry, such as crude glycerol and cheese whey permeate (CWP), can be combined in a high-density fed-batch culture to produce a recombinant ß-galactosidase from Marinomonas sp. ef1 (M-ßGal). In a small-scale process (1.5 L) using 250 mL of crude glycerol and 300 mL of lactose-rich CWP, approximately 2000 kU of recombinant M-ßGal were successfully produced along with 30 g of galactose accumulated in the culture medium. The purified M-ßGal exhibited high hydrolysis efficiency in lactose-rich matrices, with hydrolysis yields of 82 % in skimmed milk at 4 °C and 94 % in CWP at 50 °C, highlighting its biotechnological potential. This approach demonstrates the effective use of crude glycerol and CWP in sustainable and cost-effective high-density Escherichia coli cultures, potentially applicable to recombinant production of various proteins.


Assuntos
Biotecnologia , Queijo , Escherichia coli , Glicerol , Soro do Leite , beta-Galactosidase , Glicerol/metabolismo , beta-Galactosidase/metabolismo , Escherichia coli/metabolismo , Biotecnologia/métodos , Proteínas Recombinantes/metabolismo , Hidrólise , Técnicas de Cultura Celular por Lotes , Lactose/metabolismo
13.
Int J Biol Macromol ; 254(Pt 1): 127754, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287572

RESUMO

Liquid-liquid phase separation (LLPS) is pivotal in forming biomolecular condensates, which are crucial in several biological processes. Intrinsically disordered regions (IDRs) are typically responsible for driving LLPS due to their multivalency and high content of charged residues that enable the establishment of electrostatic interactions. In our study, we examined the role of charge distribution in the condensation of the disordered N-terminal domain of human topoisomerase I (hNTD). hNTD is densely charged with oppositely charged residues evenly distributed along the sequence. Its LLPS behavior was compared with that of charge permutants exhibiting varying degrees of charge segregation. At low salt concentrations, hNTD undergoes LLPS. However, LLPS is inhibited by high concentrations of salt and RNA, disrupting electrostatic interactions. Our findings show that, in hNTD, moderate charge segregation promotes the formation of liquid condensates that are sensitive to salt and RNA, whereas marked charge segregation results in the formation of aberrant condensates. Although our study is based on a limited set of protein variants, it supports the applicability of the "stickers-and-spacers" model to biomolecular condensates involving highly charged IDRs. These results may help generate reliable models of the overall LLPS behavior of supercharged polypeptides.


Assuntos
DNA Topoisomerases Tipo I , RNA , Humanos , DNA Topoisomerases Tipo I/genética , Eletricidade Estática
14.
Appl Microbiol Biotechnol ; 97(19): 8609-18, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23371296

RESUMO

Methanol is often employed in biocatalysis with the purpose of increasing substrates solubility or as the acyl acceptor in transesterification reactions, but inhibitory effects are observed in several cases. We have studied the influence of methanol on the catalytic activity and on the conformation of the lipase from Burkholderia glumae, which is reported to be highly methanol tolerant if compared with other lipases. We detected highest activity in the presence of 50-70 % methanol. Under these conditions, however, the enzyme stability is perturbed, leading to gradual protein unfolding and finally to aggregation. These results surmise that, for this lipase, methanol-induced deactivation does not depend on inhibition of catalytic activity but rather on negative effects on the conformational stability of the catalyst.


Assuntos
Burkholderia/enzimologia , Inibidores Enzimáticos/metabolismo , Lipase/química , Lipase/metabolismo , Metanol/metabolismo , Estabilidade Enzimática/efeitos dos fármacos , Conformação Proteica
15.
Biomolecules ; 13(6)2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37371595

RESUMO

Until the late 1990s, we believed that protein function required a unique, well-defined 3D structure encrypted in the amino acid sequence [...].


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Dobramento de Proteína , Conformação Proteica , Modelos Moleculares , Sequência de Aminoácidos
16.
Front Microbiol ; 14: 1284956, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235436

RESUMO

Polycaprolactone (PCL) is an aliphatic polyester often utilized as a model to investigate the biodegradation potential of bacteria and the involved catabolic enzymes. This study aims to characterize PCL biodegradative metabolic potential and correlate it to genomic traits of two plastic-degrading bacteria-Rhodococcus erythropolis D4 strain, a new isolate from plastic-rich organic waste treatment plant, and Rhodococcus opacus R7, known for its relevant biodegradative potential on polyethylene and similar compounds. After preliminary screening for bacteria capable of hydrolyzing tributyrin and PCL, the biodegradation of PCL was evaluated in R. erythropolis D4 and R. opacus R7 by measuring their growth and the release of PCL catabolism products up to 42 days. After 7 days, an increase of at least one order of magnitude of cell number was observed. GC-MS analyses of 28-day culture supernatants showed an increase in carboxylic acids in both Rhodococcus cultures. Furthermore, hydrolytic activity (~5 U mg-1) on short/medium-chain p-nitrophenyl esters was detected in their supernatant. Finally, a comparative genome analysis was performed between two Rhodococcus strains. A comparison with genes annotated in reference strains revealed hundreds of gene products putatively related to polyester biodegradation. Based on additional predictive analysis of gene products, gene expression was performed on a smaller group of genes, revealing that exposure to PCL elicits the greatest increase in transcription for a single gene in strain R7 and two genes, including that encoding a putative lipase, in strain D4. This work exhibits a multifaceted experimental approach to exploit the broad potential of Rhodococcus strains in the field of plastic biodegradation.

17.
Front Biosci (Landmark Ed) ; 28(10): 266, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37919088

RESUMO

Dopaminergic neurons are constantly threatened by the thin boundaries between functional α-synuclein (AS) structural disorder and pathogenic aggregation, and between dopamine (DA) neurotransmitter activity and accumulation of cytotoxic by-products. The possibilities of developing drugs for Parkinson's disease (PD) depend on our understanding of the molecular mechanisms that cause or accompany the pathological structural changes in AS. This review focuses on the three interconnected aspects of AS conformational transitions, its aggregation pathways and ligand binding. Specifically, the interactions of AS with DA, DA metabolites, DA analogs and DA agonists are considered. Recent advances in the field are discussed with reference to the structural properties of AS and the methodologies employed. Although several issues are still object of debate, salient structural features of the protein, the aggregates and the ligands can be identified, in the hope of fueling experimental and computational approaches to the discovery of novel disease-modifying agents.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Dopamina/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Neurônios Dopaminérgicos/metabolismo , Conformação Molecular
18.
Biotechnol Biofuels Bioprod ; 16(1): 30, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823649

RESUMO

BACKGROUND: Escherichia coli cells are the most frequently used hosts in recombinant protein production processes and mainly require molecules such as IPTG or pure lactose as inducers of heterologous expression. A possible way to reduce the production costs is to replace traditional inducers with waste materials such as cheese whey permeate (CWP). CWP is a secondary by-product generated from the production of the valuable whey proteins, which are obtained from ultrafiltration of cheese whey, a main by-product of the dairy industry, which is rich in lactose. RESULTS: The effects of CWP collected from an Italian plant were compared with those of traditional inducers on the production of two model proteins (i.e., green fluorescent protein and the toxic Q55 variant of ataxin-3), in E. coli BL21 (DE3) cells. It was found that the high lactose content of CWP (165 g/L) and the antioxidant properties of its micronutrients (vitamins, cofactors and osmolytes) sustain production yields similar to those obtained with traditional inducers, accompanied by the improvement of cell fitness. CONCLUSIONS: CWP has proven to be an effective and low-cost alternative inducer to produce recombinant proteins. Its use thus combines the advantage of exploiting a waste product with that of reducing the production costs of recombinant proteins.

19.
Microbiology (Reading) ; 158(Pt 9): 2325-2335, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22790396

RESUMO

In living organisms, copper (Cu) contributes to essential functions but at high concentrations it may elicit toxic effects. Cu-tolerant yeast strains are of relevance for both biotechnological applications and studying physiological and molecular mechanisms involved in stress resistance. One way to obtain tolerant strains is to exploit experimental methods that rely on the principles of natural evolution (evolutionary engineering) and allow for the development of complex phenotypic traits. However, in most cases, the molecular and physiological basis of the phenotypic changes produced have not yet been unravelled. We investigated the determinants of Cu resistance in a Saccharomyces cerevisiae strain that was evolved to tolerate up to 2.5 g CuSO(4) l(-1) in the culture medium. We found that the content of intracellular Cu and the expression levels of several genes encoding proteins involved in Cu metabolism and oxidative stress response were similar in the Cu-tolerant (evolved) and the Cu-sensitive (non-evolved) strain. The major difference detected in the two strains was the copy number of the gene CUP1, which encodes a metallothionein. In evolved cells, a sevenfold amplification of CUP1 was observed, accounting for its strongly and steadily increased expression. Our results implicate CUP1 in protection of the evolved S. cerevisiae cells against Cu toxicity. In these cells, robustness towards Cu is stably inheritable and can be reproducibly selected by controlling environmental conditions. This finding corroborates the effectiveness of laboratory evolution of whole cells as a tool to develop microbial strains for biotechnological applications.


Assuntos
Antifúngicos/toxicidade , Cobre/toxicidade , Tolerância a Medicamentos , Amplificação de Genes , Metalotioneína/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Metalotioneína/metabolismo , Seleção Genética , Inoculações Seriadas
20.
Microb Cell Fact ; 11: 1, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22214286

RESUMO

BACKGROUND: Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts. RESULTS: We characterized the effects elicited in natural strains of Candida humilis and Saccharomyces cerevisiae by the exposure to copper in the culture broth. We observed that, whereas the growth of Saccharomyces cells was inhibited already at low Cu concentration, C. humilis was naturally robust and tolerated up to 1 g · L-1 CuSO4 in the medium. This resistant strain accumulated over 7 mg of Cu per gram of biomass and escaped severe oxidative stress thanks to high constitutive levels of superoxide dismutase and catalase. Both yeasts were then "evolved" to obtain hyper-resistant cells able to proliferate in high copper medium. While in S. cerevisiae the evolution of robustness towards Cu was paralleled by the increase of antioxidative enzymes, these same activities decreased in evolved hyper-resistant Candida cells. We also characterized in some detail changes in the profile of copper binding proteins, that appeared to be modified by evolution but, again, in a different way in the two yeasts. CONCLUSIONS: Following evolution, both Candida and Saccharomyces cells were able to proliferate up to 2.5 g · L-1 CuSO4 and to accumulate high amounts of intracellular copper. The comparison of yeasts differing in their robustness, allowed highlighting physiological and molecular determinants of natural and acquired copper tolerance. We observed that different mechanisms contribute to confer metal tolerance: the control of copper uptake, changes in the levels of enzymes involved in oxidative stress response and changes in the copper-binding proteome. However, copper elicits different physiological and molecular reactions in yeasts with different backgrounds.


Assuntos
Evolução Biológica , Cobre/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Biomassa , Candida/enzimologia , Catalase/genética , Catalase/metabolismo , Estresse Oxidativo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA