Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cytometry A ; 105(4): 288-296, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38149360

RESUMO

Techniques currently used for the study of antigen-specific T-cell responses are either poorly informative or require a heavy workload. Consequently, many perspectives associated with the broader study of such approaches remain mostly unexplored in translational research. However, these could benefit many fields including but not limited to infectious diseases, oncology, and vaccination. Herein, the main objective of this work was to develop a standardized flow cytometry-based approach that would combine ease of use together with a relevant study of antigen-specific T-cell responses so that they could be more often included in clinical research. To this extent, a streamlined approach relying on 1/ the use of whole blood instead of peripheral blood mononuclear cells and 2/ solely based on the expression of extracellular activation-induced markers (AIMs), called whole blood AIM (WAIM), was developed and further compared to more conventional techniques such as enzyme-linked immunospot (ELISpot) and flow cytometry-based intracellular cytokine staining (ICS). Based on a cohort of 20 individuals receiving the COVID-19 mRNA vaccine and focusing on SARS-CoV-2 and cytomegalovirus (CMV)-derived antigen T-cell-specific responses, a significant level of correlation between the three techniques was found. Based on the use of whole blood and on the expression of extracellular activation-induced markers (CD154, CD137, and CD107a), the WAIM technique appears to be very simple to implement and yet allows interesting patient stratification capabilities as the chosen combination of extracellular markers exhibited higher orthogonality than cytokines that are commonly considered in ICS (IFN-γ, TNF-α, and IL-2).


Assuntos
Vacinas contra COVID-19 , Linfócitos T , Humanos , Interferon gama/metabolismo , Leucócitos Mononucleares/metabolismo , Antígenos , Citocinas
2.
J Infect Dis ; 222(12): 1985-1996, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32941618

RESUMO

BACKGROUND: An unbiased approach to SARS-CoV-2-induced immune dysregulation has not been undertaken so far. We aimed to identify previously unreported immune markers able to discriminate COVID-19 patients from healthy controls and to predict mild and severe disease. METHODS: An observational, prospective, multicentric study was conducted in patients with confirmed mild/moderate (n = 7) and severe (n = 19) COVID-19. Immunophenotyping of whole-blood leukocytes was performed in patients upon hospital ward or intensive care unit admission and in healthy controls (n = 25). Clinically relevant associations were identified through unsupervised analysis. RESULTS: Granulocytic (neutrophil, eosinophil, and basophil) markers were enriched during COVID-19 and discriminated between patients with mild and severe disease. Increased counts of CD15+CD16+ neutrophils, decreased granulocytic expression of integrin CD11b, and Th2-related CRTH2 downregulation in eosinophils and basophils established a COVID-19 signature. Severity was associated with emergence of PD-L1 checkpoint expression in basophils and eosinophils. This granulocytic signature was accompanied by monocyte and lymphocyte immunoparalysis. Correlation with validated clinical scores supported pathophysiological relevance. CONCLUSIONS: Phenotypic markers of circulating granulocytes are strong discriminators between infected and uninfected individuals as well as between severity stages. COVID-19 alters the frequency and functional phenotypes of granulocyte subsets with emergence of CRTH2 as a disease biomarker.


Assuntos
COVID-19/imunologia , Granulócitos/imunologia , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Adulto , Idoso , Biomarcadores/metabolismo , Antígeno CD11b/imunologia , COVID-19/sangue , COVID-19/diagnóstico , Feminino , França , Humanos , Imunofenotipagem , Contagem de Leucócitos , Linfócitos/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Estudos Prospectivos , SARS-CoV-2 , Índice de Gravidade de Doença
5.
Anal Chem ; 86(18): 9074-81, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25141158

RESUMO

Here we report the complete characterization of the primary structure of a multimeric glycoprotein in a single analysis by capillary electrophoresis (CE) coupled to mass spectrometry (MS). CE was coupled to electrospray ionization tandem MS by means of a sheathless interface. Transient isotachophoresis (t-ITP) was introduced in this work as an electrokinetically based preconcentration technique, allowing injection of up to 25% of the total capillary volume. Characterization was based on an adapted bottom-up proteomic strategy. Using trypsin as the sole proteolytic enzyme and data from a single injection per considered protein, 100% of the amino acid sequences of four different monoclonal antibodies could be achieved. Furthermore, illustrating the effectiveness and overall capabilities of the technique, the results were possible through identification of peptides without tryptic miscleavages or posttranslational modifications, demonstrating the potency of the technique. In addition to full sequence coverages, posttranslational modifications (PTMs) were simultaneously identified, further demonstrating the capacity of this strategy to structurally characterize glycosylations as well as faint modifications such as asparagine deamidation or aspartic acid isomerization. Together with the exquisite detection sensitivity observed, the contributions of both the CE separation mechanism and selectivity were essential to the result of the characterization with regard to that achieved with conventional MS strategies. The quality of the results indicates that recent improvements in interfacing CE-MS coupling, leading to a considerably improved sensitivity, allows characterization of the primary structure of proteins in a robust and faster manner. Taken together, these results open new research avenues for characterization of proteins through MS.


Assuntos
Anticorpos Monoclonais/análise , Eletroforese Capilar , Isotacoforese , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais Humanizados/análise , Anticorpos Monoclonais Humanizados/metabolismo , Sequência de Carboidratos , Glicopeptídeos/análise , Dados de Sequência Molecular , Peptídeos/análise , Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteômica , Trastuzumab , Tripsina/metabolismo
6.
Anal Bioanal Chem ; 406(4): 1029-38, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23881366

RESUMO

Development of nano-electrospray (nanoESI) sources allowed to increase significantly the sensitivity which is often lacking when studying biological noncovalent assemblies. However, the flow rate used to infuse the sample into the mass spectrometer cannot be precisely controlled with nanoESI and the robustness of the system could represent an issue. In this study, we have used a sheathless capillary electrophoresis-mass spectrometry (CESI) prototype as a nanoESI infusion device. The hydrodynamic mobilization of the capillary content was characterized and the ability of the system to generate a stable electrospray under controlled flow rate conditions ranging from 4 up to 900 nL/min was demonstrated. The effect of the infusing flow rate on the detection of an intact model protein analyzed under native conditions was investigated. Results demonstrated a significant increase in sensitivity of 46-fold and a signal-to-noise ratio improvement of nearly 5-fold when using an infusing flow rate from 456.9 down to 13.7 nL/min. The CESI prototype was further used to detect successfully the ß ring homodimer in its native conformation. Obtained results were compared with those achieved with conventional ESI. Intensity signals were increased by a factor of 5, while sample consumption decreased 80 times. ß ring complexed with the P14 peptide was also studied. Finally, the CESI interface was used to observe the quaternary structure of native hemocyanins from Carcinus maenas crabs; this high molecular complex coexisting under various degrees of complexation and resulting in masses ranging from 445 kDa to 1.34 MDa.


Assuntos
Proteínas de Artrópodes/química , Braquiúros/química , Eletroforese Capilar/métodos , Hemocianinas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Peso Molecular , Nanotecnologia/métodos
7.
Artigo em Inglês | MEDLINE | ID: mdl-38572669

RESUMO

The Basophil Activation Test (BAT) enables flow cytometry characterization of basophil reactivity against specific allergenic molecules. The focus now revolves around democratizing this tool, but, as blood sample stability could be challenging, after having developed a simplified approach, herein, we aimed to characterize two strategies for implementing BAT in multicentric studies: store and ship blood before or after sample processing. Fresh heparin- and EDTA-anticoagulated whole blood samples followed both BAT workflows: "collect, store, process & analyze" or "collect, process, store & analyze". Storage temperatures of 18-25 °C or 2-8 °C and preservation times from 0 to 7 days were considered. Interleukin-3 was also evaluated. With the "collect, store, process & analyze" workflow, heparin-anticoagulated blood and 18-25 °C storage were better than other conditions. While remaining possible, basophil activation exhibited a possible reactivity decay after 24 h. Under the conditions tested, interleukin-3 had no role in enhancing basophil reactivity after storage. Conversely, the "collect, process, store & analyze" workflow demonstrated that either heparin- or EDTA-anticoagulated blood can be processed and kept up to 7 days at 18-25 °C or 2-8 °C before being analyzed. Various strategies can be implemented to integrate BAT in multicentric studies. The "collect, store, process & analyze" workflow remains a simplified logistical approach, but depending on time required to ship from the clinical centers to the reference laboratories, it might not be applicable, or should be used with caution. The "collect, process, store & analyze" workflow may constitute a workflow improvement to provide significant flexibility without impact on basophil reactivity.

8.
Autoimmunity ; 57(1): 2341629, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38616577

RESUMO

Most investigations on the immune cell-activating potency of IgA used purified total IgA and/or specific isolated cell populations. As IgA2 has been reported to be more pro-inflammatory than IgA1, we aimed to employ a fast and convenient whole blood-based assay to individually probe the capacity of the two IgA subclasses to activate immune cells in close physiological conditions. To this end, whole blood from healthy donors (n = 10) was stimulated with immobilized IgA1, IgA2m1 or IgA2m2 (the two main allotypic variants of IgA2). Activation of major leukocyte subsets was measured using a 10-color flow cytometry panel providing access to the expression of 5 activation markers on 6 different immune cell subsets. While capturing some heterogeneity of responses among donors, IgA2m1 and IgA2m2 systematically showed a stronger activation profile compared to IgA1 in a variety of dimensions. For example, both IgA2 allotypes led to stronger modulations of CD54, CD11b, CD62L, CD66b or CD69, on both or either monocytes or neutrophils, indicating a more pronounced pro-inflammatory effect for this subclass than IgA1. By taking into account donor-specific soluble and cellular components this whole blood-based functional approach provides new perspectives to further investigate IgA effector functions in mechanistic studies and/or translational research.


Assuntos
Imunoglobulina A , Monócitos , Neutrófilos , Leucócitos , Citometria de Fluxo
9.
Electrophoresis ; 34(3): 383-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23161657

RESUMO

IgG antibodies are modulated in their function by the specific structure of the N-glycans attached to their Fc (fragment crystallizable) portions. However, the glycosylation analysis of antigen-specific IgGs is a challenging task as antibody levels to a given antigen only represent a fraction of the total IgG levels. Here, we investigated the use of a transient-ITP (t-ITP)--MS method for highly sensitive IgG1 glycosylation profiling as a complementary method to a high-throughput nano-RPLC-MS method. It was found that t-ITP-CZE using neutrally coated separation capillaries with a large volume injection (37% of capillary volume) and interfaced to MS with a sheathless porous sprayer yielded a 40-fold increase in sensitivity for IgG1 Fc glycopeptide analysis when compared to the conventional strategy. Furthermore, the glycoform profiles found with the t-ITP-CZE strategy were comparable to those from nano-RPLC-MS. In conclusion, the use of the highly sensitive t-ITP-CZE-MS method will provide information on IgG Fc glycosylation for those samples with IgG1 concentrations below the LODs of the conventional method.


Assuntos
Eletroforese Capilar/métodos , Glicopeptídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Eletroforese Capilar/instrumentação , Glicopeptídeos/sangue , Glicopeptídeos/química , Glicopeptídeos/isolamento & purificação , Humanos , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/análise , Imunoglobulina G/sangue , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray/instrumentação
10.
J Allergy Clin Immunol Pract ; 11(10): 3000-3007, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37634807

RESUMO

More than 20 years after having been initially proposed, the relevance and usefulness of basophil activation test (BAT) for the field of allergy research and testing were demonstrated on many occasions. Leveraging the fully open format of a flexible, whole blood-based functional assay, BAT has been shown to be equally important for fundamental research, clinical research, and diagnosis. Regardless of whether the focus of a study is on the characterization of the allergenic moiety, on the patient side, or on the study of the fundamental processes involved in the allergic disease or its treatment, BAT enables the gathering of very important insights. In spite of this, its full capabilities have yet to be leveraged. Various bottlenecks, including but not limited to assay logistics, robustness, flow cytometry access, and/or expertise, have indeed been limiting its development beyond experts and long-term users. Now, various initiatives, aiming at resolving these bottlenecks, have been launched. If successful, a broader use of BAT could then be contemplated. In such a situation, its more thorough integration in clinical practice has the potential to significantly change the allergic patient's journey.

11.
Anal Chem ; 84(2): 885-92, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22148170

RESUMO

Sheathless capillary electrophoresis-mass spectrometry (CE-MS), using a porous tip sprayer, is proposed for the first time for highly sensitive metabolic profiling of human urine. A representative metabolite mixture and human urine were used for evaluation of the sheathless CE-MS platform. For test compounds, relative standard deviations (RSDs) for migration times and peak areas were below 2% and 12%, respectively, and an injection volume of only ∼8 nL resulted in detection limits between 11 and 120 nM. Approximately 900 molecular features were detected in human urine by sheathless CE-MS whereas about 300 molecular features were found with classical sheath-liquid CE-MS. This difference can probably be attributed to an improved ionization efficiency and increased sensitivity at low flow-rate conditions. The integration of transient-isotachophoresis (t-ITP) as an in-capillary preconcentration procedure in sheathless CE-MS further resulted in subnanomolar limits of detection for compounds of the metabolite mixture, and more than 1300 molecular features were observed in urine. Compared to the classical CE-MS approaches, the integration of t-ITP combined with the use of a sheathless interface provides up to 2 orders of magnitude sensitivity improvement. Hence, sheathless CE-MS can be used for in-depth metabolic profiling of biological samples, and we anticipate that this approach will yield unique information in the field of metabolomics.


Assuntos
Biomarcadores/urina , Eletroforese Capilar/métodos , Metaboloma , Metabolômica , Espectrometria de Massas por Ionização por Electrospray/métodos , Urina/química , Humanos , Isotacoforese
12.
Anal Chem ; 84(10): 4552-9, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22494114

RESUMO

The potential benefits of ultra-low flow electrospray ionization (ESI) for the analysis of phosphopeptides in proteomics was investigated. First, the relative flow dependent ionization efficiency of nonphosphorylated vs multiplyphosphorylated peptides was characterized by infusion of a five synthetic peptide mix with zero to four phophorylation sites at flow rates ranging from 4.5 to 500 nL/min. Most importantly, similar to what was found earlier by Schmidt et al., it has been verified that at flow rates below 20 nL/min the relative peak intensities for the various peptides show a trend toward an equimolar response, which would be highly beneficial in phosphoproteomic analysis. As the technology to achieve liquid chromatography separation at flow rates below 20 nL/min is not readily available, a sheathless capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) strategy based on the use of a neutrally coated separation capillary was used to develop an analytical strategy at flow rates as low as 6.6 nL/min. An in-line preconcentration technique, namely, transient isotachophoresis (t-ITP), to achieve efficient separation while using larger volume injections (37% of capillary thus 250 nL) was incorporated to achieve even greater sample concentration sensitivities. The developed t-ITP-ESI-MS strategy was then used in a direct comparison with nano-LC-MS for the detection of phosphopeptides. The comparison showed significantly improved phosphopeptide sensitivity in equal sample load and equal sample concentration conditions for CE-MS while providing complementary data to LC-MS, demonstrating the potential of ultra-low flow ESI for the analysis of phosphopeptides in liquid based separation techniques.


Assuntos
Fosfopeptídeos/análise , Espectrometria de Massas por Ionização por Electrospray , Animais , Isotacoforese , Leite/metabolismo , Fosforilação , Proteômica
13.
Anal Bioanal Chem ; 402(8): 2645-53, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22021022

RESUMO

The present work reports on the quantification of total IgE in human serum using a microanalytical device whose fluidics is driven by gravity and capillary forces only. Thanks to the eight parallel microchannels in each microchip, calibration and sample analysis are performed simultaneously. A mixture of magnetic bead/analyte/second antibody is incubated off-line and then percolated through the channels where magnetic beads are trapped, enabling the separation of the solid phase from the excess reagents. The entire assay is performed in less than 1 h, and thanks to the miniaturized format, only a small volume of serum is required. Non-specific adsorption was first investigated and a blocking agent compatible with this allergy-based test was chosen. Then, the assay was optimized by determining the best magnetic bead and labelled antibody concentrations. After achievement of a calibration curve with a reference material, the protocol was applied to total IgE quantification of a patient serum sample that showed results in good accordance with those obtained by ImmunoCap® and Immunoaffinity capillary electrophoresis measurements. A detection limit of 17.5 ng ml(-1) was achieved and good reproducibility (RSD < 10%) inter- and intra-chip was observed.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina E/sangue , Imãs , Técnicas Analíticas Microfluídicas/instrumentação , Adsorção , Ensaio de Imunoadsorção Enzimática/instrumentação , Humanos , Microesferas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Propriedades de Superfície
14.
Sci Rep ; 12(1): 12166, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842449

RESUMO

Despite introduction of biological disease modifying anti-rheumatic drugs (DMARDs) for Rheumatoid arthritis (RA) treatment, therapeutic strategies do not always lead to disease control and remission. Hence, a more efficient patient stratification and monitoring biomarkers and tools are needed to enable a more personalized medicine. We used a whole blood based functional flow cytometry assay to characterize immune cells from RA patients (treated or not), healthy donors and psoriatic arthritis (PsA) patients according to their responses to LPS and/or anti-TNFα (infliximab, IFX). Activation marker expression was measured using a 10-color flow cytometry panel following a no-wash protocol. Naïve-to-treatment RA patients had a stronger inflammatory profile in comparison to healthy donors at basal level. Higher expression of activation markers (CD69 and/or CD11b) on NK, B cells and granulocytes and lower expression of the adhesion molecule CD62L were measured on monocytes, granulocytes and B cells. After LPS, naïve RA patients' cells were less capable of regulating CD69, CD11b, CD16 or CD62L showing impaired activation capabilities. Upon LPS and IFX co-incubation, hierarchical clustering analysis showed different profiles between cohorts. We believe that this whole blood-based approach should further be assessed for RA patient characterization as it provides new perspectives for stratification and/or monitoring.


Assuntos
Antirreumáticos , Artrite Psoriásica , Artrite Reumatoide , Antirreumáticos/uso terapêutico , Artrite Psoriásica/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Biomarcadores/metabolismo , Citometria de Fluxo , Humanos , Lipopolissacarídeos/farmacologia , Pesquisa Translacional Biomédica
15.
Sci Rep ; 12(1): 20824, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460710

RESUMO

A strong bias related to age is observed in COVID-19 patients with pediatric subjects developing a milder disease than adults. We hypothesized that a specific SARS-CoV-2 effect conjugated with preexisting differences in the immune systems may explain this. Using flow cytometry, we investigated basal immune differences in a cohort consisting of 16 non-infected young and 16 aged individuals and further leveraged an in vitro whole blood model of SARS-CoV-2 infection so that functional differences could be mined as well. In short, blood diluted in culture media was incubated 5 or 24 h with the trimeric spike protein or controls. Following unsupervised analysis, we first confirmed that the immune lymphoid and myeloid systems in adults are less efficient and prone to develop higher inflammation than those in children. We notably identified in adults a higher CD43 lymphocyte expression, known for its potentially inhibitory role. The spike protein induced different responses between adults and children, notably a higher increase of inflammatory markers together with lower monocyte and B cell activation in adults. Interestingly, CD169, a CD43 ligand overexpressed in COVID-19 patients, was confirmed to be strongly modulated by the spike protein. In conclusion, the spike protein exacerbated the preexisting lower immune responsiveness and higher inflammatory potential in adults. Altogether, some of the markers identified may explain the marked age bias and be predictive of severity.


Assuntos
COVID-19 , Monócitos , Glicoproteína da Espícula de Coronavírus , Adulto , Idoso , Criança , Humanos , COVID-19/imunologia , Monócitos/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
16.
Crit Care Explor ; 4(12): e0810, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36518218

RESUMO

To identify COVID-19-associated immunophenotyping patterns at hospital admission and to determine if some patterns could predict the need for mechanical ventilation (MV). DESIGN: Prospective observational monocentric cohort study. SETTING: A university-affiliated hospital in Marseille, France. PATIENTS: Thirty patients presenting with laboratory-confirmed COVID-19 pneumonia were enrolled within the first 48 hours of hospital admission and compared with 18 healthy controls. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Whole-blood leukocytes were immunophenotyped with a rapid and simplified one-step flow cytometry method. Thirty-eight immune and five laboratory parameters were compared first between COVID-19 patients and controls and then between the COVID-19 patients who received or not MV during their stays. The variables that significantly discriminated MV from non-MV patients in univariate analysis were entered into a multiple stepwise logistic regression analysis. The COVID-19 patients were predominantly male (87%), aged 61 years (50-71 yr), and 93% received early corticosteroid therapy. Sixteen patients (53%) were managed with noninvasive respiratory support, and 14 (47%) required MV. Compared with controls, COVID-19 patients were characterized by an immune signature featuring: 1) decreased HLA-DR expression on monocytes; 2) reduced basophils, eosinophils, T-cells, NK cells, and nonclassical monocyte count; and 3) up regulation of CD169 on monocytes, CD64 on neutrophils, the adhesion/migration markers (CD62L and CD11b), and the checkpoint inhibitor CD274 on myeloid cells. Among the COVID-19 patients, those who received MV had lower level of CD4 and HLA-DR on monocytes, lower CD8+ T-cell count, and higher lactate dehydrogenase at hospital admission. In multivariate analysis, only CD4 on monocytes (p = 0.032) and CD8+ T-cell count (p = 0.026) were associated with MV requirement. The model combining these two variables provided an area under curve of 0.97 (95% CI, 0.83-0.99). CONCLUSIONS: The association of low CD4 on monocytes and low CD8+ T-cell count at hospital admission was highly predictive of the need for MV in hospitalized patients with COVID-19 pneumonia.

17.
SAGE Open Med ; 10: 20503121221115483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959245

RESUMO

Objective: The COVID-19 corona virus disease outbreak is globally challenging health systems and societies. Its diagnosis relies on molecular methods, with drawbacks revealed by mass screening. Upregulation of neutrophil CD64 or monocyte CD169 has been abundantly reported as markers of bacterial or acute viral infection, respectively. We evaluated the sensitivity of an easy, one-step whole blood flow cytometry assay to measure these markers within 10 min, as a potential screening test for COVID-19 patients. Methods: Patients (n = 177) with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were tested on 10 µL blood and results were compared with reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Results: We observed 98% and 100% sensitivity in early-stage (n = 52) and asymptomatic patients (n = 9), respectively. Late-stage patients, who presented for a second control RT-qPCR, were negative for both assays in most cases. Conversely, neutrophil CD64 expression was unchanged in 75% of cases, without significant differences between groups. Conclusion: Monocyte CD169 evaluation was highly sensitive for detecting SARS-CoV-2 infection in first-presentation patients; and it returns to basal level upon infection clearance. The potential ease of fingerprick collection, minimal time-to-result, and low cost rank this biomarker measurement as a potential viral disease screening tool, including COVID-19. When the virus prevalence in the tested population is usually low (1%-10%), such an approach could increase the testing capacity 10 to 100-fold, with the same limited molecular testing resources, which could focus on confirmation purposes only.

18.
Electrophoresis ; 32(14): 1795-803, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21710548

RESUMO

Capillary zone electrophoresis (CZE) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) are two techniques highly suitable for the separation and detection of intact proteins. Herein, based on the use of a recently introduced iontophoretic fraction collection interface for the coupling of CE and MALDI-MS, the potential of the combination of both techniques for the analysis of intact proteins is assessed. To further provide a bioanalytical platform with high-sensitivity capabilities, field-enhanced sample injection is integrated as on online preconcentration strategy upstream from the electrokinetic separation. Under optimized conditions, more than 3200- and 4800-fold improvement, respectively in terms of peak height and peak area, as well as LODs ranging from 5 to 10 nM, has been achieved.


Assuntos
Eletroforese Capilar/métodos , Proteínas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Acetatos/química , Eletrólitos/química , Proteínas/química , Proteínas/isolamento & purificação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Bio Protoc ; 11(16): e4135, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34541052

RESUMO

Flow cytometry is a powerful analytical technique that is increasingly used in scientific investigations and healthcare; however, it requires time-consuming, multi-step sample procedures, which limits its use to specialized laboratories. In this study, we propose a new universal one-step method in which white blood cell staining and red blood cell lysis are carried out in a single step, using a gentle lysis solution mixed with fluorescent antibody conjugates or probes in a dry or liquid format. The blood sample may be obtained from a routine venipuncture or directly from a fingerprick, allowing for near-patient analysis. This procedure enables the analysis of common white blood cell markers as well as markers related to infections or sepsis. This simpler and faster protocol may help to democratize the use of flow cytometry in the research and medical fields. Graphic abstract: One-step White Blood Cell Extracellular Staining Method for Flow Cytometry.

20.
Adv Sci (Weinh) ; 8(18): e2100323, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34278739

RESUMO

Blood cell analysis is a major pillar of biomedical research and healthcare. These analyses are performed in central laboratories. Rapid shipment from collection site to the central laboratories is currently needed because cells and biomarkers degrade rapidly. The dried blood spot from a fingerstick allows the preservation of cellular molecules for months but entire cells are never recovered. Here leucocyte elution is optimized from dried blood spots. Flow cytometry and mRNA expression profiling are used to analyze the recovered cells. 50-70% of the leucocytes that are dried on a polyester solid support via elution after shaking the support with buffer are recovered. While red blood cells lyse upon drying, it is found that the majority of leucocytes are preserved. Leucocytes have an altered structure that is improved by adding fixative in the elution buffer. Leucocytes are permeabilized, allowing an easy staining of all cellular compartments. Common immunophenotyping and mRNAs are preserved. The ability of a new biomarker (CD169) to discriminate between patients with and without Severe Acute Respiratory Syndrome induced by Coronavirus 2 (SARS-CoV-2) infections is also preserved. Leucocytes from blood can be dried, shipped, and/or stored for at least 1 month, then recovered for a wide variety of analyses, potentially facilitating biomedical applications worldwide.


Assuntos
Doenças Transmissíveis/diagnóstico , Testes Diagnósticos de Rotina/métodos , Teste em Amostras de Sangue Seco/métodos , Hematologia/métodos , Imunofenotipagem/métodos , Anticorpos Antivirais/sangue , Biomarcadores/sangue , Coleta de Amostras Sanguíneas/métodos , COVID-19/diagnóstico , Separação Celular/métodos , Doenças Transmissíveis/virologia , Eritrócitos/virologia , Citometria de Fluxo/métodos , Humanos , Leucócitos/virologia , RNA Mensageiro/sangue , SARS-CoV-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA