Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cell ; 166(4): 867-880, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27518562

RESUMO

We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB.


Assuntos
Astrócitos/metabolismo , Glucose/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Transdução de Sinais , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Barreira Hematoencefálica , Retículo Endoplasmático/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Homeostase , Camundongos , Mitocôndrias/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
2.
Mol Cell ; 74(4): 844-857.e7, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31000437

RESUMO

Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis.


Assuntos
Metabolismo Energético/genética , Mitocôndrias/metabolismo , Obesidade/genética , Sirtuínas/genética , Proteína Desacopladora 1/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Regulação da Expressão Gênica , Glucose/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Obesidade/metabolismo , Obesidade/patologia , Proteômica/métodos , Ácido Succínico/metabolismo , Termogênese/genética , Proteína Desacopladora 1/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(21): e2220684120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186836

RESUMO

Brain insulin signaling controls peripheral energy metabolism and plays a key role in the regulation of mood and cognition. Epidemiological studies have indicated a strong connection between type 2 diabetes (T2D) and neurodegenerative disorders, especially Alzheimer's disease (AD), linked via dysregulation of insulin signaling, i.e., insulin resistance. While most studies have focused on neurons, here, we aim to understand the role of insulin signaling in astrocytes, a glial cell type highly implicated in AD pathology and AD progression. To this end, we created a mouse model by crossing 5xFAD transgenic mice, a well-recognized AD mouse model that expresses five familial AD mutations, with mice carrying a selective, inducible insulin receptor (IR) knockout in astrocytes (iGIRKO). We show that by age 6 mo, iGIRKO/5xFAD mice exhibited greater alterations in nesting, Y-maze performance, and fear response than those of mice with the 5xFAD transgenes alone. This was associated with increased Tau (T231) phosphorylation, increased Aß plaque size, and increased association of astrocytes with plaques in the cerebral cortex as assessed using tissue CLARITY of the brain in the iGIRKO/5xFAD mice. Mechanistically, in vitro knockout of IR in primary astrocytes resulted in loss of insulin signaling, reduced ATP production and glycolic capacity, and impaired Aß uptake both in the basal and insulin-stimulated states. Thus, insulin signaling in astrocytes plays an important role in the control of Aß uptake, thereby contributing to AD pathology, and highlighting the potential importance of targeting insulin signaling in astrocytes as a site for therapeutics for patients with T2D and AD.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Astrócitos/metabolismo , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Transgênicos , Fenótipo , Modelos Animais de Doenças
4.
Glycobiology ; 34(2)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38015989

RESUMO

Heparan sulfate (HS) is a linear polysaccharide that plays a key role in cellular signaling networks. HS functions are regulated by its 6-O-sulfation, which is catalyzed by three HS 6-O-sulfotransferases (HS6STs). Notably, HS6ST2 is mainly expressed in the brain and HS6ST2 mutations are linked to brain disorders, but the underlying mechanisms remain poorly understood. To determine the role of Hs6st2 in the brain, we carried out a series of molecular and behavioral assessments on Hs6st2 knockout mice. We first carried out strong anion exchange-high performance liquid chromatography and found that knockout of Hs6st2 moderately decreases HS 6-O-sulfation levels in the brain. We then assessed body weights and found that Hs6st2 knockout mice exhibit increased body weight, which is associated with abnormal metabolic pathways. We also performed behavioral tests and found that Hs6st2 knockout mice showed memory deficits, which recapitulate patient clinical symptoms. To determine the molecular mechanisms underlying the memory deficits, we used RNA sequencing to examine transcriptomes in two memory-related brain regions, the hippocampus and cerebral cortex. We found that knockout of Hs6st2 impairs transcriptome in the hippocampus, but only mildly in the cerebral cortex. Furthermore, the transcriptome changes in the hippocampus are enriched in dendrite and synapse pathways. We also found that knockout of Hs6st2 decreases HS levels and impairs dendritic spines in hippocampal CA1 pyramidal neurons. Taken together, our study provides novel molecular and behavioral insights into the role of Hs6st2 in the brain, which facilitates a better understanding of HS6ST2 and HS-linked brain disorders.


Assuntos
Encefalopatias , Deficiência Intelectual , Sulfotransferases , Animais , Humanos , Camundongos , Espinhas Dendríticas/metabolismo , Heparitina Sulfato/metabolismo , Hipocampo/metabolismo , Transtornos da Memória , Camundongos Knockout , Neurônios/metabolismo , Compostos de Pralidoxima , Sulfotransferases/genética , Sulfotransferases/metabolismo
5.
FASEB J ; 37(10): e23185, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37695721

RESUMO

Sensory neurons in the dorsal root ganglia (DRG) convey somatosensory and metabolic cues to the central nervous system and release substances from stimulated terminal endings in peripheral organs. Sex-biased variations driven by the sex chromosome complement (XX and XY) have been implicated in the sensory-islet crosstalk. However, the molecular underpinnings of these male-female differences are not known. Here, we aim to characterize the molecular repertoire and the secretome profile of the lower thoracic spinal sensory neurons and to identify molecules with sex-biased insulin sensing- and/or insulin secretion-modulating activity that are encoded independently of circulating gonadal sex hormones. We used transcriptomics and proteomics to uncover differentially expressed genes and secreted molecules in lower thoracic T5-12 DRG sensory neurons derived from sexually immature 3-week-old male and female C57BL/6J mice. Comparative transcriptome and proteome analyses revealed differential gene expression and protein secretion in DRG neurons in males and females. The transcriptome analysis identified, among others, higher insulin signaling/sensing capabilities in female DRG neurons; secretome screening uncovered several sex-specific candidate molecules with potential regulatory functions in pancreatic ß cells. Together, these data suggest a putative role of sensory interoception of insulin in the DRG-islet crosstalk with implications in sensory feedback loops in the regulation of ß-cell activity in a sex-biased manner. Finally, we provide a valuable resource of molecular and secretory targets that can be leveraged for understanding insulin interoception and insulin secretion and inform the development of novel studies/approaches to fathom the role of the sensory-islet axis in the regulation of energy balance in males and females.


Assuntos
Insulina , Transcriptoma , Feminino , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Secreção de Insulina , Caracteres Sexuais , Secretoma , Células Receptoras Sensoriais
6.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33879610

RESUMO

Insulin and insulin-like growth factor 1 (IGF-1) receptors share many downstream signaling pathways but have unique biological effects. To define the molecular signals contributing to these distinct activities, we performed global phosphoproteomics on cells expressing either insulin receptor (IR), IGF-1 receptor (IGF1R), or chimeric IR-IGF1R receptors. We show that IR preferentially stimulates phosphorylations associated with mammalian target of rapamycin complex 1 (mTORC1) and Akt pathways, whereas IGF1R preferentially stimulates phosphorylations on proteins associated with the Ras homolog family of guanosine triphosphate hydrolases (Rho GTPases), and cell cycle progression. There were also major differences in the phosphoproteome between cells expressing IR versus IGF1R in the unstimulated state, including phosphorylation of proteins involved in membrane trafficking, chromatin remodeling, and cell cycle. In cells expressing chimeric IR-IGF1R receptors, these differences in signaling could be mapped to contributions of both the extra- and intracellular domains of these receptors. Thus, despite their high homology, IR and IGF1R preferentially regulate distinct networks of phosphorylation in both the basal and stimulated states, allowing for the unique effects of these hormones on organismal function.


Assuntos
Antígenos CD/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Adipócitos/metabolismo , Animais , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Feminino , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Camundongos , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(12): 6733-6740, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32156724

RESUMO

Insulin action in the liver is critical for glucose homeostasis through regulation of glycogen synthesis and glucose output. Arrestin domain-containing 3 (Arrdc3) is a member of the α-arrestin family previously linked to human obesity. Here, we show that Arrdc3 is differentially regulated by insulin in vivo in mice undergoing euglycemic-hyperinsulinemic clamps, being highly up-regulated in liver and down-regulated in muscle and fat. Mice with liver-specific knockout (KO) of the insulin receptor (IR) have a 50% reduction in Arrdc3 messenger RNA, while, conversely, mice with liver-specific KO of Arrdc3 (L-Arrdc3 KO) have increased IR protein in plasma membrane. This leads to increased hepatic insulin sensitivity with increased phosphorylation of FOXO1, reduced expression of PEPCK, and increased glucokinase expression resulting in reduced hepatic glucose production and increased hepatic glycogen accumulation. These effects are due to interaction of ARRDC3 with IR resulting in phosphorylation of ARRDC3 on a conserved tyrosine (Y382) in the carboxyl-terminal domain. Thus, Arrdc3 is an insulin target gene, and ARRDC3 protein directly interacts with IR to serve as a feedback regulator of insulin action in control of liver metabolism.


Assuntos
Arrestinas/fisiologia , Glucose/metabolismo , Resistência à Insulina , Insulina/farmacologia , Fígado/metabolismo , Receptor de Insulina/fisiologia , Animais , Membrana Celular/metabolismo , Proteína Forkhead Box O1/metabolismo , Hipoglicemiantes/farmacologia , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação
8.
Am J Physiol Heart Circ Physiol ; 323(2): H301-H311, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35749717

RESUMO

Obesity-related cardiovascular complications are a major health problem worldwide. Overconsumption of the Western diet is a well-known culprit for the development of obesity. Although short-term weight loss through switching from a Western diet to a normal diet is known to promote metabolic improvement, its short-term effects on vascular parameters are not well characterized. Glucagon-like peptide 1 (GLP-1), an incretin with vasculoprotective properties, is decreased in plasma from patients who are obese. We hypothesize that obesity causes persistent vascular dysfunction in association with the downregulation of vascular glucagon-like peptide 1 receptor (GLP-1R). Female Wistar rats were randomized into three groups: lean received a chow diet for 28 wk, obese received a Western diet for 28 wk, and reverse obese received a Western diet for 18 wk followed by 12 wk of standard chow diet. The obese group exhibited increased body weight and body mass index, whereas the reverse obese group lost weight. Weight loss failed to reverse impaired vasodilation and high systolic blood pressure in obese rats. Strikingly, our results show that obese rats exhibit decreased serum levels of GLP-1 accompanied by decreased vascular GLP-1R expression. Weight loss recovered GLP-1 serum levels, however GLP-1R expression remained downregulated. Decreased Akt phosphorylation was observed in the obese and reverse obese group, suggesting that GLP-1/Akt signaling is persistently downregulated. Our results support that GLP-1 signaling is associated with obesity-related vascular dysfunction in females, and short-term weight loss does not guarantee recovery of vascular function. This study suggests that GLP-1R may be a potential target for therapeutic intervention in obesity-related hypertension in females.NEW & NOTEWORTHY Although short-term weight loss successfully improved metabolic parameters, it failed to correct vascular dysfunction present in obese female rats. Vascular GLP-1/Akt signaling was decreased in both obese rats and those with short-term weight loss, suggesting it may be a potential target for therapeutic intervention in obesity-related persistent vascular dysfunction in obese females.


Assuntos
Receptores de Peptídeos Semelhantes ao Glucagon , Proteínas Proto-Oncogênicas c-akt , Animais , Peso Corporal , Feminino , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Obesidade/metabolismo , Ratos , Ratos Wistar , Redução de Peso/fisiologia
9.
Proc Natl Acad Sci U S A ; 116(13): 6379-6384, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30765523

RESUMO

Previous studies have shown that insulin and IGF-1 signaling in the brain, especially the hypothalamus, is important for regulation of systemic metabolism. Here, we develop mice in which we have specifically inactivated both insulin receptors (IRs) and IGF-1 receptors (IGF1Rs) in the hippocampus (Hippo-DKO) or central amygdala (CeA-DKO) by stereotaxic delivery of AAV-Cre into IRlox/lox/IGF1Rlox/lox mice. Consequently, both Hippo-DKO and CeA-DKO mice have decreased levels of the GluA1 subunit of glutamate AMPA receptor and display increased anxiety-like behavior, impaired cognition, and metabolic abnormalities, including glucose intolerance. Hippo-DKO mice also display abnormal spatial learning and memory whereas CeA-DKO mice have impaired cold-induced thermogenesis. Thus, insulin/IGF-1 signaling has common roles in the hippocampus and central amygdala, affecting synaptic function, systemic glucose homeostasis, behavior, and cognition. In addition, in the hippocampus, insulin/IGF-1 signaling is important for spatial learning and memory whereas insulin/IGF-1 signaling in the central amygdala controls thermogenesis via regulation of neural circuits innervating interscapular brown adipose tissue.


Assuntos
Comportamento Animal , Núcleo Central da Amígdala/metabolismo , Hipocampo/metabolismo , Insulina/metabolismo , Transdução de Sinais , Tecido Adiposo Marrom/metabolismo , Animais , Ansiedade , Encefalopatias Metabólicas , Glucose/metabolismo , Intolerância à Glucose , Homeostase , Fator de Crescimento Insulin-Like I/metabolismo , Memória , Camundongos , Camundongos Knockout , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Aprendizagem Espacial , Termogênese
10.
Proc Natl Acad Sci U S A ; 115(10): 2461-2466, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29467286

RESUMO

Viruses are the most abundant biological entities and carry a wide variety of genetic material, including the ability to encode host-like proteins. Here we show that viruses carry sequences with significant homology to several human peptide hormones including insulin, insulin-like growth factors (IGF)-1 and -2, FGF-19 and -21, endothelin-1, inhibin, adiponectin, and resistin. Among the strongest homologies were those for four viral insulin/IGF-1-like peptides (VILPs), each encoded by a different member of the family Iridoviridae VILPs show up to 50% homology to human insulin/IGF-1, contain all critical cysteine residues, and are predicted to form similar 3D structures. Chemically synthesized VILPs can bind to human and murine IGF-1/insulin receptors and stimulate receptor autophosphorylation and downstream signaling. VILPs can also increase glucose uptake in adipocytes and stimulate the proliferation of fibroblasts, and injection of VILPs into mice significantly lowers blood glucose. Transfection of mouse hepatocytes with DNA encoding a VILP also stimulates insulin/IGF-1 signaling and DNA synthesis. Human microbiome studies reveal the presence of these Iridoviridae in blood and fecal samples. Thus, VILPs are members of the insulin/IGF superfamily with the ability to be active on human and rodent cells, raising the possibility for a potential role of VILPs in human disease. Furthermore, since only 2% of viruses have been sequenced, this study raises the potential for discovery of other viral hormones which, along with known virally encoded growth factors, may modify human health and disease.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Receptor IGF Tipo 1/metabolismo , Proteínas Virais/metabolismo , Vírus/genética , Animais , Linhagem Celular , Proliferação de Células , Glucose/metabolismo , Hepatócitos , Humanos , Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Proteínas Virais/genética , Viroses/virologia
11.
Molecules ; 26(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34946610

RESUMO

Critical limb ischemia (CLI) is a severe form of peripheral artery diseases (PAD) and seriously endangers the health of people. Therapeutic angiogenesis represents an important treatment strategy for CLI; various methods have been applied to enhance collateral circulation. However, the current development drug therapy to promote angiogenesis is limited. Resveratrol (RSV), a polyphenol compound extracted from plants, has various properties such as anti-oxidative, anti-inflammatory and anti-cancer effects. Whether RSV exerts protective effects on CLI remains elusive. In the current study, we demonstrated that oral intake of RSV significantly improved hind limb ischemia in mice, and increased the expression of phosphorylated Forkhead box class-O1 (FoxO1). RSV treatment in human umbilical vein endothelial cells (HUVECs) could increase the phosphorylation of FoxO1 and its cytoplasmic re-localization to promote angiogenesis. Then we manipulated FoxO1 in HUVECs to further verify that the effect of RSV on angiogenesis is in a FoxO1-dependent manner. Furthermore, we performed metabolomics to screen the metabolic pathways altered upon RSV intervention. We found that the pathways of pyrimidine metabolism, purine metabolism, as well as alanine, aspartate and glutamate metabolism, were highly correlated with the beneficial effects of RSV on the ischemic muscle. This study provides a novel direction for the medical therapy to CLI.


Assuntos
Isquemia Crônica Crítica de Membro/tratamento farmacológico , Proteína Forkhead Box O1/metabolismo , Neovascularização Patológica/tratamento farmacológico , Resveratrol/farmacologia , Animais , Isquemia Crônica Crítica de Membro/metabolismo , Proteína Forkhead Box O1/genética , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/metabolismo , Fosforilação/efeitos dos fármacos
12.
Proc Natl Acad Sci U S A ; 114(40): E8478-E8487, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923931

RESUMO

Insulin receptors (IRs) on endothelial cells may have a role in the regulation of transport of circulating insulin to its target tissues; however, how this impacts on insulin action in vivo is unclear. Using mice with endothelial-specific inactivation of the IR gene (EndoIRKO), we find that in response to systemic insulin stimulation, loss of endothelial IRs caused delayed onset of insulin signaling in skeletal muscle, brown fat, hypothalamus, hippocampus, and prefrontal cortex but not in liver or olfactory bulb. At the level of the brain, the delay of insulin signaling was associated with decreased levels of hypothalamic proopiomelanocortin, leading to increased food intake and obesity accompanied with hyperinsulinemia and hyperleptinemia. The loss of endothelial IRs also resulted in a delay in the acute hypoglycemic effect of systemic insulin administration and impaired glucose tolerance. In high-fat diet-treated mice, knockout of the endothelial IRs accelerated development of systemic insulin resistance but not food intake and obesity. Thus, IRs on endothelial cells have an important role in transendothelial insulin delivery in vivo which differentially regulates the kinetics of insulin signaling and insulin action in peripheral target tissues and different brain regions. Loss of this function predisposes animals to systemic insulin resistance, overeating, and obesity.


Assuntos
Encéfalo/metabolismo , Resistência à Insulina , Insulina/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Obesidade/fisiopatologia , Receptor de Insulina/fisiologia , Animais , Glicemia/metabolismo , Intolerância à Glucose , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
13.
J Biol Chem ; 292(6): 2054-2064, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28007959

RESUMO

Adult neurogenesis, the process of generating mature neurons from neuronal progenitor cells, makes critical contributions to neural circuitry and brain function in both healthy and disease states. Neurogenesis is a highly regulated process in which diverse environmental and physiological stimuli are relayed to resident neural stem cell populations to control the transcription of genes involved in self-renewal and differentiation. Understanding the molecular mechanisms governing neurogenesis is necessary for the development of translational strategies to harness this process for neuronal repair. Here we report that the Ras-related GTPase RIT1 serves to control the sequential proliferation and differentiation of adult hippocampal neural progenitor cells, with in vivo expression of active RIT1 driving robust adult neurogenesis. Gene expression profiling analysis demonstrates increased expression of a specific set of transcription factors known to govern adult neurogenesis in response to active RIT1 expression in the hippocampus, including sex-determining region Y-related HMG box 2 (Sox2), a well established regulator of stem cell self-renewal and neurogenesis. In adult hippocampal neuronal precursor cells, RIT1 controls an Akt-dependent signaling cascade, resulting in the stabilization and transcriptional activation of phosphorylated Sox2. This study supports a role for RIT1 in relaying niche-derived signals to neural/stem progenitor cells to control transcription of genes involved in self-renewal and differentiation.


Assuntos
Hipocampo/fisiologia , Neurogênese , Fatores de Transcrição SOXB1/metabolismo , Transcrição Gênica , Proteínas ras/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas ras/genética
14.
Proc Natl Acad Sci U S A ; 112(11): 3463-8, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25733901

RESUMO

Diabetes and insulin resistance are associated with altered brain imaging, depression, and increased rates of age-related cognitive impairment. Here we demonstrate that mice with a brain-specific knockout of the insulin receptor (NIRKO mice) exhibit brain mitochondrial dysfunction with reduced mitochondrial oxidative activity, increased levels of reactive oxygen species, and increased levels of lipid and protein oxidation in the striatum and nucleus accumbens. NIRKO mice also exhibit increased levels of monoamine oxidase A and B (MAO A and B) leading to increased dopamine turnover in these areas. Studies in cultured neurons and glia cells indicate that these changes in MAO A and B are a direct consequence of loss of insulin signaling. As a result, NIRKO mice develop age-related anxiety and depressive-like behaviors that can be reversed by treatment with MAO inhibitors, as well as the tricyclic antidepressant imipramine, which inhibits MAO activity and reduces oxidative stress. Thus, insulin resistance in brain induces mitochondrial and dopaminergic dysfunction leading to anxiety and depressive-like behaviors, demonstrating a potential molecular link between central insulin resistance and behavioral disorders.


Assuntos
Comportamento Animal , Encéfalo/metabolismo , Dopamina/metabolismo , Resistência à Insulina , Envelhecimento/patologia , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ansiedade/metabolismo , Ansiedade/patologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/ultraestrutura , Depressão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Artigo em Inglês | MEDLINE | ID: mdl-38684025

RESUMO

Nowadays, food safety is still facing great challenges. During storage and transportation, perishable goods have to be kept at a low temperature. However, the current logistics still lack enough preservation ability to maintain a low temperature in the whole. Hence, considering the temperature fluctuation in logistics, in this work, the passive radiative cooling (RC) technology was applied to package to enhance the temperature control capability in food storage and transportation. The RC emitter with selective infrared emission property was fabricated by a facile coating method, and Al2O3 was added to improve the wear resistance. The sunlight reflectance and infrared emittance within atmospheric conditions could reach up to 0.92 and 0.84, respectively. After abrasion, the sunlight reflection only decreased by 0.01, and the infrared emission showed a negligible change, revealing excellent wear resistance. During outdoor measurement, the box assembled by RC emitters (RC box) was proved to achieve temperature drops of ∼9 and ∼4 °C compared with the corrugated box and foam box, respectively. Besides, the fruits stored in the RC box exhibited a lower decay rate. Additionally, after printing with patterns to meet the aesthetic requirements, the RC emitter could also maintain the cooling ability. Given the superior optical properties, wear resistance, and cooling capability, the emitter has great potential for obtaining a better temperature control ability in food storage and transportation.

16.
J Neurosci ; 32(29): 9887-97, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22815504

RESUMO

The molecular mechanisms governing the spontaneous recovery seen following brain injury remain elusive, but recent studies indicate that injury-induced stimulation of hippocampal neurogenesis contributes to the repair process. The therapeutic potential of endogenous neurogenesis is tempered by the demonstration that traumatic brain injury (TBI) results in the selective death of adult-born immature neurons, compromising the cell population poised to compensate for trauma-induced neuronal loss. Here, we identify the Ras-related GTPase, Rit, as a critical player in the survival of immature hippocampal neurons following brain injury. While Rit knock-out (Rit(-/-)) did not alter hippocampal development, hippocampal neural cultures derived from Rit(-/-) mice display increased cell death and blunted MAPK cascade activation in response to oxidative stress, without affecting BDNF-dependent signaling. When compared with wild-type hippocampal cultures, Rit loss rendered immature (Dcx(+)) neurons susceptible to oxidative damage, without altering the survival of neural progenitor (Nestin(+)) cells. Oxidative stress is a major contributor to neuronal cell death following brain injury. Consistent with the enhanced vulnerability of cultured Rit(-/-) immature neurons, Rit(-/-) mice exhibited a significantly greater loss of adult-born immature neurons within the dentate gyrus after TBI. In addition, post-TBI neuronal remodeling was blunted. Together, these data identify a new and unexpected role for Rit in injury-induced neurogenesis, functioning as a selective survival mechanism for immature hippocampal neurons within the subgranular zone of the dentate gyrus following TBI.


Assuntos
Sobrevivência Celular/fisiologia , Hipocampo/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Proteínas ras/metabolismo , Animais , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Dendritos/metabolismo , Proteína Duplacortina , Hipocampo/citologia , Camundongos , Camundongos Knockout , Neurônios/citologia , Estresse Oxidativo/fisiologia , Proteínas ras/genética
17.
J Biol Chem ; 287(47): 39859-68, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23038261

RESUMO

The cAMP response element (CRE)-binding protein (CREB) is a key regulatory factor of gene transcription, and plays an essential role in development of the central nervous system and for neuroprotection. Multiple signaling pathways have been shown to contribute to the regulation of CREB-dependent transcription, including both ERK and p38 mitogen-activated protein (MAP) kinases cascades. Recent studies have identified the Ras-related small G-protein, Rit, as a central regulator of a p38-MK2-HSP27 signaling cascade that functions as a critical survival mechanism for cells adapting to stress. Here, we examine the contribution of Rit-p38 signaling to the control of stress-dependent gene transcription. Using a pheochromocytoma cell model, we find that a novel Rit-p38-MSK1/2 pathway plays a critical role in stress-mediated CREB activation. RNAi-mediated Rit silencing, or inhibition of p38 or MSK1/2 kinases, was found to disrupt stress-mediated CREB-dependent transcription, resulting in increased cell death. Furthermore, ectopic expression of active Rit stimulates CREB-Ser133 phosphorylation, induces expression of the anti-apoptotic Bcl-2 and Bcl(XL) proteins, and promotes cell survival. These data indicate that the Rit-p38-MSK1/2 signaling pathway may have an important role in the stress-dependent regulation of CREB-dependent gene expression.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Estresse Fisiológico/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas ras/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Camundongos , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transcrição Gênica/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas ras/genética
18.
Nat Commun ; 14(1): 57, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599833

RESUMO

Insulin acts through the insulin receptor (IR) tyrosine kinase to exert its classical metabolic and mitogenic actions. Here, using receptors with either short or long deletion of the ß-subunit or mutation of the kinase active site (K1030R), we have uncovered a second, previously unrecognized IR signaling pathway that is intracellular domain-dependent, but ligand and tyrosine kinase-independent (LYK-I). These LYK-I actions of the IR are linked to changes in phosphorylation of a network of proteins involved in the regulation of extracellular matrix organization, cell cycle, ATM signaling and cellular senescence; and result in upregulation of expression of multiple extracellular matrix-related genes and proteins, down-regulation of immune/interferon-related genes and proteins, and increased sensitivity to apoptosis. Thus, in addition to classical ligand and tyrosine kinase-dependent (LYK-D) signaling, the IR regulates a second, ligand and tyrosine kinase-independent (LYK-I) pathway, which regulates the cellular machinery involved in senescence, matrix interaction and response to extrinsic challenges.


Assuntos
Apoptose , Divisão Celular , Senescência Celular , Proteínas Tirosina Quinases , Receptor de Insulina , Apoptose/genética , Divisão Celular/genética , Insulina/metabolismo , Ligantes , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Senescência Celular/genética , Humanos , Animais , Camundongos
19.
J Clin Invest ; 133(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36548088

RESUMO

Insulin and IGF-1 receptors (IR and IGF1R) are highly homologous and share similar signaling systems, but each has a unique physiological role, with IR primarily regulating metabolic homeostasis and IGF1R regulating mitogenic control and growth. Here, we show that replacement of a single amino acid at position 973, just distal to the NPEY motif in the intracellular juxtamembrane region, from leucine, which is highly conserved in IRs, to phenylalanine, the highly conserved homologous residue in IGF1Rs, resulted in decreased IRS-1/PI3K/Akt/mTORC1 signaling and increased Shc/Gab1/MAPK cell cycle signaling. As a result, cells expressing L973F-IR exhibited decreased insulin-induced glucose uptake, increased cell growth, and impaired receptor internalization. Mice with knockin of the L973F-IR showed similar alterations in signaling in vivo, and this led to decreased insulin sensitivity, a modest increase in growth, and decreased weight gain when mice were challenged with a high-fat diet. Thus, leucine-973 in the juxtamembrane region of the IR acts as a crucial residue differentiating IR signaling from IGF1R signaling.


Assuntos
Insulina , Receptor IGF Tipo 1 , Receptor de Insulina , Transdução de Sinais , Animais , Camundongos , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Leucina/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais/genética , Humanos
20.
Heliyon ; 9(10): e20384, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37780758

RESUMO

Oligodendrocytes (OLs) generate lipid-rich myelin membranes that wrap axons to enable efficient transmission of electrical impulses. Using a RIT1 knockout mouse model and in situ high-resolution matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) coupled with MS-based lipidomic analysis to determine the contribution of RIT1 to lipid homeostasis. Here, we report that RIT1 loss is associated with altered lipid levels in the central nervous system (CNS), including myelin-associated lipids within the corpus callosum (CC). Perturbed lipid metabolism was correlated with reduced numbers of OLs, but increased numbers of GFAP+ glia, in the CC, but not in grey matter. This was accompanied by reduced myelin protein expression and axonal conduction deficits. Behavioral analyses revealed significant changes in voluntary locomotor activity and anxiety-like behavior in RIT1KO mice. Together, these data reveal an unexpected role for RIT1 in the regulation of cerebral lipid metabolism, which coincide with altered white matter tract oligodendrocyte levels, reduced axonal conduction velocity, and behavioral abnormalities in the CNS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA