Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PLoS Biol ; 19(9): e3001385, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34495952

RESUMO

Intrauterine infection/inflammation (IUI) is a major contributor to preterm labor (PTL). However, IUI does not invariably cause PTL. We hypothesized that quantitative and qualitative differences in immune response exist in subjects with or without PTL. To define the triggers for PTL, we developed rhesus macaque models of IUI driven by lipopolysaccharide (LPS) or live Escherichia coli. PTL did not occur in LPS challenged rhesus macaques, while E. coli-infected animals frequently delivered preterm. Although LPS and live E. coli both caused immune cell infiltration, E. coli-infected animals showed higher levels of inflammatory mediators, particularly interleukin 6 (IL-6) and prostaglandins, in the chorioamnion-decidua and amniotic fluid (AF). Neutrophil infiltration in the chorio-decidua was a common feature to both LPS and E. coli. However, neutrophilic infiltration and IL6 and PTGS2 expression in the amnion was specifically induced by live E. coli. RNA sequencing (RNA-seq) analysis of fetal membranes revealed that specific pathways involved in augmentation of inflammation including type I interferon (IFN) response, chemotaxis, sumoylation, and iron homeostasis were up-regulated in the E. coli group compared to the LPS group. Our data suggest that the intensity of the host immune response to IUI may determine susceptibility to PTL.


Assuntos
Imunidade , Trabalho de Parto Prematuro/patologia , Complicações na Gravidez/imunologia , Animais , Modelos Animais de Doenças , Escherichia coli/patogenicidade , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/imunologia , Feminino , Inflamação , Lipopolissacarídeos/toxicidade , Macaca mulatta , Gravidez
2.
Am J Geriatr Psychiatry ; 31(1): 22-32, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36175271

RESUMO

BACKGROUND: Underlying inflammation is associated with an increased risk of depression in older adults. In this study, we examined the role of inflammatory biomarkers in antidepressant response in depressed older adults undergoing adjunct Tai Chi Chih (TCC) or Health education interventions. METHODS: Older adults aged 60 years and above with a diagnosis of major depression were randomized to 12 weeks of TCC versus Health and Wellness Education (HEW) as an adjunct therapy to their stable antidepressant treatment regimen. A panel of 19 cytokine/chemokines was measured at baseline and 12 weeks. Five factors were derived using factor analysis. General linear models were estimated to examine the change in factor scores and the association of these changes on depression remission rates, controlling for age, sex, and body mass index. RESULTS: Of the 170 randomized participants (TCC: n = 85 and HEW: n = 85), 55 TCC and 58 HEW completed the 3-month assessment. The groups did not differ at baseline in any measure. At follow-up, neither the changes in cytokine/chemokines scores nor the depression remission rate differed significantly between TCC and HEW. However, remitters and non-remitters differed significantly in changes in a factor composed of growth-regulated oncogene protein-alpha (GRO-alpha), epidermal growth factor (EGF), and soluble CD40 ligand (sCD40L). GRO-alpha and EGF levels (in both groups) were significantly increased in remitters compared to non-remitters. CONCLUSION: Changes in certain cytokines/chemokines may accompany improvement in depressive symptoms in older adults. Future studies will need to explore the role of these molecules in remission of late-life depression.


Assuntos
Depressão , Tai Chi Chuan , Idoso , Humanos , Antidepressivos , Biomarcadores , Citocinas , Depressão/terapia , Fator de Crescimento Epidérmico , Educação em Saúde , Pessoa de Meia-Idade
3.
J Immunol ; 204(10): 2651-2660, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32238461

RESUMO

Preterm birth (PTB) is a major cause of neonatal mortality and morbidity, often triggered by chorioamnionitis or intrauterine inflammation (IUI) with or without infection. Recently, there has been a strong association of IL-1 with PTB. We hypothesized that IL-1R-associated kinase 1 (IRAK1), a key signaling mediator in the TLR/IL-1 pathway, plays a critical role in PTB. In human fetal membranes (FM) collected immediately after birth from women delivering preterm, p-IRAK1 was significantly increased in all the layers of FM with chorioamnionitis, compared with no-chorioamnionitis subjects. In a preterm rhesus macaque model of IUI given intra-amniotic LPS, induction of p-IRAK1 and downstream proinflammatory signaling mediators were seen in the FM. In a C57BL/6J wild-type PTB mouse model of IUI given intrauterine LPS, an IRAK1 inhibitor significantly decreased PTB and increased live birth in a dose-dependent manner. Furthermore, IRAK1 knockout mice were protected from LPS-induced PTB, which was seen in wild-type controls. Activation of IRAK1 was maintained by K63-mediated ubiquitination in preterm FM of humans with chorioamnionitis and rhesus and mouse IUI models. Mechanistically, IRAK1 induced PTB in the mouse model of IUI by upregulating expression of COX-2. Thus, our data from human, rhesus, and mouse demonstrates a critical role IRAK1 in IUI and inflammation-associated PTB and suggest it as potential therapeutic target in IUI-induced PTB.


Assuntos
Membranas Extraembrionárias/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Nascimento Prematuro/metabolismo , Útero/imunologia , Adulto , Animais , Corioamnionite , Modelos Animais de Doenças , Membranas Extraembrionárias/patologia , Feminino , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Lipopolissacarídeos/imunologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Nascimento Prematuro/imunologia , Adulto Jovem
4.
Immunology ; 144(4): 661-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25351513

RESUMO

CD91 is a scavenger receptor expressed by different immune cells and its ligands defensins have been demonstrated to contribute to immune responses against infections and tumours. We previously demonstrated that CD91 is expressed on human monocyte-derived dendritic cells (moDCs) and that human defensins stimulate in vitro the activation of these cells. In this study, we observed that CD91 is expressed at different levels on two distinct moDC subsets: CD91(dim) and CD91(bright) moDCs. Although CD91(bright) moDCs represented a small proportion of total moDCs, this subset showed higher levels of activation and maturation markers compared with CD91(dim) moDCs. The frequency of CD91(bright) moDCs increased by ~ 50% after in vitro stimulation with recombinant human neutrophil peptide-1 (rHNP-1) and recombinant human ß defensin-1 (rHBD-1), while lipopolysaccharide (LPS) stimulation decreased it by ~ 35%. Both defensins up-regulated moDC expression of CD80, CD40, CD83 and HLA-DR, although to a lower extent compared with LPS. Notably, upon culture with rHNP-1 and rHBD-1, CD91(bright) moDCs maintained their higher activation/maturation status, whereas this was lost upon culture with LPS. Our findings suggest that defensins promote the differentiation into activated CD91(bright) DCs and may encourage the exploitation of the CD91/defensins axis as a novel therapeutic strategy to potentiate antimicrobial and anti-tumour immune response.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , alfa-Defensinas/farmacologia , beta-Defensinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/classificação , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Humanos , Lipopolissacarídeos/farmacologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/imunologia , Fenótipo , Proteínas Recombinantes/farmacologia , Fatores de Tempo , Regulação para Cima
5.
Biol Reprod ; 92(2): 56, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25537373

RESUMO

Chorioamnionitis, an infection/inflammation of the fetomaternal membranes, is frequently associated with preterm delivery. The mechanisms of inflammation in chorioamnionitis are poorly understood. We hypothesized that neutrophils recruited to the decidua would be the major producers of proinflammatory cytokines. We injected intra-amniotic (IA) interleukin 1beta (IL-1beta) at ∼80% gestation in rhesus macaque monkeys, Macaca mulatta, delivered the fetuses surgically 24 h or 72 h after IA injections, and investigated the role of immune cells in the chorion-amnion decidua. IA IL-1beta induced a robust infiltration of neutrophils and significant increases of proinflammatory cytokines in the chorioamnion decidua at 24 h after exposure, with a subsequent decrease at 72 h. Neutrophils in the decidua were the major source of tumor necrosis factor alpha (TNFalpha) and IL-8. Interestingly, IA IL-1beta also induced a significant increase in anti-inflammatory indoleamine 2,3-dioxygenase (IDO) expression in the decidua neutrophils. The frequency of regulatory T cells (Tregs) and FOXP3 mRNA expression in the decidua did not change after IA IL-1beta injection. Collectively, our data demonstrate that in this model of sterile chorioamnionitis, the decidua neutrophils cause the inflammation in the gestational tissues but may also act as regulators to dampen the inflammation. These results help to understand the contribution of neutrophils to the pathogenesis of chorioamnionitis-induced preterm labor.


Assuntos
Decídua/efeitos dos fármacos , Interleucina-1beta/farmacologia , Interleucina-8/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Animais , Decídua/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Macaca mulatta , Infiltração de Neutrófilos/fisiologia , Gravidez , Nascimento Prematuro/metabolismo , Linfócitos T Reguladores/metabolismo
6.
Am J Pathol ; 184(9): 2390-402, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25058027

RESUMO

The underlying causes of endometrial cancer (EMC) are poorly understood, and treatment options for patients with advanced stages of the disease are limited. Mutations in the phosphatase and tensin homologue gene are frequently detected in EMC. Cyclooxygenase 2 (Cox2) and mammalian target of rapamycin complex 1 (mTORC1) are known downstream targets of the phosphatase and tensin homologue protein, and their activities are up-regulated in EMC. However, it is not clear whether Cox2 and mTORC1 are crucial players in cancer progression or whether they work in parallel or cooperatively. In this study, we used a Cox2 inhibitor, celecoxib, and an mTORC1 inhibitor, rapamycin, in mouse models of EMC and in human EMC cell lines to explore the interactive roles of Cox2 and mTORC1 signaling. We found that a combined treatment with celecoxib and rapamycin markedly reduces EMC progression. We also observed that rapamycin reduces Cox2 expression, whereas celecoxib reduces mTORC1 activity. These results suggest that Cox2 and mTORC1 signaling is cross-regulated and cooperatively exacerbate EMC.


Assuntos
Carcinoma/metabolismo , Ciclo-Oxigenase 2/metabolismo , Neoplasias do Endométrio/metabolismo , Complexos Multiproteicos/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma/patologia , Celecoxib , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Modelos Animais de Doenças , Neoplasias do Endométrio/patologia , Feminino , Humanos , Imuno-Histoquímica , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Pirazóis/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirolimo/farmacologia , Sulfonamidas/farmacologia
7.
Hepatology ; 59(5): 1830-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24115079

RESUMO

UNLABELLED: Inflammation plays a central pathogenic role in the pernicious metabolic and end-organ sequelae of obesity. Among these sequelae, nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the developed world. The twinned observations that obesity is associated with increased activation of the interleukin (IL)-17 axis and that this axis can regulate liver damage in diverse contexts prompted us to address the role of IL-17RA signaling in the progression of NAFLD. We further examined whether microbe-driven IL-17A regulated NAFLD development and progression. We show here that IL-17RA(-/-) mice respond to high-fat diet stress with significantly greater weight gain, visceral adiposity, and hepatic steatosis than wild-type controls. However, obesity-driven lipid accumulation was uncoupled from its end-organ consequences in IL-17RA(-/-) mice, which exhibited decreased steatohepatitis, nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase enzyme expression, and hepatocellular damage. Neutralization of IL-17A significantly reduced obesity-driven hepatocellular damage in wild-type mice. Further, colonization of mice with segmented filamentous bacteria (SFB), a commensal that induces IL-17A production, exacerbated obesity-induced hepatocellular damage. In contrast, SFB depletion protected from obesity-induced hepatocellular damage. CONCLUSION: These data indicate that obesity-driven activation of the IL-17 axis is central to the development and progression of NAFLD to steatohepatitis and identify the IL-17 pathway as a novel therapeutic target in this condition.


Assuntos
Fígado Gorduroso/etiologia , Interleucina-17/fisiologia , Transdução de Sinais/fisiologia , Animais , Infecções Bacterianas/complicações , Dieta Hiperlipídica , Progressão da Doença , Fígado Gorduroso/microbiologia , Inflamação/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Obesidade/complicações , Espécies Reativas de Oxigênio/metabolismo , Receptores de Interleucina-17/fisiologia
8.
STAR Protoc ; 5(2): 103044, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38678572

RESUMO

The amnion is a thin layer of fetal origin in contact with the amniotic fluid which plays a key role at the feto-maternal interface during pregnancy. Here, we present a protocol for isolation of human and Rhesusmacaque amnion cells. We describe steps for tissue dissection, cell isolation for flow cytometry analysis, and RNA isolation for RNA sequencing library preparation and analysis. This protocol can provide insights into altered immunological pathways during intrauterine infections to develop new therapeutic strategies. For complete details on the use and execution of this protocol, please refer to Presicce et al.1.


Assuntos
Âmnio , Separação Celular , Citometria de Fluxo , Placenta , Âmnio/citologia , Humanos , Citometria de Fluxo/métodos , Feminino , Gravidez , Animais , Placenta/citologia , Separação Celular/métodos , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Macaca mulatta
9.
Front Immunol ; 15: 1416162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895127

RESUMO

Introduction: IL6 signaling plays an important role in triggering labor and IL6 is an established biomarker of intrauterine infection/inflammation (IUI) driven preterm labor (PTL). The biology of IL6 during IUI at the maternal-fetal interface was investigated in samples from human subjects and non-human primates (NHP). Methods: Pregnant women with histologic chorioamnionitis diagnosed by placenta histology were recruited (n=28 term, n=43 for preterm pregnancies from 26-36 completed weeks of gestation). IUI was induced in Rhesus macaque by intraamniotic injection of lipopolysachharide (LPS, n=23). IL1 signaling was blocked using Anakinra (human IL-1 receptor antagonist, n=13), and Tumor necrosis factor (TNF) signaling was blocked by anti TNF-antibody (Adalimumab n=14). The blockers were given before LPS. All animals including controls (intraamniotic injection of saline n=27), were delivered 16h after LPS/saline exposure at about 80% gestation. Results: IUI induced a robust expression of IL6 mRNAs in the fetal membranes (chorion-amnion-decidua tissue) both in humans (term and preterm) and NHP. The major sources of IL6 mRNA expression were the amnion mesenchymal cells (AMC) and decidua stroma cells. Additionally, during IUI in the NHP, ADAM17 (a protease that cleaves membrane bound IL6 receptor (IL6R) to release a soluble form) and IL6R mRNA increased in the fetal membranes, and the ratio of IL6 and soluble forms of IL6R, gp130 increased in the amniotic fluid signifying upregulation of IL6 trans-signaling. Both IL1 and TNF blockade suppressed LPS-induced IL6 mRNAs in the AMC and variably decreased elements of IL6 trans-signaling. Discussion: These data suggest that IL1 and TNF blockers may be useful anti-inflammatory agents via suppression of IL6 signaling at the maternal-fetal interface.


Assuntos
Interleucina-6 , Macaca mulatta , Transdução de Sinais , Fator de Necrose Tumoral alfa , Feminino , Gravidez , Humanos , Animais , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Corioamnionite/imunologia , Corioamnionite/metabolismo , Corioamnionite/veterinária , Lipopolissacarídeos/imunologia , Interleucina-1/metabolismo , Adulto , Trabalho de Parto Prematuro/imunologia , Trabalho de Parto Prematuro/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Placenta/metabolismo , Placenta/imunologia
10.
J Clin Med ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892912

RESUMO

Background: Cardiorespiratory fitness positively correlates with longevity and immune health. Regular exercise may provide health benefits by reducing systemic inflammation. In chronic disease conditions, such as chronic heart failure and chronic fatigue syndrome, mechanistic links have been postulated between inflammation, muscle weakness, frailty, catabolic/anabolic imbalance, and aberrant chronic activation of immunity with monocyte upregulation. We hypothesize that (1) temporal changes in transcriptome profiles of peripheral blood mononuclear cells during strenuous acute bouts of exercise using cardiopulmonary exercise testing are present in adult subjects, (2) these temporal dynamic changes are different between healthy persons and heart failure patients and correlate with clinical exercise-parameters and (3) they portend prognostic information. Methods: In total, 16 Heart Failure (HF) patients and 4 healthy volunteers (HV) were included in our proof-of-concept study. All participants underwent upright bicycle cardiopulmonary exercise testing. Blood samples were collected at three time points (TP) (TP1: 30 min before, TP2: peak exercise, TP3: 1 h after peak exercise). We divided 20 participants into 3 clinically relevant groups of cardiorespiratory fitness, defined by peak VO2: HV (n = 4, VO2 ≥ 22 mL/kg/min), mild HF (HF1) (n = 7, 14 < VO2 < 22 mL/kg/min), and severe HF (HF2) (n = 9, VO2 ≤ 14 mL/kg/min). Results: Based on the statistical analysis with 20-100% restriction, FDR correction (p-value 0.05) and 2.0-fold change across the three time points (TP1, TP2, TP3) criteria, we obtained 11 differentially expressed genes (DEG). Out of these 11 genes, the median Gene Expression Profile value decreased from TP1 to TP2 in 10 genes. The only gene that did not follow this pattern was CCDC181. By performing 1-way ANOVA, we identified 8/11 genes in each of the two groups (HV versus HF) while 5 of the genes (TTC34, TMEM119, C19orf33, ID1, TKTL2) overlapped between the two groups. We found 265 genes which are differentially expressed between those who survived and those who died. Conclusions: From our proof-of-concept heart failure study, we conclude that gene expression correlates with VO2 peak in both healthy individuals and HF patients, potentially by regulating various physiological processes involved in oxygen uptake and utilization during exercise. Multi-omics profiling may help identify novel biomarkers for assessing exercise capacity and prognosis in HF patients, as well as potential targets for therapeutic intervention to improve VO2 peak and quality of life. We anticipate that our results will provide a novel metric for classifying immune health.

11.
Cell Rep ; 42(4): 112352, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37027297

RESUMO

Clinical evidence points to a function for B cell-activating factor (BAFF) in pregnancy. However, direct roles for BAFF-axis members in pregnancy have not been examined. Here, via utility of genetically modified mice, we report that BAFF promotes inflammatory responsiveness and increases susceptibility to inflammation-induced preterm birth (PTB). In contrast, we show that the closely related A proliferation-inducing ligand (APRIL) decreases inflammatory responsiveness and susceptibility to PTB. Known BAFF-axis receptors serve a redundant function in signaling BAFF/APRIL presence in pregnancy. Treatment with anti-BAFF/APRIL monoclonal antibodies or BAFF/APRIL recombinant proteins is sufficient to manipulate susceptibility to PTB. Notably, macrophages at the maternal-fetal interface produce BAFF, while BAFF and APRIL presence divergently shape macrophage gene expression and inflammatory function. Overall, our findings demonstrate that BAFF and APRIL play divergent inflammatory roles in pregnancy and provide therapeutic targets for mitigating risk of inflammation-induced PTB.


Assuntos
Nascimento Prematuro , Animais , Feminino , Camundongos , Gravidez , Fator Ativador de Células B , Inflamação , Transdução de Sinais , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
12.
iScience ; 26(11): 108118, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37953944

RESUMO

Intrauterine infection/inflammation (IUI) is a frequent complication of pregnancy leading to preterm labor and fetal inflammation. How inflammation is modulated at the maternal-fetal interface is unresolved. We compared transcriptomics of amnion (a fetal tissue in contact with amniotic fluid) in a preterm Rhesus macaque model of IUI induced by lipopolysaccharide with human cohorts of chorioamnionitis. Bulk RNA sequencing (RNA-seq) amnion transcriptomic profiles were remarkably similar in both Rhesus and human subjects and revealed that induction of key labor-mediating genes such as IL1 and IL6 was dependent on nuclear factor κB (NF-κB) signaling and reversed by the anti-tumor necrosis factor (TNF) antibody Adalimumab. Inhibition of collagen biosynthesis by IUI was partially restored by Adalimumab. Interestingly, single-cell transcriptomics, flow cytometry, and immunohistology demonstrated that a subset of amnion mesenchymal cells (AMCs) increase CD14 and other myeloid cell markers during IUI both in the human and Rhesus macaque. Our data suggest that CD14+ AMCs represent activated AMCs at the maternal-fetal interface.

13.
J Physiol ; 590(3): 519-32, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22155931

RESUMO

There are hints that hypoxia exposure may affect the number of circulating endothelial progenitor cells (EPCs) in humans. To test this hypothesis, the concentration of EPCs was determined by flow cytometry in the peripheral blood of 10 young healthy adults before (0 h), at different times (0.5 h, 1 h, 2 h and 4 h) during a 4 h normobaric hypoxic breathing simulating 4100 m altitude, and in the following recovery breathing room air. Results were interpreted mainly on the basis of the changes in surface expression of CXC chemokine receptor-4 (CXCR-4, a chemokine receptor essential for EPC migration and homing) and the percentage of apoptotic cells, the plasmatic levels of markers of oxidative stress induced by hypoxic breathing. Compared to 0 h, the concentration of EPCs, identified as either CD45(dim)/CD34(+)/KDR(+) or CD45(dim)/CD34(+)/KDR(+)/CD133(+) cells, decreased from 337 ± 83 ml(-1) (mean ± SEM) to 223 ± 52 ml(-1) (0.5 h; P < 0.005) and 100 ± 37 ml(-1) (4 h; P < 0.005), and from 216 ± 91 to 161 ± 50 ml(-1) (0.5 h; P < 0.05) and 45 ± 23 ml(-1) (4 h; P < 0.005), respectively. Upon return to normoxia, their concentration increased slowly, and after 4 h was still lower than at 0 h (P < 0.05). During hypoxia, CXCR-4 expression and plasmatic stromal derived cell factor-1 (SDF-1) increased abruptly (0.5 h: +126% and +13%, respectively; P < 0.05), suggesting cell marginalization as a possible cause of the rapid hypoxia-induced EPC reduction. Moreover, hypoxia exposure induced an increase in EPC apoptosis and markers of oxidative stress, which was significantly evident only starting from 2 h and 4 h after hypoxia offset, respectively, suggesting that EPC apoptosis may contribute to the later phase of hypoxia-induced EPC reduction. Overall, these observations may provide new insights into the understanding of the mechanisms operated by EPCs to maintain endothelial homeostasis.


Assuntos
Apoptose , Endotélio Vascular/citologia , Hipóxia , Células-Tronco/citologia , Adulto , Contagem de Células , Quimiocina CXCL12/sangue , Endotélio Vascular/metabolismo , Humanos , Hipóxia/metabolismo , Masculino , Carbonilação Proteica , Receptores CXCR4/metabolismo , Células-Tronco/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fator A de Crescimento do Endotélio Vascular/sangue , Adulto Jovem
14.
Sci Rep ; 12(1): 8438, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589747

RESUMO

The placenta is a heterogeneous organ whose development involves complex interactions of trophoblasts with decidual, vascular, and immune cells at the fetal-maternal interface. It maintains a critical balance between maternal and fetal homeostasis. Placental dysfunction can lead to adverse pregnancy outcomes including intra-uterine growth restriction, pre-eclampsia, or pre-term birth. Exposure to environmental pollutants contributes to the development of placental abnormalities, with poorly understood molecular underpinning. Here we used a mouse (C57BL/6) model of environmental pollutant exposure by administration of a particulate matter (SRM1649b at 300 µg/day/mouse) suspension intra-nasally beginning 2 months before conception and during gestation, in comparison to saline-exposed controls. Placental transcriptomes, at day 19 of gestation, were determined using bulk RNA-seq from whole placentas of exposed (n = 4) and control (n = 4) animals and scRNAseq of three distinct placental layers, followed by flow cytometry analysis of the placental immune cell landscape. Our results indicate a reduction in vascular placental cells, especially cells responsible for structural integrity, and increase in trophoblast proliferation in animals exposed to particulate matter. Pollution-induced inflammation was also evident, especially in the decidual layer. These data indicate that environmental exposure to air pollutants triggers changes in the placental cellular composition, mediating adverse pregnancy outcomes.


Assuntos
Poluentes Atmosféricos , Doenças Placentárias , Poluentes Atmosféricos/toxicidade , Animais , Decídua , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Material Particulado/toxicidade , Placenta , Gravidez , Trofoblastos
15.
Front Immunol ; 11: 649, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373122

RESUMO

Acute chorioamnionitis is characterized by neutrophilic infiltration and inflammation at the maternal fetal interface. It is a relatively common complication of pregnancy and can have devastating consequences including preterm labor, maternal infections, fetal infection/inflammation, fetal lung, brain, and gastrointestinal tract injury. In this review, we will discuss current understanding of the pathogenesis, immunobiology, and mechanisms of this condition. Most commonly, acute chorioamnionitis is a result of ascending infection with relatively low-virulence organisms such as the Ureaplasma species. Furthermore, recent vaginal microbiome studies suggest that there is a link between vaginal dysbiosis, vaginal inflammation, and ascending infection. Although less common, microorganisms invading the maternal-fetal interface via hematogenous route (e.g., Zika virus, Cytomegalovirus, and Listeria) can cause placental villitis and severe fetal inflammation and injury. We will provide an overview of the knowledge gleaned from different animal models of acute chorioamnionitis and the role of different immune cells in different maternal-fetal compartments. Lastly, we will discuss how infectious agents can break the maternal tolerance of fetal allograft during pregnancy and highlight the novel future therapeutic approaches.


Assuntos
Corioamnionite/imunologia , Infecções/imunologia , Vagina/imunologia , Animais , Disbiose , Feminino , Humanos , Microbiota , Gravidez , Complicações Infecciosas na Gravidez , Vagina/microbiologia
16.
Front Immunol ; 11: 866, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528468

RESUMO

Intra-amniotic (IA) inflammation is associated with significant morbidities for both the mother and the fetus. Prior studies have illustrated many of the effects of IA inflammation on the uterine lining (decidua) and membranous layers of the placenta at the fetal-maternal interface. However, much less is known about the immunological response occurring within the villous placenta. Using a rhesus macaque model of lipopolysaccharide (LPS)-induced IA inflammation, we showed that pregnancy-matched choriodecidua and villi have distinct immunological profiles in rhesus pregnancies. In the choriodecidua, we show that the abundance of neutrophils, multiple populations of antigen-presenting cells, and two populations of natural killer (NK) cells changes with prenatal IA LPS exposure. In contrast, in immune cells within the villous placenta we observed alterations in the abundance of B cells, monocytes, and CD8 T cells. Prior work has illustrated that IA inflammation leads to an increase in tumor necrosis factor alpha (TNFα) at the fetal-maternal interface. In this study, pretreatment with a TNFα blockade partially reversed inflammation in the placental villi. Furthermore, we report that immune cells in the villous placenta sensed LPS during our experimental window, and subsequently activated T cells to produce proinflammatory cytokines. Moreover, this study is the first report of memory T cells in third-trimester non-human primate placental villi and provides evidence that manipulation of immune cells in the villi at the fetal-maternal interface should be considered as a potential therapeutic target for IA inflammation.


Assuntos
Corioamnionite/imunologia , Vilosidades Coriônicas/imunologia , Decídua/imunologia , Leucócitos/imunologia , Ativação Linfocitária , Animais , Biomarcadores/metabolismo , Corioamnionite/induzido quimicamente , Corioamnionite/tratamento farmacológico , Corioamnionite/metabolismo , Vilosidades Coriônicas/efeitos dos fármacos , Vilosidades Coriônicas/metabolismo , Decídua/efeitos dos fármacos , Decídua/metabolismo , Modelos Animais de Doenças , Feminino , Imunofenotipagem , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Lipopolissacarídeos , Macaca mulatta , Gravidez , Transdução de Sinais , Inibidores do Fator de Necrose Tumoral/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
17.
Front Immunol ; 11: 558, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308656

RESUMO

Accumulation of activated neutrophils at the feto-maternal interface is a defining hallmark of intrauterine inflammation (IUI) that might trigger an excessive immune response during pregnancy. Mechanisms responsible of this massive neutrophil recruitment are poorly investigated. We have previously showed that intraamniotic injection of LPS in rhesus macaques induced a neutrophil predominant inflammatory response similar to that seen in human IUI. Here, we demonstrate that anti-TNF antibody (Adalimumab) inhibited ~80% of genes induced by LPS involved in inflammatory signaling and innate immunity in chorio-decidua neutrophils. Consistent with the gene expression data, TNF-blockade decreased LPS-induced neutrophil accumulation and activation at the feto-maternal interface. We also observed a reduction in IL-6 and other pro-inflammatory cytokines but not prostaglandins concentrations in the amniotic fluid. Moreover, TNF-blockade decreased mRNA expression of inflammatory cytokines in the chorio-decidua but not in the uterus, suggesting that inhibition of TNF-signaling decreased the inflammation in a tissue-specific manner within the uterine compartment. Taken together, our results demonstrate a predominant role for TNF-signaling in modulating the neutrophilic infiltration at the feto-maternal interface during IUI and suggest that blockade of TNF-signaling could be considered as a therapeutic approach for IUI, the major leading cause of preterm birth.


Assuntos
Corioamnionite/imunologia , Neutrófilos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Adalimumab/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Corioamnionite/induzido quimicamente , Feminino , Lipopolissacarídeos/toxicidade , Macaca mulatta , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/imunologia , Gravidez , Fator de Necrose Tumoral alfa/antagonistas & inibidores
18.
JCI Insight ; 5(22)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33208552

RESUMO

Infection-driven inflammation in pregnancy is a major cause of spontaneous preterm birth (PTB). Both systemic infection and bacterial ascension through the vagina/cervix to the amniotic cavity are strongly associated with PTB. However, the contribution of maternal or fetal inflammatory responses in the context of systemic or localized models of infection-driven PTB is not well defined. Here, using intraperitoneal or intraamniotic LPS challenge, we examined the necessity and sufficiency of maternal and fetal Toll-like receptor (TLR) 4 signaling in induction of inflammatory vigor and PTB. Both systemic and local LPS challenge promoted induction of inflammatory pathways in uteroplacental tissues and induced PTB. Restriction of TLR4 expression to the maternal compartment was sufficient for induction of LPS-driven PTB in either systemic or intraamniotic challenge models. In contrast, restriction of TLR4 expression to the fetal compartment failed to induce LPS-driven PTB. Vav1-Cre-mediated genetic deletion of TLR4 suggested a critical role for maternal immune cells in inflammation-driven PTB. Further, passive transfer of WT in vitro-derived macrophages and dendritic cells to TLR4-null gravid females was sufficient to induce an inflammatory response and drive PTB. Cumulatively, these findings highlight the critical role for maternal regulation of inflammatory cues in induction of inflammation-driven parturition.


Assuntos
Feto/patologia , Inflamação/complicações , Lipopolissacarídeos/toxicidade , Nascimento Prematuro/patologia , Receptor 4 Toll-Like/fisiologia , Animais , Citocinas/metabolismo , Feminino , Feto/efeitos dos fármacos , Feto/imunologia , Inflamação/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Nascimento Prematuro/etiologia , Nascimento Prematuro/metabolismo
19.
Nat Commun ; 11(1): 2745, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488081

RESUMO

White adipose tissue inflammation, in part via myeloid cell contribution, is central to obesity pathogenesis. Mechanisms regulating adipocyte inflammatory potential and consequent impact of such inflammation in disease pathogenesis remain poorly defined. We show that activation of the type I interferon (IFN)/IFNα receptor (IFNAR) axis amplifies adipocyte inflammatory vigor and uncovers dormant gene expression patterns resembling inflammatory myeloid cells. IFNß-sensing promotes adipocyte glycolysis, while glycolysis inhibition impeded IFNß-driven intra-adipocyte inflammation. Obesity-driven induction of the type I IFN axis and activation of adipocyte IFNAR signaling contributes to obesity-associated pathogenesis in mice. Notably, IFNß effects are conserved in human adipocytes and detection of the type I IFN/IFNAR axis-associated signatures positively correlates with obesity-driven metabolic derangements in humans. Collectively, our findings reveal a capacity for the type I IFN/IFNAR axis to regulate unifying inflammatory features in both myeloid cells and adipocytes and hint at an underappreciated contribution of adipocyte inflammation in disease pathogenesis.


Assuntos
Adipócitos/metabolismo , Inflamação/metabolismo , Interferon Tipo I/metabolismo , Obesidade/metabolismo , Animais , Modelos Animais de Doenças , Expressão Gênica , Humanos , Interferon beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Receptor de Interferon alfa e beta/metabolismo
20.
J Leukoc Biol ; 103(3): 535-543, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29345344

RESUMO

Preterm birth (PTB) is the leading cause of neonatal mortality worldwide. Infection and inflammation are considered main causes of PTB. Among multiple pathogens, Gram-positive bacteria are commonly linked with induction of PTB. Although activation of innate immune responses, via TLR2 engagement, by Gram-positive bacteria is a likely cause, whether induction of PTB depends on the potency of specific microbial components to induce Toll-like receptor (TLR)2-driven inflammation has not been elucidated. Here, we show that TLR2 activation by synthetic lipopeptides, Pam2Cys, and Pam3Cys specifically, variably influenced inflammation and subsequent induction of PTB. Pam2Cys challenge, compared to Pam3Cys, induced PTB and promoted significantly higher expression of inflammatory cytokines, specifically IL-6 and IFN-ß, both in vivo and in vitro. Notably, antibody-mediated neutralization of IL-6 or genetic deletion of type I IFN receptor (IFNAR) was sufficient to protect from Pam2Cys-driven PTB and to temper excessive proinflammatory cytokine production. Conversely, IFN-ß or IL-6 was not sufficient to promote induction of PTB by Pam3Cys. In summary, our data implies a divergent function of TLR2-activating lipopeptides in the magnitude and type of ligand-driven inflammatory vigor in induction of PTB.


Assuntos
Inflamação/fisiopatologia , Lipopeptídeos/administração & dosagem , Nascimento Prematuro , Receptor 2 Toll-Like/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Feminino , Lipopolissacarídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Gravidez , Receptor 2 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA