Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38750334

RESUMO

PURPOSE: Staphylococcus aureus is one of the most common pathogens causing bloodstream infection. A rapid characterisation of resistance to methicillin and, occasionally, to aminoglycosides for particular indications, is therefore crucial to quickly adapt the treatment and improve the clinical outcomes of septic patients. Among analytical technologies, targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a promising tool to detect resistance mechanisms in clinical samples. METHODS: A rapid proteomic method was developed to detect and quantify the most clinically relevant antimicrobial resistance effectors in S. aureus in the context of sepsis: PBP2a, PBP2c, APH(3')-III, ANT(4')-I, and AAC(6')-APH(2''), directly from positive blood cultures and in less than 70 min including a 30-min cefoxitin-induction step. The method was tested on spiked blood culture bottles inoculated with 124 S.aureus, accounting for the known genomic diversity of SCCmec types and the genetic background of the strains. RESULTS: This method provided 99% agreement for PBP2a (n = 98/99 strains) detection. Agreement was 100% for PBP2c (n = 5/5), APH(3')-III (n = 16/16), and ANT(4')-I (n = 20/20), and 94% for AAC(6')-APH(2'') (n = 16/17). Across the entire strain collection, 100% negative agreement was reported for each of the 5 resistance proteins. Additionally, relative quantification of ANT(4')-I expression allowed to discriminate kanamycin-susceptible and -resistant strains, in all strains harbouring the ant(4')-Ia gene. CONCLUSION: The LC-MS/MS method presented herein demonstrates its ability to provide a reliable determination of S. aureus resistance mechanisms, directly from positive blood cultures and in a short turnaround time, as required in clinical laboratories.

2.
Mol Cell Proteomics ; 17(3): 442-456, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29259044

RESUMO

Resistance to ß-lactams in Acinetobacter baumannii involves various mechanisms. To decipher them, whole genome sequencing (WGS) and real-time quantitative polymerase chain reaction (RT-qPCR) were complemented by mass spectrometry (MS) in selected reaction monitoring mode (SRM) in 39 clinical isolates. The targeted label-free proteomic approach enabled, in one hour and using a single method, the quantitative detection of 16 proteins associated with antibiotic resistance: eight acquired ß-lactamases (i.e. GES, NDM-1, OXA-23, OXA-24, OXA-58, PER, TEM-1, and VEB), two resident ß-lactamases (i.e. ADC and OXA-51-like) and six components of the two major efflux systems (i.e. AdeABC and AdeIJK). Results were normalized using "bacterial quantotypic peptides," i.e. peptide markers of the bacterial quantity, to obtain precise protein quantitation (on average 8.93% coefficient of variation for three biological replicates). This allowed to correlate the levels of resistance to ß-lactam with those of the production of acquired as well as resident ß-lactamases or of efflux systems. SRM detected enhanced ADC or OXA-51-like production and absence or increased efflux pump production. Precise protein quantitation was particularly valuable to detect resistance mechanisms mediated by regulated genes or by overexpression of chromosomal genes. Combination of WGS and MS, two orthogonal and complementary techniques, allows thereby interpretation of the resistance phenotypes at the molecular level.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Resistência Microbiana a Medicamentos/fisiologia , beta-Lactamas/farmacologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/genética , Genômica , Fenótipo , Proteômica , beta-Lactamases/genética , beta-Lactamases/metabolismo
4.
Front Microbiol ; 6: 81, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25713571

RESUMO

Both acquired and intrinsic mechanisms play a crucial role in Pseudomonas aeruginosa antibiotic resistance. Many clinically relevant resistance mechanisms result from changes in gene expression, namely multidrug efflux pump overproduction, AmpC ß-lactamase induction or derepression, and inactivation or repression of the carbapenem-specific porin OprD. Changes in gene expression are usually assessed using reverse-transcription quantitative real-time PCR (RT-qPCR) assays. Here, we evaluated label-free Selected Reaction Monitoring (SRM)-based mass spectrometry to directly quantify proteins involved in antibiotic resistance. We evaluated the label-free SRM using a defined set of P. aeruginosa isolates with known resistance mechanisms and compared it with RT-qPCR. Referring to efflux systems, we found a more robust relative quantification of antibiotic resistance mechanisms by SRM than RT-qPCR. The SRM-based approach was applied to a set of clinical P. aeruginosa isolates to detect antibiotic resistance proteins. This multiplexed SRM-based approach is a rapid and reliable method for the simultaneous detection and quantification of resistance mechanisms and we demonstrate its relevance for antibiotic resistance prediction.

5.
Sci Rep ; 5: 13944, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26350205

RESUMO

Mass spectrometry (MS) in Selected Reaction Monitoring (SRM) mode is proposed for in-depth characterisation of microorganisms in a multiplexed analysis. Within 60-80 minutes, the SRM method performs microbial identification (I), antibiotic-resistance detection (R), virulence assessment (V) and it provides epidemiological typing information (T). This SRM application is illustrated by the analysis of the human pathogen Staphylococcus aureus, demonstrating its promise for rapid characterisation of bacteria from positive blood cultures of sepsis patients.


Assuntos
Bactérias/classificação , Bactérias/efeitos dos fármacos , Técnicas de Tipagem Bacteriana , Espectrometria de Massas/métodos , Bactérias/patogenicidade , Técnicas de Tipagem Bacteriana/métodos , Farmacorresistência Bacteriana , Humanos , Reprodutibilidade dos Testes , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/classificação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA