Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Oral Investig ; 26(8): 5325-5337, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35449245

RESUMO

OBJECTIVES: This study evaluated the surface integrity of two types of diamond burs and their effect on the roughness of different CAD/CAM materials. MATERIALS AND METHODS: CAD/CAM materials, Vita Mark II (VM), IPS e.max CAD (EM), Celtra Duo (CD), G-Ceram (GC), and Lava Ultimate (LU) blocks were milled with CEREC MCXL. Five pairs of pointed cylinder burs (CB) and step burs (SB) were used repeatedly. The wear rate of burs was analyzed before and after milling with a scanning electron microscope (SEM) and weighing the burs. The milling time of the blocks at different milling stages was recorded from 2 (M2) to 8 times (M8) of use. The surface roughness (Ra) of blocks was measured with a profilometer. Data from the differences in surface roughness were analyzed using univariate analyses of variance and Kruskal-Wallis tests (alpha = 0.05). RESULTS: For M2, the highest roughness (2.12 ± 0.1 µm) was observed with the VM block. EM blocks presented the highest roughness values (1.82 ± 0.3 µm, 1.85 ± 0.1 µm, and 1.86 ± 0.04 µm) at M4, M6, and M8, respectively. While the highest Ra values were observed for VM (2.12 to 1.43 µm), LU provided the lowest mean Ra (1.62 to 1.33 µm) among the tested materials. After the repeated use of burs up to 8 times, the surface roughness of all the tested materials decreased. Milling of LU resulted in chip deposits on the CB surface in SEM images. The duration of cutting was higher for CD and EM materials than those of other materials, but the milling duration for VM, GC, and LU blocks was similar. SB burs exhibited more wear than CB after repeated milling. CONCLUSIONS: A repeated number of millings more than 4 times decreased the surface integrity of the milling burs, increased the surface roughness of CAD/CAM blocks except for LU, and increased the milling duration. Increased material hardness was more detrimental on bur surface integrity. CLINICAL RELEVANCE: During milling CAD/CAM blocks, clinicians should note that the surface integrity of milling burs decreases after 4 times of use as a function of material hardness where step burs wear quicker than pointed cylinder burs.


Assuntos
Materiais Dentários , Diamante , Cerâmica , Resinas Compostas , Desenho Assistido por Computador , Porcelana Dentária , Teste de Materiais , Propriedades de Superfície
2.
J Oral Implantol ; 39(1): 115-20, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20932120

RESUMO

The prosthetic treatment of patients with an edentulous maxilla opposing mandibular natural teeth is one of the most challenging endeavors that face clinicians. Occlusal forces from the opposing natural teeth may cause fractures in the maxillary prosthesis and also result in advanced bone loss of the edentulous maxilla. With the presence of extreme gagging reflex, the treatment may become more complicated. This article describes and illustrates the 2-stage surgical and prosthetic treatment of a patient with an edentulous maxilla opposing natural teeth. In the beginning, the patient was treated with 4 implants and a maxillary implant-supported overdenture. The extreme gagging reflex and the occlusal forces from the mandibular natural teeth obligated the team a second stage surgical and prosthetic treatment, which included increasing the number of implants after bilateral sinus lifting in the posterior maxilla and fabricating a maxillary fixed hybrid prosthesis made of micro-ceramic composite that yielded a satisfactory result.


Assuntos
Planejamento de Prótese Dentária , Prótese Dentária Fixada por Implante , Prótese Total Superior , Arcada Edêntula/reabilitação , Levantamento do Assoalho do Seio Maxilar , Implantes Dentários , Porcelana Dentária , Falha de Restauração Dentária , Engasgo , Humanos , Arcada Edêntula/cirurgia , Masculino , Maxila/cirurgia , Pessoa de Meia-Idade , Reoperação
3.
PLoS One ; 18(3): e0282509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36877717

RESUMO

This study compared the accuracy (trueness and precision) of stone models fabricated using two brands of CAD/CAM optimized stones Cerec Stone (BC) and Elite Master (EM), and a conventional type IV stone Elite Rock Fast (ERF). 30 conventional Type IV and scannable stone complete-arch models were scanned with a blue LED extraoral scanner, and root mean square values were obtained. 6 abutments were used in complete-arch models. The digital models were compared with the master model to evaluate their trueness using model superimposition with Geomagic software. Precision was determined for each case by superimposing combinations of the 10 datasets in each group. The point cloud density of each model was calculated with MeshLab software. Kruskal-Wallis and Mann-Whitney non-parametric tests were used for the statistical analysis. The trueness of the stone models was 96 µm for the BC, 88.2 µm for the EM, and 87.6 µm for the ERF. There were no significant differences between the tested dental stones (p = .768). However, the EM models (35.6 µm) were more precise than the BC (46.9 µm) and ERF (56.4 µm) models (p = .001, p < .001). EM models also showed the highest point cloud density. There were significant differences in point cloud density (p = .003). The EM models showed significant differences in precision but no significant differences in terms of trueness. Although EM was more precise and had the highest point cloud density, all models were within the clinically acceptable limit.

4.
Polymers (Basel) ; 15(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37242962

RESUMO

Cross-linking agents are incorporated into denture base materials to improve their mechanical properties. This study investigated the effects of various cross-linking agents, with different cross-linking chain lengths and flexibilities, on the flexural strength, impact strength, and surface hardness of polymethyl methacrylate (PMMA). The cross-linking agents used were ethylene glycol dimethacrylate (EGDMA), tetraethylene glycol dimethacrylate (TEGDMA), tetraethylene glycol diacrylate (TEGDA), and polyethylene glycol dimethacrylate (PEGDMA). These agents were added to the methyl methacrylate (MMA) monomer component in concentrations of 5%, 10%, 15%, and 20% by volume and 10% by molecular weight. A total of 630 specimens, comprising 21 groups, were fabricated. Flexural strength and elastic modulus were assessed using a 3-point bending test, impact strength was measured via the Charpy type test, and surface Vickers hardness was determined. Statistical analyses were performed using the Kolmogorov-Smirnov Test, Kruskal-Wallis Test, Mann-Whitney U Test, and ANOVA with post hoc Tamhane test (p ≤ 0.05). No significant increase in flexural strength, elastic modulus, or impact strength was observed in the cross-linking groups compared to conventional PMMA. However, surface hardness values notably decreased with the addition of 5% to 20% PEGDMA. The incorporation of cross-linking agents in concentrations ranging from 5% to 15% led to an improvement in the mechanical properties of PMMA.

5.
Eur Oral Res ; 55(2): 80-85, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34250474

RESUMO

PURPOSE: This study aims to compare the accuracies of full-arch models printed by two different 3D printing technologies. MATERIALS AND METHODS: A mandibular horseshoe-shaped master model was designed with RapidForm XOR2 software The master model was printed 10 times with 3D printers using direct light processing (DLP) and PolyJet technology (n=20). The printed models were then scanned with an industrial scanner and saved in STL file. All digital models superimposed with the master model STL file and comparison of the trueness was performed using Geomagic Control 3D analysis software. The precision was calculated by superimposing combinations of the 10 data sets in each group. RESULTS: The trueness of printed models was 46 µm for the DLP printer and 51 µm for PolyJet printer; however, this difference was not statistically significant (p=0.155). The precision of printed models was 43 µm for the DLP printer and 54 µm for PolyJet printer. DLP printed models were more precise than the PolyJet printed models (p<0.001). CONCLUSION: The 3D printing technologies showed significant differences in the trueness of full-arch measurements. Although DLP printed models had better trueness than PolyJet printed models, all of the 3D printed models were clinically acceptable and might be used for the production of fixed restorations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA