Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Neurooncol ; 138(3): 489-498, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29564747

RESUMO

BACKGROUND: Sym004 is a mixture of two monoclonal antibodies (mAbs), futuximab and modotuximab, targeting non-overlapping epitopes on the epidermal growth factor receptor (EGFR). Previous studies have shown that Sym004 is more efficient at inducing internalization and degradation of EGFR than individual components, which translates into superior cancer cell inhibition. We investigated whether Sym004 induces removal of EGFRvIII and if this removal translates into tumor growth inhibition in hard-to-treat glioblastomas (GBMs) harboring the mutated, constitutively active EGFR variant III (EGFRvIII). METHODS: To address this question, we tested the effect of Sym004 versus cetuximab in eight patient-derived GBM xenograft models expressing either wild-type EGFR (EGFRwt) and/or mutant EGFRvIII. All models were tested as both subcutaneous and orthotopic intracranial xenograft models. RESULTS: In vitro studies demonstrated that Sym004 internalized and removed EGFRvIII more efficiently than mAbs, futuximab, modotuximab, and cetuximab. Removal of EGFRvIII by Sym004 translated into significant in vivo anti-tumor activity in all six EGFRvIII xenograft models. Furthermore, the anti-tumor activity of Sym004 in vivo was superior to that of its individual components, futuximab and modotuximab, suggesting a clear synergistic effect of the mAbs in the mixture. CONCLUSION: These results demonstrate the broad activity of Sym004 in patient-derived EGFRvIII-expressing GBM xenograft models and provide a clear rationale for clinical evaluation of Sym004 in EGFRvIII-positive adult GBM patients.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Receptores ErbB/genética , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Feminino , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Tela Subcutânea , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Appl Microbiol Biotechnol ; 101(7): 2747-2766, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28013405

RESUMO

D2C7-(scdsFv)-PE38KDEL (D2C7-IT) is a novel recombinant Pseudomonas exotoxin A-based immunotoxin (IT), targeting both wild-type epidermal growth factor receptor (EGFRwt) and mutant EGFR variant III (EGFRvIII) proteins overexpressed in glioblastomas. Initial pre-clinical testing demonstrated the anti-tumor efficacy of D2C7-IT against orthotopic glioblastoma xenograft models expressing EGFRwt, EGFRvIII, or both EGFRwt and EGFRvIII. A good laboratory practice (GLP) manufacturing process was developed to produce sufficient material for a phase I/II clinical trial. D2C7-IT was expressed under the control of the T7 promoter in Escherichia coli BLR (λ DE3). D2C7-IT was produced by a 10-L batch fermentation process and was then purified from inclusion bodies using anion exchange, size exclusion, and an endotoxin removal process that achieved a yield of over 300 mg of purified protein. The final vialed batch of D2C7-IT for clinical testing was at a concentration of 0.12 ± 0.1 mg/mL, the pH was at 7.4 ± 0.4, and endotoxin levels were below the detection limit of 10 EU/mL (1.26 EU/mL). The stability of the vialed D2C7-IT has been monitored over a period of 42 months through protein concentration, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), isoelectric focusing, size exclusion chromatography, cytotoxicity, sterility, and pH measurements. The vialed D2C7-IT is currently being tested in a phase I/II clinical trial by intratumoral convection-enhanced delivery for 72 h in patients with recurrent glioblastoma (NCT02303678, D2C7 for Adult Patients with Recurrent Malignant Glioma; clinicaltrials.gov ).


Assuntos
Imunotoxinas/metabolismo , ADP Ribose Transferases/genética , Adulto , Toxinas Bacterianas/genética , Linhagem Celular Tumoral , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Estabilidade de Medicamentos , Eletroforese em Gel de Poliacrilamida , Receptores ErbB/genética , Receptores ErbB/metabolismo , Escherichia coli/genética , Exotoxinas/genética , Fermentação , Glioblastoma/tratamento farmacológico , Humanos , Imunotoxinas/química , Imunotoxinas/genética , Imunotoxinas/uso terapêutico , Controle de Qualidade , Fatores de Virulência/genética , Exotoxina A de Pseudomonas aeruginosa
3.
Invest New Drugs ; 34(2): 149-58, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26728879

RESUMO

D2C7-(scdsFv)-PE38KDEL (D2C7-IT) is a novel immunotoxin that reacts with wild-type epidermal growth factor receptor (EGFRwt) and mutant EGFRvIII proteins overexpressed in glioblastomas. This study assessed the toxicity of intracerebral administration of D2C7-IT to support an initial Food and Drug Administration Investigational New Drug application. After the optimization of the formulation and administration, two cohorts (an acute and chronic cohort necropsied on study days 5 and 34) of Sprague-Dawley (SD) rats (four groups of 5 males and 5 females) were infused with the D2C7-IT formulation at total doses of 0, 0.05, 0.1, 0.4 µg (the acute cohort) and 0, 0.05, 0.1, 0.35 µg (the chronic cohort) for approximately 72 h by intracerebral convection-enhanced delivery using osmotic pumps. Mortality was observed in the 0.40 µg (5/10 rats) and 0.35 µg (4/10 rats) high-dose groups of each cohort. Body weight loss and abnormal behavior were only revealed in the rats treated with high doses of D2C7-IT. No dose-related effects were observed in clinical laboratory tests in either cohort. A gross pathologic examination of systemic tissues from the high-dose and control groups in both cohorts exhibited no dose-related or drug-related pathologic findings. Brain histopathology revealed the frequent occurrence of dose-related encephalomalacia, edema, and demyelination in the high-dose groups of both cohorts. In this study, the maximum tolerated dose of D2C7-IT was determined to be between 0.10 and 0.35 µg, and the no-observed-adverse-effect-level was 0.05 µg in SD rats. Both parameters were utilized to design the Phase I/II D2C7-IT clinical trial.


Assuntos
Convecção , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Imunoconjugados/administração & dosagem , Imunoconjugados/toxicidade , Imunotoxinas/administração & dosagem , Imunotoxinas/toxicidade , Anticorpos de Cadeia Única/administração & dosagem , Anticorpos de Cadeia Única/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Feminino , Concentração Inibidora 50 , Injeções Intraventriculares , Masculino , Ratos Sprague-Dawley
4.
J Virol ; 88(22): 13135-48, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25187541

RESUMO

UNLABELLED: Protein synthesis, the most energy-consuming process in cells, responds to changing physiologic priorities, e.g., upon mitogen- or stress-induced adaptations signaled through the mitogen-activated protein kinases (MAPKs). The prevailing status of protein synthesis machinery is a viral pathogenesis factor, particularly for plus-strand RNA viruses, where immediate translation of incoming viral RNAs shapes host-virus interactions. In this study, we unraveled signaling pathways centered on the ERK1/2 and p38α MAPK-interacting kinases MNK1/2 and their role in controlling 7-methyl-guanosine (m(7)G) "cap"-independent translation at enterovirus type 1 internal ribosomal entry sites (IRESs). Activation of Raf-MEK-ERK1/2 signals induced viral IRES-mediated translation in a manner dependent on MNK1/2. This effect was not due to MNK's known functions as eukaryotic initiation factor (eIF) 4G binding partner or eIF4E(S209) kinase. Rather, MNK catalytic activity enabled viral IRES-mediated translation/host cell cytotoxicity through negative regulation of the Ser/Arg (SR)-rich protein kinase (SRPK). Our investigations suggest that SRPK activity is a major determinant of type 1 IRES competency, host cell cytotoxicity, and viral proliferation in infected cells. IMPORTANCE: We are targeting unfettered enterovirus IRES activity in cancer with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES. A phase I clinical trial of PVSRIPO with intratumoral inoculation in patients with recurrent glioblastoma (GBM) is showing early promise. Viral translation proficiency in infected GBM cells is a core requirement for the antineoplastic efficacy of PVSRIPO. Therefore, it is critically important to understand the mechanisms controlling viral cap-independent translation in infected host cells.


Assuntos
Enterovirus/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais/biossíntese , Linhagem Celular , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos
5.
PLoS One ; 19(3): e0299820, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507437

RESUMO

Targeting endolysosomes is a strategy extensively pursued for treating cancers, including glioblastomas (GBMs), on the basis that the intact function of these subcellular organelles is key to tumor cell autophagy and survival. Through gene expression analyses and cell type abundance estimation in GBMs, we showed that genes associated with the endolysosomal machinery are more prominently featured in non-tumor cells in GBMs than in tumor cells, and that tumor-associated macrophages represent the primary immune cell type that contributes to this trend. Further analyses found an enrichment of endolysosomal pathway genes in immunosuppressive (pro-tumorigenic) macrophages, such as M2-like macrophages or those associated with worse prognosis in glioma patients, but not in those linked to inflammation (anti-tumorigenic). Specifically, genes critical to the hydrolysis function of endolysosomes, including progranulin and cathepsins, were among the most positively correlated with immunosuppressive macrophages, and elevated expression of these genes is associated with worse patient survival in GBMs. Together, these results implicate the hydrolysis function of endolysosomes in shaping the immunosuppressive microenvironment of GBM. We propose that targeting endolysosomes, in addition to its detrimental effects on tumor cells, can be leveraged for modulating immunosuppression to render GBMs more amenable to immunotherapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Microambiente Tumoral/genética
6.
Int J Cancer ; 132(10): 2339-48, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23115013

RESUMO

Our study demonstrates the glioma tumor antigen podoplanin to be present at very high levels (>90%) in both glioblastoma (D2159MG, D08-0308MG and D08-0493MG) and medulloblastoma (D283MED, D425MED and DAOY) xenografts and cell line. We constructed a novel recombinant single-chain antibody variable region fragment (scFv), NZ-1, specific for podoplanin from the NZ-1 hybridoma. NZ-1-scFv was then fused to Pseudomonas exotoxin A, carrying a C-terminal KDEL peptide (NZ-1-PE38KDEL). The immunotoxin (IT) was further stabilized by a disulfide (ds) bond between the heavy-chain and light-chain variable regions as the construct NZ-1-(scdsFv)-PE38KDEL. NZ-1-(scdsFv)-PE38KDEL exhibited significant reactivity to glioblastoma and medulloblastoma cells. The affinity of NZ-1-(scdsFv), NZ-1-(scdsFv)-PE38KDEL and NZ-1 antibody for podoplanin peptide was 2.1 × 10(-8) M, 8.0 × 10(-8) M and 3.9 × 10(-10) M, respectively. In a protein stability assay, NZ-1-(scdsFv)-PE38KDEL retained 33-98% of its activity, whereas that of NZ-1-PE38KDEL declined to 13% of its initial levels after incubation at 37°C for 3 days. In vitro cytotoxicity of the NZ-1-(scdsFv)-PE38KDEL was measured in cells isolated from glioblastoma xenografts, D2159MG, D08-0308MG and D08-0493MG, and in the medulloblastoma D283MED, D425MED and DOAY xenografts and cell line. The NZ-1-(scdsFv)-PE38KDEL IT was highly cytotoxic, with an 50% inhibitory concentration in the range of 1.6-29 ng/ml. Significantly, NZ-1-(scdsFv)-PE38KDEL demonstrated tumor growth delay, averaging 24 days (p < 0.001) and 21 days (p < 0.001) in D2159MG and D283MED in vivo tumor models, respectively. Crucially, in the D425MED intracranial tumor model, NZ-1-(scdsFv)-PE38KDEL caused a 41% increase in survival (p ≤ 0.001). In preclinical studies, NZ-1-(scdsFv)-PE38KDEL exhibited significant potential as a targeting agent for malignant brain tumors.


Assuntos
ADP Ribose Transferases/imunologia , Toxinas Bacterianas/imunologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Exotoxinas/imunologia , Glioblastoma/tratamento farmacológico , Glioblastoma/imunologia , Meduloblastoma/tratamento farmacológico , Meduloblastoma/imunologia , Glicoproteínas de Membrana/imunologia , Anticorpos de Cadeia Única/imunologia , Fatores de Virulência/imunologia , ADP Ribose Transferases/uso terapêutico , Toxinas Bacterianas/uso terapêutico , Linhagem Celular Tumoral , Exotoxinas/uso terapêutico , Feminino , Humanos , Masculino , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/uso terapêutico , Fatores de Virulência/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Exotoxina A de Pseudomonas aeruginosa
7.
Future Oncol ; 9(7): 977-90, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23837761

RESUMO

Modest improvement in brain tumor patient survival has been achieved through advances in surgical, adjuvant radiation and chemotherapeutic strategies. However, these traditional approaches have been unsuccessful in permanently controlling these aggressive tumors, with recurrence being quite common. Hence, there is a need for novel therapeutic approaches that specifically target the molecularly diverse brain tumor cell population. The ability of the immune system to recognize altered tumor cells while avoiding surrounding normal cells offers an enormous advantage over the nonspecific nature of the conventional treatment schemes. Therefore, immunotherapy represents a promising approach that may supplement the standard therapies in eliminating the residual brain tumor cells. This review summarizes different immunotherapeutic approaches currently being tested for malignant brain tumor treatment.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Células Dendríticas/imunologia , Imunoterapia/métodos , Linfócitos T/imunologia , Anticorpos Monoclonais/uso terapêutico , Receptores ErbB/genética , Receptores ErbB/imunologia , Engenharia Genética/métodos , Humanos , Imunotoxinas/uso terapêutico , Radioimunoterapia/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Linfócitos T/fisiologia
8.
Cell Death Dis ; 14(8): 561, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37626037

RESUMO

Cellular stress responses including the unfolded protein response (UPR) decide over the fate of an individual cell to ensure survival of the entire organism. During physiologic UPR counter-regulation, protective proteins are upregulated to prevent cell death. A similar strategy induces resistance to UPR in cancer. Therefore, we hypothesized that blocking protein synthesis following induction of UPR substantially enhances drug-induced apoptosis of malignant cells. In line, upregulation of the chaperone BiP was prevented by simultaneous arrest of protein synthesis in B cell malignancies. Cytotoxicity by immunotoxins-approved inhibitors of protein synthesis-was synergistically enhanced in combination with UPR-inducers in seven distinct hematologic and three solid tumor entities in vitro. Synergistic cell death depended on mitochondrial outer membrane permeabilization via BAK/BAX, which correlated with synergistic, IRE1α-dependent reduction of BID, accompanied by an additive fall of MCL-1. The strong synergy was reproduced in vivo against xenograft mouse models of mantle cell lymphoma, Burkitt's lymphoma, and patient-derived acute lymphoblastic leukemia. In contrast, synergy was absent in blood cells of healthy donors suggesting a tumor-specific vulnerability. Together, these data support clinical evaluation of blocking stress response counter-regulation using inhibitors of protein synthesis as a novel therapeutic strategy.


Assuntos
Endorribonucleases , Neoplasias , Humanos , Animais , Camundongos , Proteínas Serina-Treonina Quinases , Apoptose , Morte Celular , Transporte Biológico , Modelos Animais de Doenças , Neoplasias/tratamento farmacológico
9.
Acta Neuropathol Commun ; 11(1): 50, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966348

RESUMO

Gangliogliomas are brain tumors composed of neuron-like and macroglia-like components that occur in children and young adults. Gangliogliomas are often characterized by a rare population of immature astrocyte-appearing cells expressing CD34, a marker expressed in the neuroectoderm (neural precursor cells) during embryogenesis. New insights are needed to refine tumor classification and to identify therapeutic approaches. We evaluated five gangliogliomas with single nucleus RNA-seq, cellular indexing of transcriptomes and epitopes by sequencing, and/or spatially-resolved RNA-seq. We uncovered a population of CD34+ neoplastic cells with mixed neuroectodermal, immature astrocyte, and neuronal markers. Gene regulatory network interrogation in these neuroectoderm-like cells revealed control of transcriptional programming by TCF7L2/MEIS1-PAX6 and SOX2, similar to that found during neuroectodermal/neural development. Developmental trajectory analyses place neuroectoderm-like tumor cells as precursor cells that give rise to neuron-like and macroglia-like neoplastic cells. Spatially-resolved transcriptomics revealed a neuroectoderm-like tumor cell niche with relative lack of vascular and immune cells. We used these high resolution results to deconvolute clinically-annotated transcriptomic data, confirming that CD34+ cell-associated gene programs associate with gangliogliomas compared to other glial brain tumors. Together, these deep transcriptomic approaches characterized a ganglioglioma cellular hierarchy-confirming CD34+ neuroectoderm-like tumor precursor cells, controlling transcription programs, cell signaling, and associated immune cell states. These findings may guide tumor classification, diagnosis, prognostication, and therapeutic investigations.


Assuntos
Neoplasias Encefálicas , Ganglioglioma , Células-Tronco Neurais , Criança , Humanos , Ganglioglioma/patologia , Transcriptoma , Placa Neural/patologia , Células-Tronco Neurais/patologia , Neoplasias Encefálicas/patologia
10.
Sci Transl Med ; 15(682): eabn5649, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36753564

RESUMO

D2C7-immunotoxin (IT), a dual-specific IT targeting wild-type epidermal growth factor receptor (EGFR) and mutant EGFR variant III (EGFRvIII) proteins, demonstrates encouraging survival outcomes in a subset of patients with glioblastoma. We hypothesized that immunosuppression in glioblastoma limits D2C7-IT efficacy. To improve the response rate and reverse immunosuppression, we combined D2C7-IT tumor cell killing with αCD40 costimulation of antigen-presenting cells. In murine glioma models, a single intratumoral injection of D2C7-IT+αCD40 treatment activated a proinflammatory phenotype in microglia and macrophages, promoted long-term tumor-specific CD8+ T cell immunity, and generated cures. D2C7-IT+αCD40 treatment increased intratumoral Slamf6+CD8+ T cells with a progenitor phenotype and decreased terminally exhausted CD8+ T cells. D2C7-IT+αCD40 treatment stimulated intratumoral CD8+ T cell proliferation and generated cures in glioma-bearing mice despite FTY720-induced peripheral T cell sequestration. Tumor transcriptome profiling established CD40 up-regulation, pattern recognition receptor, cell senescence, and immune response pathway activation as the drivers of D2C7-IT+αCD40 antitumor responses. To determine potential translation, immunohistochemistry staining confirmed CD40 expression in human GBM tissue sections. These promising preclinical data allowed us to initiate a phase 1 study with D2C7-IT+αhCD40 in patients with malignant glioma (NCT04547777) to further evaluate this treatment in humans.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Imunotoxinas , Humanos , Animais , Camundongos , Glioblastoma/patologia , Imunotoxinas/genética , Linfócitos T CD8-Positivos , Imunidade Adaptativa , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/terapia
11.
Clin Dev Immunol ; 2012: 480429, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22400035

RESUMO

Despite advances in conventional treatment modalities for malignant brain tumors-surgery, radiotherapy, and chemotherapy-the prognosis for patients with high-grade astrocytic tumor remains dismal. The highly heterogeneous and diffuse nature of astrocytic tumors calls for the development of novel therapies. Advances in genomic and proteomic research indicate that treatment of brain tumor patients can be increasingly personalized according to the characteristics of the targeted tumor and its environment. Consequently, during the last two decades, a novel class of investigative drug candidates for the treatment of central nervous system neoplasia has emerged: recombinant fusion protein conjugates armed with cytotoxic agents targeting tumor-specific antigens. The clinical applicability of the tumor-antigen-directed cytotoxic proteins as a safe and viable therapy for brain tumors is being investigated. Thus far, results from ongoing clinical trials are encouraging, as disease stabilization and patient survival prolongation have been observed in at least 109 cases. This paper summarizes the major findings pertaining to treatment with the different antiglioma cytotoxins at the preclinical and clinical stages.


Assuntos
Neoplasias Encefálicas/terapia , Glioma/terapia , Imunotoxinas/uso terapêutico , Terapia de Alvo Molecular/métodos , Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/mortalidade , Ensaios Clínicos como Assunto , Glioma/imunologia , Glioma/mortalidade , Humanos , Imunotoxinas/administração & dosagem , Imunotoxinas/imunologia , Medicina de Precisão , Prognóstico , Proteômica , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/uso terapêutico , Análise de Sobrevida , Microambiente Tumoral/imunologia
12.
Front Immunol ; 12: 661290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995384

RESUMO

Intestinal immunity is coordinated by specialized mononuclear phagocyte populations, constituted by a diversity of cell subsets. Although the cell subsets constituting the mononuclear phagocyte network are thought to be similar in both small and large intestine, these organs have distinct anatomy, microbial composition, and immunological demands. Whether these distinctions demand organ-specific mononuclear phagocyte populations with dedicated organ-specific roles in immunity are unknown. Here we implement a new strategy to subset murine intestinal mononuclear phagocytes and identify two novel subsets which are colon-specific: a macrophage subset and a Th17-inducing dendritic cell (DC) subset. Colon-specific DCs and macrophages co-expressed CD24 and CD14, and surprisingly, both were dependent on the transcription factor IRF4. Novel IRF4-dependent CD14+CD24+ macrophages were markedly distinct from conventional macrophages and failed to express classical markers including CX3CR1, CD64 and CD88, and surprisingly expressed little IL-10, which was otherwise robustly expressed by all other intestinal macrophages. We further found that colon-specific CD14+CD24+ mononuclear phagocytes were essential for Th17 immunity in the colon, and provide definitive evidence that colon and small intestine have distinct antigen presenting cell requirements for Th17 immunity. Our findings reveal unappreciated organ-specific diversity of intestine-resident mononuclear phagocytes and organ-specific requirements for Th17 immunity.


Assuntos
Colo/imunologia , Células Dendríticas/imunologia , Macrófagos/imunologia , Fagócitos/imunologia , Células Th17/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígeno CD24/imunologia , Antígeno CD24/metabolismo , Colo/citologia , Colo/metabolismo , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Expressão Gênica/imunologia , Fatores Reguladores de Interferon/imunologia , Fatores Reguladores de Interferon/metabolismo , Intestino Delgado/imunologia , Receptores de Lipopolissacarídeos/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Camundongos da Linhagem 129 , Camundongos Knockout , Camundongos Transgênicos , Fagócitos/metabolismo , Receptor da Anafilatoxina C5a/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Células Th17/metabolismo
13.
Biochem Biophys Res Commun ; 391(1): 750-5, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19944071

RESUMO

The lacto-series gangliosides 3'-isoLM1 and 3',6'-isoLD1 have been identified as tumor-associated antigens whose formation is initiated by the Lc3-synthase. Until now, high-affinity IgG monoclonal antibodies (mAbs) against 3'-isoLM1 and 3',6'-isoLD1, which are highly expressed in gliomas, have not been developed, although mAbs against lacto-series gangliosides are powerful tools for functional studies. We previously produced the Lc3-synthase gene beta3Gn-T5 knockout mice. In this study, we immunized beta3Gn-T5 knockout mice with 3'-isoLM1/3',6'-isoLD1 and produced the anti-3'-isoLM1/3',6'-isoLD1 mAb GMab-1, of the IgG(3) subclass, which should be useful for functional analysis of lacto-series gangliosides and for antibody-based therapy of gliomas.


Assuntos
Anticorpos Monoclonais/imunologia , Biomarcadores Tumorais/imunologia , Gangliosídeos/imunologia , Glioma/imunologia , Imunoglobulina G/imunologia , Animais , Anticorpos Monoclonais/biossíntese , Imunoglobulina G/biossíntese , Camundongos , Camundongos Knockout , N-Acetilglucosaminiltransferases/genética
14.
PLoS One ; 14(1): e0210608, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30625226

RESUMO

Standard treatment, unfortunately, yields a poor prognosis for patients with primary or metastatic cancers in the central nervous system, indicating a necessity for novel therapeutic agents. Immunotoxins (ITs) are a class of promising therapeutic candidates produced by fusing antibody fragments with toxin moieties. In this study, we investigated if inherent resistance to IT cytotoxicity can be overcome by rational combination with pro-apoptotic enhancers. Therefore, we combined ITs (9.2.27-PE38KDEL or Mel-14-PE38KDEL) targeting chondroitin sulfate proteoglycan 4 (CSPG4) with a panel of Bcl-2 family inhibitors (ABT-737, ABT-263, ABT-199 [Venetoclax], A-1155463, and S63845) against patient-derived glioblastoma, melanoma, and breast cancer cells/cell lines. In vitro cytotoxicity assays demonstrated that the addition of the ABT compounds, specifically ABT-737, sensitized the different tumors to IT treatment, and improved the IC50 values of 9.2.27-PE38KDEL up to >1,000-fold. Mechanistic studies using 9.2.27-PE38KDEL and ABT-737 revealed that increased levels of intracellular IT, processed (active) exotoxin, and PARP cleavage correlated with the enhanced sensitivity to the combination treatment. Furthermore, we confirmed the synergistic effect of 9.2.27-PE38KDEL and ABT-737 combination therapy in orthotopic GBM xenograft and cerebral melanoma metastasis models in nude mice. Our study defines strategies for overcoming IT resistance and enhancing specific antitumor cytotoxicity in primary and metastatic brain tumors.


Assuntos
Antineoplásicos/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Imunotoxinas/uso terapêutico , Nitrofenóis/uso terapêutico , Sulfonamidas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Compostos de Bifenilo/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Exotoxinas/farmacologia , Furina/farmacologia , Humanos , Imunotoxinas/farmacologia , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Proteínas de Membrana/metabolismo , Camundongos Nus , Modelos Biológicos , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Análise de Sobrevida , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Immunother Cancer ; 7(1): 142, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142380

RESUMO

BACKGROUND: D2C7-IT is a novel immunotoxin (IT) targeting wild-type epidermal growth factor receptor (EGFRwt) and mutant EGFR variant III (EGFRvIII) proteins in glioblastoma. In addition to inherent tumoricidal activity, immunotoxins induce secondary immune responses through the activation of T cells. However, glioblastoma-induced immune suppression is a major obstacle to an effective and durable immunotoxin-mediated antitumor response. We hypothesized that D2C7-IT-induced immune response could be effectively augmented in combination with αCTLA-4/αPD-1/αPD-L1 therapies in murine models of glioma. METHODS: To study this, we overexpressed the D2C7-IT antigen, murine EGFRvIII (dmEGFRvIII), in established glioma lines, CT-2A and SMA560. The reactivity and therapeutic efficacy of D2C7-IT against CT-2A-dmEGFRvIII and SMA560-dmEGFRvIII cells was determined by flow cytometry and in vitro cytotoxicity assays, respectively. Antitumor efficacy of D2C7-IT was examined in immunocompetent, intracranial murine glioma models and the role of T cells was assessed by CD4+ and CD8+ T cell depletion. In vivo efficacy of D2C7-IT/αCTLA-4/αPD-1 monotherapy or D2C7-IT+αCTLA-4/αPD-1 combination therapy was evaluated in subcutaneous unilateral and bilateral CT-2A-dmEGFRvIII glioma-bearing immunocompetent mice. Further, antitumor efficacy of D2C7-IT+αCTLA-4/αPD-1/αPD-L1/αTim-3/αLag-3/αCD73 combination therapy was evaluated in intracranial CT-2A-dmEGFRvIII and SMA560-dmEGFRvIII glioma-bearing mice. Pairwise differences in survival curves were assessed using the generalized Wilcoxon test. RESULTS: D2C7-IT effectively killed CT-2A-dmEGFRvIII (IC50 = 0.47 ng/mL) and SMA560-dmEGFRvIII (IC50 = 1.05 ng/mL) cells in vitro. Treatment of intracranial CT-2A-dmEGFRvIII and SMA560-dmEGFRvIII tumors with D2C7-IT prolonged survival (P = 0.0188 and P = 0.0057, respectively), which was significantly reduced by the depletion of CD4+ and CD8+ T cells. To augment antitumor immune responses, we combined D2C7-IT with αCTLA-4/αPD-1 in an in vivo subcutaneous CT-2A-dmEGFRvIII model. Tumor-bearing mice exhibited complete tumor regressions (4/10 in D2C7-IT+αCTLA-4 and 5/10 in D2C7-IT+αPD-1 treatment groups), and combination therapy-induced systemic antitumor response was effective against both dmEGFRvIII-positive and dmEGFRvIII-negative CT-2A tumors. In a subcutaneous bilateral CT-2A-dmEGFRvIII model, D2C7-IT+αCTLA-4/αPD-1 combination therapies showed dramatic regression of the treated tumors and measurable regression of untreated tumors. Notably, in CT-2A-dmEGFRvIII and SMA560-dmEGFRvIII intracranial glioma models, D2C7-IT+αPD-1/αPD-L1 combinations improved survival, and in selected cases generated cures and protection against tumor re-challenge. CONCLUSIONS: These data support the development of D2C7-IT and immune checkpoint blockade combinations for patients with malignant glioma.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Receptores ErbB/uso terapêutico , Imunotoxinas/efeitos dos fármacos , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Receptores ErbB/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL
17.
J Cell Biochem ; 104(6): 2091-106, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18393360

RESUMO

The p27(Kip1) (p27) cyclin-dependent kinase inhibitor and c-Myc oncoprotein play essential roles in control of cell cycle progression and apoptosis. Induction of p27 (CDKN1B) gene transcription by Forkhead box O proteins such as FOXO3a leads to growth arrest and apoptosis. Previously, we observed that B cell receptor (surface IgM) engagement of WEHI 231 immature B lymphoma cells with an anti-IgM antibody results in activation of FOXO3a, growth arrest and apoptosis. As ectopic c-Myc expression in these cells prevented anti-IgM induction of p27 and cell death, we hypothesized that c-Myc represses FOXO3a-mediated transcription. Here we show that c-Myc inhibits FOXO3a-mediated activation of the p27 promoter in multiple cell lines. The mechanism of this repression was explored using a combination of co-immunoprecipitation, oligonucleotide precipitation, and chromatin immunoprecipitation experiments. The studies demonstrate a functional association of FOXO3a and c-Myc on a proximal Forkhead binding element in the p27 promoter. This association involves the Myc box II domain of c-Myc and the N-terminal DNA-binding portion of FOXO3a. Analysis of publicly available microarray datasets showed an inverse pattern of c-MYC and p27 RNA expression in primary acute myeloid leukemia, prostate cancer and tongue squamous cell carcinoma samples. The inhibition of FOXO3a-mediated activation of the p27 gene by the high aberrant expression of c-Myc in many tumor cells likely contributes to their uncontrolled proliferation and invasive phenotype.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Apoptose , Sítios de Ligação , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/química , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Neoplasias/enzimologia , Neoplasias/patologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Clin Cancer Res ; 24(17): 4175-4186, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29437767

RESUMO

Purpose: T-cell dysfunction is a hallmark of glioblastoma (GBM). Although anergy and tolerance have been well characterized, T-cell exhaustion remains relatively unexplored. Exhaustion, characterized in part by the upregulation of multiple immune checkpoints, is a known contributor to failures amid immune checkpoint blockade, a strategy that has lacked success thus far in GBM. This study is among the first to examine, and credential as bona fide, exhaustion among T cells infiltrating human and murine GBM.Experimental Design: Tumor-infiltrating and peripheral blood lymphocytes (TILs and PBLs) were isolated from patients with GBM. Levels of exhaustion-associated inhibitory receptors and poststimulation levels of the cytokines IFNγ, TNFα, and IL2 were assessed by flow cytometry. T-cell receptor Vß chain expansion was also assessed in TILs and PBLs. Similar analysis was extended to TILs isolated from intracranial and subcutaneous immunocompetent murine models of glioma, breast, lung, and melanoma cancers.Results: Our data reveal that GBM elicits a particularly severe T-cell exhaustion signature among infiltrating T cells characterized by: (1) prominent upregulation of multiple immune checkpoints; (2) stereotyped T-cell transcriptional programs matching classical virus-induced exhaustion; and (3) notable T-cell hyporesponsiveness in tumor-specific T cells. Exhaustion signatures differ predictably with tumor identity, but remain stable across manipulated tumor locations.Conclusions: Distinct cancers possess similarly distinct mechanisms for exhausting T cells. The poor TIL function and severe exhaustion observed in GBM highlight the need to better understand this tumor-imposed mode of T-cell dysfunction in order to formulate effective immunotherapeutic strategies targeting GBM. Clin Cancer Res; 24(17); 4175-86. ©2018 AACRSee related commentary by Jackson and Lim, p. 4059.


Assuntos
Glioblastoma/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/imunologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Interferon gama/genética , Interleucina-2/genética , Linfócitos do Interstício Tumoral/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T/patologia , Microambiente Tumoral/imunologia , Fator de Necrose Tumoral alfa/genética
19.
Protein Eng Des Sel ; 30(9): 639-647, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28981720

RESUMO

Chondroitin sulfate proteoglycan 4 (CSPG4) is a promising target for cancer immunotherapy due to its high level of expression in a number of malignant tumors, and its essential role in tumor growth and progression. Clinical application of CSPG4-targeting immunotherapies is hampered by the lack of fully human high-affinity CSPG4 antibodies or antibody fragments. To overcome this limitation, we performed affinity maturation on a novel human CSPG4 single-chain Fv fragment (scFv) using the random mutagenesis approach and screened for improved variants from a yeast display library using a modified whole-cell panning method followed by fluorescence-activated cell sorting. After six rounds of panning and sorting, the top seven mutant scFvs were isolated and their binding affinities were characterized by flow cytometry and surface plasmon resonance. These highly specific, affinity-matured variants displayed nanomolar to picomolar binding affinities to the CSPG4 antigen. While each of the mutants harbored only two to six amino acid substitutions, they represented ~270-3000-fold improvement in affinity compared to the parental clone. Our study has generated affinity-matured scFvs for the development of antibody-based clinical therapeutics targeting CSPG4-expressing tumors.


Assuntos
Substituição de Aminoácidos , Anticorpos Monoclonais/biossíntese , Técnicas de Visualização da Superfície Celular/métodos , Proteoglicanas de Sulfatos de Condroitina/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Anticorpos de Cadeia Única/biossíntese , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Afinidade de Anticorpos , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/imunologia , Citometria de Fluxo , Expressão Gênica , Células HEK293 , Humanos , Cinética , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Mutação , Ligação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética
20.
J Immunol Methods ; 442: 49-53, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28024998

RESUMO

Monoclonal antibodies have become essential tools for diagnostic and therapeutic purposes. Antibody affinity is one of the critical factors influencing the therapeutic success of tumor-targeting antibodies. Therefore, developing an accurate and reliable method for determining antibody affinity is crucial. In this study, we describe a fluorescent cell-based immunosorbent assay that can accurately measure antibody affinity (KD) in the nanomolar range. This method involves the addition of fluorescently labeled antibodies to antigen-positive and antigen-negative cell lines fixed on 96-well plates. The fluorescent signals from nonspecific binding to negative control cell lines is subtracted from the specific binding to the antigen-positive cell lines. The KD values obtained by this method were comparable with values obtained by the flow cytometry and radioactive (I125) scatchard assay. Our results demonstrate that this modified cell-based fluorescent method allows for a convenient and efficient identification of therapeutically relevant leads.


Assuntos
Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos , Antígenos/imunologia , Bioensaio/métodos , Espectrometria de Fluorescência , Animais , Anticorpos Monoclonais/metabolismo , Antígenos/genética , Antígenos/metabolismo , Sítios de Ligação de Anticorpos , Ligação Competitiva , Linhagem Celular Tumoral , Proteoglicanas de Sulfatos de Condroitina/imunologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Receptores ErbB/genética , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Mutação , Ligação Proteica , Reprodutibilidade dos Testes , Células Swiss 3T3 , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA